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Recently, it was shown that transceiver hardware impairments have a detrimental impact on the performance of communication systems, especially for high-rate systems. The vast majority of technical contributions in the area of relaying assume ideal transceiver hardware. This paper quantifies the impact of transceiver hardware impairments in dual-hop Amplify-and-Forward (AF) relaying, both for fixed and variable gain relays. The outage probability (OP) in this practical scenario is a function of the instantaneous end-toend signal-to-noise-and-distortion ratio (SNDR). This paper derives closed-form expressions for the exact and asymptotic OPs under Rayleigh fading, accounting for hardware impairments at both the transmitter and the relay. The performance loss is small at low spectral efficiency, but can otherwise be very substantial. In particular, it turns out that for high signal-to-noise ratio (SNR), the instantaneous end-to-end SNDR converges to a deterministic constant, called the SNDR ceiling, which is inversely proportional to the level of impairments. This stands in stark contrast to the ideal hardware case for which the end-to-end SNDR grows without bound in the high SNR regime.

INTRODUCTION

The use of relays for improving coverage, throughput, and qualityof-service in wireless systems has been a hot research topic over the past decade, both in academia [START_REF] Laneman | Cooperative diversity in wireless networks: Efficient protocols and outage behavior[END_REF][START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF] and in industry [START_REF] Hua | Theories and methods for advanced wireless relays-Issue I[END_REF]. This is due to the fact that, unlike base stations, relays are low-cost nodes that can be easily deployed and, hence, enhance the network agility. The vast majority of works in the context of relaying networks make the assumption of ideal transceiver hardware. However, in practice, hardware suffers from impairments; for example, phase noise, IQ imbalance, and amplifier non-linearities [START_REF] Costa | m-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise[END_REF][START_REF] Schenk | RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation[END_REF][START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF]. These have a deleterious impact on the achievable performance [START_REF] Zetterberg | Experimental investigation of TDD reciprocitybased zero-forcing transmit precoding[END_REF][START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF][START_REF] Björnson | Optimal coordinated beamforming in the multicell downlink with transceiver impairments[END_REF][START_REF] Samuel | Impact of RF impairments in cellular wireless metropolitan area networks[END_REF][START_REF] Riihonen | BEP analysis of OFDM relay links with nonlinear power amplifiers[END_REF][START_REF] Qi | Analysis and compensation of I/Q imbalance in amplify-and-forward cooperative systems[END_REF][START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF]. This effect is more pronounced in high-rate systems, especially those employing inexpensive hardware [START_REF] Schenk | RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation[END_REF]. For instance, some recent works have demonstrated that non-ideal hardware severely affects single-hop multiantenna systems; [START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF][START_REF] Björnson | Capacity limits and multiplexing gains of MIMO channels with transceiver impairments[END_REF] proved that there is a finite capacity limit at high SNR, while [START_REF] Björnson | Optimal coordinated beamforming in the multicell downlink with transceiver impairments[END_REF][START_REF] Björnson | Optimal resource allocation in coordinated multi-cell systems[END_REF] showed that existing signal processing algorithms need to be re-designed to account for these impairments.

Despite the importance of transceiver impairments, their impact on relaying has only been partially investigated; in particular, bit error rate simulations were conducted in [START_REF] Samuel | Impact of RF impairments in cellular wireless metropolitan area networks[END_REF], while [START_REF] Riihonen | BEP analysis of OFDM relay links with nonlinear power amplifiers[END_REF][START_REF] Qi | Analysis and compensation of I/Q imbalance in amplify-and-forward cooperative systems[END_REF] derived expressions for the bit/symbol error rates, considering only non-linearities or IQ imbalance, respectively. In this paper, we try to bridge this gap by analytically evaluating the performance of dualhop AF relaying networks in the presence of aggregate transceiver impairments, both for fixed and variable gain relaying. In particular, we obtain the SNDRs and tractable closed-form expressions for the exact and asymptotic OPs of the system. This enables us to characterize the impact of impairments. To the best of our knowledge, this is the first paper presenting an analytical study of relaying with transceiver impairments under the generalized system model of [START_REF] Schenk | RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation[END_REF]. One important observation is that for both types of relaying, an increase in the SNRs lead to an "SNDR ceiling" effect, which is explicitly quantified. The value of the SNDR ceiling is inversely proportional to the level of impairments. This manifests that transceiver impairments have a significant impact on AF relaying-especially at high SNRs and when high spectral efficiencies are desirable.

SIGNAL AND SYSTEM MODEL

This paper revisits the classical dual-hop relaying in Fig. 1a, where a source communicates with a destination through a relay using AF.

Ideal Hardware

In the classical complex baseband system model (see Fig. 1a), the received signals at the relay and destination are yi

= hisi + νi, i = 1, 2, (1) 
where s1, s2 ∈ C are the transmitted signals from the source and relay, respectively, with average signal power Pi = Es i {|si|2 }, for i = 1, 2. Observe that E{•} denotes the expectation operator. In addition, νi ∼ CN (0, Ni) represents the additive circularly-symmetric complex Gaussian noise terms for i = 1, 2. The random channel fading coefficients are modeled as Rayleigh fading1 such that hi ∼ CN (0, Ωi), where Ωi E h i {|hi| 2 } is the average power of the fading channel. Recall that, in this case, the cumulative distribution functions of the channel gains, ρi = |hi| 2 , are given by

Fρ i (x) = 1 -e -x Ω i , x ≥ 0, i = 1, 2. (2) 
The quantity P i Ω i N i will be referred to as the average SNR, for i = 1, 2. A high SNR is achieved by high signal and/or fading power.

The transmitted signal s2 at the relay is simply an amplified version of the signal y1 received at the relay: s2 = G y1. If the relay has instantaneous knowledge of the fading channel, h1, it can apply variable gain relaying with G v P2/Es 1 ,ν 1 {|y1| 2 } [START_REF] Emamian | Multi-user spatial diversity in a shadow-fading environment[END_REF]. Otherwise, fixed gain relaying with G f P2/E s 1 ,ν 1 ,h 1 {|y1| 2 } can be applied using only statistical information [START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF]. 2 With ideal (id) hardware, the amplification factors can be expressed as

G f id = P2 P1 Ω1 + N1 , G v id = P2 P1 ρ1 + N1 . (3) 
The received signal at the destination is

y2 = h2 Gid(h1s1 + ν1) + ν2. (4) 
After some simple algebraic manipulations, the end-to-end SNDRs of (1) for variable and fixed gain relays are obtained as

γ f id = P1 ρ1 ρ2 ρ2 N1 +N2/(G f id ) 2 , γ v id = P1 P2 ρ1 ρ2 P2 ρ2 N1 + (P1ρ1 +N1)N2 , (5) respectively 
. Similar expressions were previously derived in [START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF][START_REF] Emamian | Multi-user spatial diversity in a shadow-fading environment[END_REF].

Non-Ideal Hardware: Transceiver Impairments

The model in (1) implicitly assumes ideal transceiver hardware. However, physical radio-frequency (RF) transceivers suffer from a variety of impairments that create a mismatch between the intended signal for transmission, si, and the signal that is actually generated and emitted. The impact of each impairment (e.g., phase-noise, IQ imbalance, and amplifier non-linearities) can be modeled separately for a given hardware setup [START_REF] Schenk | RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation[END_REF][START_REF] Samuel | Impact of RF impairments in cellular wireless metropolitan area networks[END_REF]. Interestingly, the combined influence is well-modeled by the generalized system model

yi = hi(si + η tx i ) + η rx i + νi, i = 1, 2, (6) 
where η tx i , η rx i are distortion noises in the transmitter and the receiver, respectively [START_REF] Schenk | RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation[END_REF]. Experiments and theoretical investigations (e.g., [START_REF] Costa | m-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise[END_REF][START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF][START_REF] Zetterberg | Experimental investigation of TDD reciprocitybased zero-forcing transmit precoding[END_REF]) have verified that these are well-modeled as

η tx i ∼ CN 0, (κ tx i ) 2 P , η rx i ∼ CN 0, (κ rx i ) 2 |hi| 2 P , (7) 
where the Gaussianity can be explained by the aggregate effect of many impairments. 3 Note that the distortion depends on the intended signal for transmission/reception, in the sense that the variance of ηi is proportional to its average power, here denoted as P.

For convenience, we define ηi η tx i + η rx i /hi ∼ CN (0, κ 2 i P) as the aggregate distortion noise, where

κ 2 i = (κ tx i ) 2 + (κ rx i ) 2 .
The parameter κi > 0 describes the level of impairments on the ith channel and is an important parameter in this paper. Note that κi can be interpreted as the total error vector magnitude (EVM)-a common measure for quantifying the quality of RF transceivers. 4 This parameter is essentially constant while operating in the dynamic range of the power amplifier, but can otherwise increase very rapidly [START_REF] Zetterberg | Experimental investigation of TDD reciprocitybased zero-forcing transmit precoding[END_REF][START_REF] Björnson | Optimal coordinated beamforming in the multicell downlink with transceiver impairments[END_REF]. The generalized system model of ( 6) is illustrated in Fig. 1b.

For the non-ideal (ni) hardware counterpart of (4), the received signal at the destination is now obtained as y2 = h2 Gni h1 (s1 + η1)

+ ν1 + h2 η2 + ν2 (8) 
= Gni h1 h2 s1 + Gni h1 h2 η1 + Gni h2 ν1 + h2 η2 + ν2.

For fixed and variable gain relaying, Gni reads respectively as

G f ni P2 P1 Ω1(1 + κ 2 1 ) + N1 , G v ni P2 P1 ρ1(1 + κ 2 1 ) + N1 . ( 9 
)
The aggregate distortion noise is equal to η1 ∼ CN 0, κ 2 1 P1 for the source and η2 ∼ CN 0,

κ 2 2 G 2 ni Es 1 ,ν 1 {|y1| 2 } for the relay. The latter becomes η f 2 ∼ CN 0, G f ni 2 κ 2 2 (P1 ρ1(1 + κ 2 1 ) + N1) and η v 2 ∼ CN 0, κ 2 2 P2
for fixed and variable gain relays, respectively. After some algebraic manipulations (using the expressions for G v ni ), the end-to-end SNDRs for fixed and variable gain relaying are

γ f ni = P1 ρ1 ρ2 P1 ρ1 ρ2 d + ρ2 N1(1 + κ 2 2 ) + N 2 (G f ni ) 2 , (10) 
γ v ni = P1 P2 ρ1 ρ2 P1 P2 ρ1 ρ2 d+ρ1P1N2(1+κ 2 1 )+ρ2P2N1(1+κ 2 2 )+N1N2 , (11) respectively 
, where d κ 2 1 + κ 2 2 + κ 2 1 κ 2 2 will appear repeatedly in the paper. These SNDR expressions reduce to (5) for κ1 = κ2 = 0.

OUTAGE PROBABILITY ANALYSIS

This section derives new analytical expressions for the exact and asymptotic OPs with AF under the presence of transceiver impairments, for fixed and variable gain relaying. These results are compared with the standard results in the literature based on the assumption of ideal hardware. The OP, Pout(x), is defined as the probability that the channel fading makes the SNDR fall below a certain threshold x; that is,

Pout(x) = Pr{γ ≤ x}, (12) 
where γ is the end-to-end SNDR of the system.

Exact SNR Analysis: Arbitrary Fading Distributions

This subsection considers the OP with arbitrary channel fading. The following lemma plays an important role when deriving Pout(x).

Lemma 1. Let c1, c2, c3 be strictly positive constants and let ρ be a non-negative random variable with cdf Fρ(•). Then,

Pr c1ρ c2ρ + c3 ≤ x = Fρ c 3 x c 1 -c 2 x , 0 ≤ x < c 1 c 2 , 1, x ≥ c 1 c 2 . ( 13 
)
Suppose c2 = 0 instead, then (13) simplifies to

Pr c1ρ c3 ≤ x = Fρ c3x c1 . ( 14 
)
Proof. The left-hand side of ( 13) is equal to

Pr c1ρ ≤ (c2ρ + c3)x = Pr ρ ≤ c3x (c1 -c2x) (15) 
after some algebra. The last expression is exactly Fρ( c 3 x c 1 -c 2 x ). Note that if (c1 -c2x) ≤ 0, then the outage event always occurs.

The effective SNDRs under AF relaying are given in ( 5) and ( 10)- [START_REF] Riihonen | BEP analysis of OFDM relay links with nonlinear power amplifiers[END_REF] for ideal and non-ideal transceiver hardware, respectively. The OPs can be computed using Lemma 1.

Theorem 1. Suppose ρi is an independent non-negative random variable with cdf Fρ i (•) and pdf fρ i (•) for i = 1, 2. For fixed and variable gain relaying, the OPs with ideal hardware are

P id,f out (x) = ∞ 0 Fρ 1 x N1ρ2 + N 2 (G f id ) 2 P1ρ2 fρ 2 (ρ2)dρ2, (16) 
P id,v out (x) = 1- ∞ 0 1-Fρ 1 (x+x 2 )+ P 2 x N 2 z P 1 P 2 N 1 N 2 z fρ 2 z + N2x P2 dz, (17) 
respectively. The corresponding OPs with transceiver hardware impairments satisfy P ni,f out (x) = P ni,v out (x) = 1 for x ≥ 1 d and

P ni,f out (x) = ∞ 0 Fρ 1 (b1ρ2 + a1)x ρ2(1 -xd) fρ 2 (ρ2)dρ2, (18) 
P ni,v out (x) = 1- ∞ 0 1-Fρ 1 x+x 2 1-xd + b 1 xz a 2 (1-xd) a 2 z fρ 2 z + xb2 1-xd dz, (19) 
for x < 1 d . In these expressions, we have a1

N 2 P 1 (G f ni ) 2 , a2 N 1 N 2 P 1 P 2 , b1 N 1 (1+κ 2 
2 ) P 1 , and b2

N 2 (1+κ 2 1 ) P 2 .
Proof. The OP in [START_REF] Qi | Analysis and compensation of I/Q imbalance in amplify-and-forward cooperative systems[END_REF] depends on the end-to-end SNDR γ, which is a function of both ρ1 and ρ2. Using the law of total probability to condition on ρ2, we can write Pr{γ ≤ x} = ∞ 0 Pr{γ ≤ x|ρ2}fρ 2 (ρ2)dρ2. The conditional probability Pr{γ ≤ x|ρ2} can then be evaluated using Lemma 1, which immediately gives ( 16) and [START_REF] Lau | Downlink scheduling and rate adaptation design of multi-user, multiple-antenna base station with imperfect CSIT[END_REF]. Finally, ( 17) is obtained by the additional change of variable z = ρ2 -N 2 x P 2 , while (19) is achieved by setting z = ρ2 -xb 2 1-xd .

This theorem provides integral expressions for the OPs. In the following, we particularize these expressions to the case of Rayleigh fading. Interestingly, the OP with transceiver impairments always equals 1 when x ≥ 1 d . This has an intuitive explanation since γ ≤ 1 d for any transmit power and fading distribution; see Section 3.3.

Exact SNR Analysis: Rayleigh Fading Channels

Under Rayleigh fading and ideal hardware, the OPs with fixed and variable gain relaying were obtained in [2, Eq. ( 9)] and [14, Eq. ( 14)], respectively. Using our notation, we get

P id,f out (x) = 1 -2e - N 1 x P 1 Ω 1 c f id x K1 2 c f id x , (20) 
P id,v out (x) = 1 -2e -x N 1 P 1 Ω 1 + N 2 P 2 Ω 2 x + x 2 c v id K1 2 x + x 2 c v id , (21) 
where

c f id N 2 P 1 (G f id ) 2 Ω 1 Ω 2 , c v id P 1 P 2 Ω 1 Ω 2 N 1 N 2
, and K1(•) denotes the first-order modified Bessel function of the second kind.

The non-ideal case with transceiver hardware impairments is more involved, as can be seen from the following corollary.

Corollary 1. Suppose h1, h2 are independent and hi ∼ CN (0, Ωi) for i = 1, 2. The OPs under transceiver hardware impairments are

P ni,f out (x) =    1-2e -B f ni x 1-xd A f ni x 1-xd K1 2 A f ni x 1-xd , x < 1 d , 1, x ≥ 1 d , (22) 
P ni,v out (x) =    1-2e -B v ni x 1-xd √ A v ni (x+x 2 ) 1-xd K1 2 √ A v ni (x+x 2 ) 1-xd , x < 1 d , 1,
x ≥ 1 d , (23) for fixed and variable gain relaying, respectively. In these expressions, we have

A f ni N 2 P 1 (G f ni ) 2 Ω 1 Ω 2 , B f ni N 1 (1+κ 2 2 ) Ω 1 P 1 , A v ni N 1 N 2 P 1 P 2 Ω 1 Ω 2 , and B v ni N 1 (1+κ 2 2 ) Ω 1 P 1 + N 2 (1+κ 2 1 ) Ω 2 P 2 .
Proof. The proof consists of evaluating ( 18) and ( 19) using the fading distribution in [START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF]. For fixed gain relaying,

P ni,f out (x) becomes ∞ 0 1 -e - (b 1 ρ 2 +a 1 )x Ω 1 ρ 2 (1-xd) e - ρ 2 
Ω 2 dρ2 = 1 -e -B f ni x 1-xd ∞ 0 e - A f ni x ρ 2 (1-xd) e - ρ 2 Ω 2 dρ2 (24) 
for x < 1 d and is equal to 1 otherwise. The remaining integral is evaluated using [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]Eq. (3.324.1)], leading to (22). The expression for P ni,v out (x) is obtained in the same way. This corollary provides new and tractable closed-form expressions for the OPs in case of transceiver impairments.

Asymptotic SNR Analysis

To obtain some insights on the fundamental impact of impairments, we now elaborate on the high-SNR regime. For the ease of presentation, we assume that P1, P2 grow large with P1 = βP2 for some β > 0, such that the relay gain remains finite and strictly positive.

Corollary 2. Suppose P1, P2 grow large with a finite non-zero ratio and consider any random distributions on ρ1, ρ2 that are strictly positive (with probability one). The asymptotic OP with transceiver impairments and either fixed or variable gain relaying satisfies lim

P 1 ,P 2 →∞ Pout(x) = 0, x ≤ 1 κ 2 1 +κ 2 2 +κ 2 1 κ 2 2 , 1, x > 1 κ 2 1 +κ 2 2 +κ 2 1 κ 2 2 . ( 25 
)
Proof. Referring back to [START_REF] Samuel | Impact of RF impairments in cellular wireless metropolitan area networks[END_REF] and by taking the limit P1, P2 → ∞ (with P1 = βP2), we can easily see that the instantaneous end-toend SNDR, for fixed gain relaying, converges to lim

P 1 ,P 2 →∞ γ f ni = γ * = 1 d = 1 κ 2 1 + κ 2 2 + κ 2 1 κ 2 2 . (26) 
Therefore, (25) is trivially obtained. The proof for the case of variable gain relaying follows a similar line of reasoning.

A number of conclusions can be drawn from Corollary 2. First, an SNDR ceiling effect appears in the high-SNR regime, which significantly limits the performance of AF relaying systems. This phenomenon is fundamentally different from the ideal hardware case, in which an increasing SNR makes the end-to-end SNDR grow without bound and Pout(x) → 0 for any x. Note that this ceiling effect is independent of the fading distributions of the two hops.

Moreover, the SNDR ceiling γ * in ( 26) is inversely proportional to the squares of κ1, κ2. We also note that the impact of κ1 and κ2 on the value of γ * is symmetric. Recall that these parameters describe the level of transceiver impairments and equal the EVMs of the source and relay hardware, respectively. This validates that transceiver impairments dramatically affect performance of AF relaying, and, hence, they should be taken into account when designing and evaluating relaying networks. To this end, we now assume that we have a fixed total EVM constraint κtot, such that κ1 +κ2 = κtot, and present the following insightful corollary. Corollary 3. Suppose κ1+κ2 = κtot for some constant 0 < κtot < 2. The SNDR ceiling in (26) is maximized if κ1 = κ2 = κtot 2 . Proof. The maximization of (26) is equivalent to a minimization of f (κ1) = κ 2 1 +(κtot -κ1) 2 +κ 2 1 (κtot -κ1) 2 . Simple differentiation reveals that the function is convex for any 0 < κtot < 2 and that κ1 = κtot 2 is the only real-valued solution to ∂ ∂κ 1 f (κ1) = 0. Corollary 3 shows that it is better to have the same hardware quality on the two hops of the relay channel, than having one highquality node and one low-quality node. We finally point out that the SNDR ceiling can be trivially bounded as

1 (κ 1 +κ 2 ) 2 ≤ γ * ≤ 1 κ 2 1 +κ 2 2 .

NUMERICAL ILLUSTRATIONS

This section provides numerical illustrations of our analytical results. We consider a symmetric Rayleigh fading scenario where the average SNR, P i Ω i N i , is the same for i = 1, 2. This enables us to focus on the impact of transceiver hardware impairments.

The OP, Pout(x), with fixed and variable gain relaying is shown in Fig. 2 as a function of the average SNR. We compare the system performance with ideal transceivers and non-ideal transceivers with κ1 = κ2 = 0.1. Two thresholds are considered: x = 2 2 -1 = 3 and x = 2 5 -1 = 31. These correspond to spectral efficiencies of 2 and 5 bits/s/Hz, respectively. The curves were generated by the analytical expressions in (20)-(23), while the marker symbols show the results of Monte-Carlo simulations. As seen in Fig. 2, there is a minor performance loss caused by transceiver impairments in the low threshold case of x = 3. However, there is a substantial performance loss of around 5 dB in SNR when the threshold is increased to x = 31. This effect applies to both variable and fixed gain relaying. Note that variable gain relaying outperforms the fixed one in most scenarios of interest, which is in line with [START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF]. Next, we consider the average rate of data correctly received under fading (in bits/s/Hz) [17, Chapter 4.2.3], or the so-called goodput [START_REF] Lau | Downlink scheduling and rate adaptation design of multi-user, multiple-antenna base station with imperfect CSIT[END_REF]. This is defined as the product between the gross spectral efficiency and the corresponding probability of successful communication. For any given setup, the maximum goodput is defined as is the SNDR ceiling. This is consistent with Corollary 2, because γ * is the highest SNDR for which the OP approaches zero as P1, P2 → ∞. The saturation level increases when κ1, κ2 are decreased. Finally, Fig. 4 shows the value of the SNDR ceiling for different sets of κ1, κ2 for which κ1 + κ2 = 0.15. As stated in Corollary 3, the maximum is achieved by κi = 0.15 2 for i = 1, 2.

Rgoodput = max

CONCLUSIONS

Physical transceiver hardware introduces impairments that distort the emitted signals. Despite the practical importance of these impairments, little was known about their impact on the achievable performance of relaying systems. This paper has analytically shown that the performance of dual-hop AF relaying is highly affected by these impairments, particularly when high spectral efficiencies are required. Closed-form expressions for the exact and asymptotic OPs were derived for fixed and variable gain relaying. These expressions effectively characterize the impact of impairments and manifest the existence of an SNDR ceiling that cannot be crossed by increasing transmit powers or improving fading conditions. The engineering insight is that both hops should have the same hardware quality.
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 1 Fig. 1: Block diagram of AF relaying with (a) ideal hardware or (b) transceiver impairments with aggregate distortion noise ηi, i = 1, 2.
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 2 Fig. 2: Outage probability Pout(x) with AF relaying with ideal and non-ideal transceiver hardware.
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 2324 Fig.3: Maximum goodput Rgoodput(x) with AF relaying with ideal and non-ideal transceiver hardware.
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 2 (1 + x) (1 -Pout(x)) . (27)The analytical expressions for Pout(x) in (20)-(23) allow simple numerical computation of the maximum goodput in (27). This is illustrated in Fig.3for different levels of impairments: κ1 = κ2 ∈ {0.05, 0.1, 0.15}. This figure demonstrates the deleterious impact of non-ideal hardware; the goodput with transceiver impairments saturates at high SNR and approaches log 2 (1 + γ * ), where γ * =

Note that the following analysis is generic and applies for any fading distribution. We focus on the case of Rayleigh fading for the sake of tractability.

[START_REF] Hasna | A performance study of dualhop transmissions with fixed gain relays[END_REF] The relay then has a long-term power constraint P 2 = E{|G f id y 1 | 2 } where expectation is taken over signal, noise and channel fading

realizations.[START_REF] Hua | Theories and methods for advanced wireless relays-Issue I[END_REF] The Gaussianity holds in particular for the residual distortion when compensation algorithms are applied to handle multiplicative signal errors[START_REF] Studer | MIMO transmission with residual transmit-RF impairments[END_REF].

The total EVM is defined as Eη i {|η i | 2 }/Es i {|s i | 2 }. 3GPP LTE has EVM requirements for transmitters in the range κ tx i ∈ [0.08, 0.175], where smaller values are needed to support high spectral efficiency [15, Sec. 14.3.4].