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~ Abstract—This paper considers pilot-based channel estimation operation with cubic computational complexity. Therefate
in large-scale multiple-input multiple-output (MIMO) com muni-  js very computationally expensive to compute the MMSE
cation systems, also known as “massive MIMQ”. Unlike previos and MVU estimates in large-scale MIMO systems. The high

works on this topic, which mainly considered the impact of lexit b ided under ideal fi et
inter-cell disturbance due to pilot reuse (so-calledpilot contam- ~ COMPIEXIly can be avoided under ideal propagation Contstio

ination), we are concerned with the computational complexity. Where all covariance matrices are diagonal, but largesscal
The conventional minimum mean square error (MMSE) and MIMO channels typically have a distinct spatial correla-

minimum variance unbiased (MVU) channel estimators rely on tion due to insufficient antenna spacing and richness of the
inverting covariance matrices, which has cubic complexityin the propagation environment[4]. Moreover, the necessaryt pilo

multiplication of number of antennas at each side. Since tls . lul twork t tiall |atedri
is extremely expensive when there are hundreds of antennas, '€US€ IN Cellular NEtworks creates spalially correlatadrin

we propose to approximate the inversion by anL-order matrix cell interference, known apllot Contaminatiom that reduces
polynomial. A set of low-complexity Bayesian channel estiators, the estimation performance and the spectral efficiency{6R]—

coined Polynomial ExpAnsion CHannel (PEACH) estimators, & Similar complexity issues appear in multiuser detection,

introduced. The coefficients of the polynomials are optimied where both the decorrelating detector and the linear MMSE

to yield small mean square error (MSE). We show numerically detector invol trix i iong T111. A |
that near-optimal performance is achieved with low polynonial etector involve matrix inversions_[11]. common fow-

orders. In practice, the order L can be selected to balance COMplexity approach is reduced-rank filtering |[12]. Thisica
between complexity and MSE. Interestingly, pilot contamiration be achieved byolynomial expansion (PEwhere the matrix

is beneficial to the PEACH estimators in the sense that smalle nverse is approximated by ah-order matrix polynomial

L can be used to achieve near-optimal MSEs. [11]-[14]. PE-based detectors are versatile since thetstrel
enables simple multistage hardware implementation [1d] an
the order. needs not to scale with the system size to achieve

MIMO techniques can bring substantial improvements inear-optimal performance[12]. Therefofeis simply selected
spectral efficiency to wireless systems, by increasing the balance between complexity and detection performance. A
spatial reuse. Whil& x 8 MIMO transmission has found its main problem is to select the coefficients of the polynomial
way into standards such as LTE-Advancéd [1], there is a&m achieve high performance at small the optimal weights
increasing interest in equipping base stations with mugdela are expensive to computé [11], but alternatives based on
antenna arrays [2]-{4]. Such large-scale MIMO, or “massi@ppropriate scaling$ [13] and asymptotic analysis [14$texi
MIMO?”, techniques can give unprecedented spatial resmiti  Inspired by the prior works in detection, in this paper,
enabling a very dense spatial reuse that potentially cap bpe we propose a set of low-complexity channel estimators that
with the rapidly increasing demand for wireless connetivi we call Polynomial ExpAnsion CHannel (PEACHStimators.

A major limiting factor in large-scale MIMO is the availabil These novel estimators approximate the MMSE estimator by
ity of accurate channel state information (CSI). This iscein replacing the matrix inversion with a polynomial expansion
high spatial resolution can only be exploited if the progiga The coefficients of the polynomial are optimized to yield
environment is precisely known. CSl is typically acquirgd bminimal MSE at any fixed polynomial orddr, while keeping
sending pilot signals and estimating the channel coeffisiethe low complexity. The PEACH estimators are evaluated
from the received signals [[5]-[L0]. The Bayesian MMSHnder different propagation/interference conditions ahdw
estimator can be applied![7]=[10] if the channel statisdos remarkably good performance at low polynomial orders.
known, while the MVU estimator is applied otherwise [7]. Notation: Boldface (lower case) is used for column vectors,

These channel estimators basically solve a linear systemxofand (upper case) for matriceX,. Let X”, X#, and X!
equations, or equivalently multiply the received signahwin denote the transpose, the conjugate transpose, and irsferse
inverse of the covariance matrices, which is a mathematic&l respectively. The Kronecker product¥fandY is denoted

X®Y, vec(X) is the vector obtained by stacking the columns

E. Bjornson is funded by the International Postdoc Grarit22B28 from of X tr(X) denotes the trace, anfX|| is the Frobenius
the Swedish Research Council. This research has been seghfyrthe ERC . o .

Starting Grant 305123 MORE (Advanced Mathematical ToolsGomplex ~N0Orm. The notatior* denote definitions, whil®(M*) means
Network Engineering). that the complexity is bounded byM* for someC > 0.

I. INTRODUCTION
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for any R # 0, thus the MMSE estimator achieves a better
average estimation performance than the MVU estimatoesinc
it utilizes the channel statistics.

A. Complexity Issues in Large-Scale MIMO Systems

The main computational complexity when computing the
MMSE and MVU estimators in[{2) and(3) lies in solving a
linear system of equations or, equivalently, in computing t
matrix inversions directlﬂ. Both approaches have computa-
tional complexities that scale &3(M?3) where M £ NtNTE
This complexity is relatively modest in classic MIMO syst&em
where2 x 2, 4 x 4, or 8 x 8 are typical configurations.

Fig. 1. lllustration of pilot signaling in a large-scalé; x N,- MIMO system, Recently, there is an increasing interest in large-scaM®1|
where N >> N;. The complexity of conventional channel estimators is vergystems where there might be hundreds of antennas at one
large in these systems, which calls for low-complexity ralétives. side of the link [2]-[4]. To excite all channel dimensioniset
pilot length B should be of the same order 5. Large-scale
systems are therefore envisioned to exploit channel recifyr
Il. PROBLEM FORMULATION to always haveV; < N, in the channel estimation phase—

This paper revisits the problem of estimating a quasitatlV, can even be orders of magnitude larger tiénwithout
flat-fading MIMO channelH € CN-*N: where N, is the degrading the estimation performanuer antenna element.
number of transmit antennas aid. is the number of receive  Observe that in a potential future large-scale MIMO system
antennas. Similar to [8]=[10], the transmitter sends a fix¢dth N, = 200 andN; = 20, the MMSE and MVU estimators
predefined pilot matrif? € CN+*E over B > 1 symbol times; Wwould require inverting matrices of siz®00 x 4000 (or simi-
see Fig[lL. The receiver tries to obtdih from the received larly, solving a linear system of equations with00 unknown
signalY € CN-*B | given by variables). This massive operation needs to be redone quite

often sinceR and S change with time. The purpose of this

Y=HP+N 1) paper is to develop alternative channel estimators thawall
where the disturbanc&N < CN-xB is assumed to be for balancing between computational/hardware compleadity
circularly-symmetric complex Gaussian noisesc(N) ~ estimation performance.
CN(0,8). The disturbance covariance matfixc CV-B*N-B
is positive definite and can include both regular uncoreglat
receiver noise and different types of interference fromeoth
systems. The analysis herein holds for &jput some typical
special cases will be considered in Secfion 1v-B.

The channel matrix is modeled as Rayleigh fading wit

4

Pilot signal

Transmitter Receiver
(Few antennas) (Very many antennas)

Remark 1. While having Gaussian channels and disturbance
is a well-accepted assumption in conventional MIMO systems
the channel modeling for large-scale MIMO is still in its
infancy. By increasing the number of antennas we will improv
he spatial resolution of the array which eventually may

- N0 R h he ch | i validate the rich-scattering assumption that is behinel tise
vec(H) ~ CA(0,R), where the channel covariance Matr¢ Gaussian channel distributions [4]. However, we strésst t

NNy X NNy j iti i-defini Hati ; o k .
ReC™ s p(_)smvg semi (_jef|n|te. Obs_erve tatis _the estimators in this paper can be applied and give reaskenab
generallynot a scaled identity matrix, but describes the spatlﬁl

. . h X q q erformance under any channel and disturbance distrilmgio
Eropagatlorr: envwonment. Tde mat_rchsan S are assumed s i since(@) is also the linear MMSE estimator ar@) is
hown at the transmitter and receiver. the best linear unbiased estimator (BLUE) in cases when only

If the channel statistics are known at the receiver, tP}ﬁe first two moments d and/or N are known [7], [10]
Bayesian MMSE estimator of the MIMO channel i$ [7]=[10] e

. (= =~y -1 I1l. L ow-COMPLEXITY BAYESIAN PEACH ESTIMATORS
vec(Hyinse) = RP (PRP + s) vee(Y)  (2) e , ,

In this section, we propose several low-complexity Bayesia
whereP £ (PT® I). The performance is measured in MSE channel estimators based on the concept of polynomial expan
EUH - o) = (R PYS 1By 1), o, oundersand e mar dea, we 1t ste e flgnn

Alternatively, if the channel distribution is unknown toeth yp y 9 y
receiver, the classic MVU estimator is| [7, Chapter 4]
1 Lif R, S, P are all diagonal matrices, the complexity can be greatlyeed
0 _ (pHg-1p pHq-1 3 by simply inverting the diagonal elements. However, sudtih cases are of
VeC(HMVU) (P S P) P78 VeC(Y)' ( ) limited practical interest, particularly in large-scaldN\WD systems which are
. . . . ne to non-negligible spatial channel correlation ardt miontamination.
The perfgrmance measurNe IS th~en the eSt?matlon Varlar% ote thatO (M 3) refers to the complexity scaling of the classical Gaussian
E{|H — Huvul%} = tr ((PHS_lP)_l). Obviously, elimination algorithm. The complexity is reducedd( M12-3074) by the more
sophisticated Strassen’s algorithm. The exponent can ttieefureduced, see

1, SHa—-1\—1 S Ha—15y—1 e.g. [15], but mainly for academic purposes since extreniye matrices
tr ((R +P7S P) ) <tr ((P S P) ) (4) are required to actually benefit from such improved asynptmthaviors.



Lemma 1. For any Hermitian matrixX < CM*¥ with will maximize the asymptotic convergence since the largest

bounded eigenvalugs,, (X)| < 1 for all n, it holds that and smallest eigenvalue dfl — o(PRPH + S)) become
oo symmetric around the origir_[13]. Although the computation
(I- X)’1 = ZX’. (5) of the extreme eigenvalues is generally quite expensive, we
1=0 note that these can be deduced from the setup; that is, path-

Observe that the impact &X! in (B) reduces with! (as loss, antenna array design, location of dominating interfg
An(X)! for each eigenvalue). It therefore makes sense figceiver noise, etc. We therefore assume thaiacu can be
considerL-order polynomial expansions of the matrix invers€omputed with low complexity in this paper and refer[tol[13]
using only the terms = 0,..., L. In principle, the inverse for general techniques for efficient computation of eigdunes.
of each glgenvalue is then approxmated bylau_rde_r Taylc_>r B. Weighted PEACH Estimator
polynomial, thusl. needsnot scale with the matrix dimension )
to achieve a certain accuracy per element. Instéadan be  Although the PEACH estimatolr{(7) converges to the MMSE
selected to balance low approximation error with compjexit€Stimator asL. — oo, it is generally not the best-order

In order to apply Lemm@l1 on matrices with any eigenvalu&olynom'al estimator at finiteL. More specifically, instead

structure, we obtain the next result which is similar[tol [13] ©f multiplying each term in the sum with, we can assign
different weights and optimize these for the specific orHer

Proposition 1. For any positive-definite Hermitian matriX, |n this way, we obtain theveighted PEACH estimator

L
VGC(ﬁW_PEACH) = RPY Z wyalt? (f’Rf’H + S)lvec(Y)

L
X t=a(I-(I-aX)) ~ad I-aX) (6)
=0 =0

where the approximation holds with equality when- oo if (10)
H : 2
o sele(-:ted to satisfy < o _< maxn An (X)° wherew = [w, ..., w;]” are scalar weighting coefficieriis.
A. Unweighted PEACH Estimator Observe that the-parameter is now redundant and can be set
Applying the approximation in Propositibh 1 on the MMSEo one. For numerical reasons, it might still be good to gelec
estimator in[(R) gives the low-complexify-order Polynomial 1
ExpAnsion CHannel (PEACHSstimator aw-PEACH < (11)

max, A,(PRPH + S)

L
vec(Hpgacu) = RPY ZQ(I — a(PRP + S))IVGC(Y) since this prevent the eigenvalues @ft! (PRP¥ + S)l to
=0 grow unboundedly ag becomes large. This will simplify
7 the implementation of the following theorem, which finds the
which does not involve any channel inversions. The compueights that minimize the MSE.

tational complexity of [{(7) isO(LM?) where M £ N.N,. N 9 i
WheneverL < M, this is a large complexity reduction as'heorem 2. The MSEE{||H — Hw-peacull7} is minimized

compared taO(M?3) for the original MMSE estimator.

Theorem 1. The PEACH estimator ifZ) achieves the MSE
- o - _ _ where theijth element oA € CET1*L+1 and theith element
tr (R +RP7AL(PRP” + S)A[PR — 2RPHALPR2 ofb e CLH1 are

Wopt = [wi' ... wP' )T = A7'b (12)

8) " o .

where A = ZIL:O a(I _ a(f)Rf)H + S))l [A]U = o tr (RPH(PRPH + S)H—J—lpR) , (13)

Proof: Follows from direct computation of the MSEm [b]; = a'tr (Rf’H(f’Rf’H + S)i_lf’R) :

The PEACH estimator lends itself to efficient multistage _ _ _
hardware implementation wherg)*!vec(Y) is computed The resulting MSE of the W-PEACH estimator is
. o :

from (-)'vec(Y) by multiplying the Iatt_er_vector with(T - tr(R) + Wg)tAWopt — b wop — Wf;tb- (14)
a(PRP#+8)). The hardware can be similar to the multistage
detection implementation illustrated in[11, Fig. 1]. Proof: Follows from differentiation of the MSE.  m

It remains to select the scaling parameteto satisfy the  Although Theoren]2 provides the optimal weights, the
condition in Propositiofi]1. From a complexity point of viewcomputational complexity i€)(M?) since it involves pure
we easily can seleat to be equal to—=—2——. On the matrix multiplications of the forniZ’. This means that com-

. . tr(PRPH4S) . . . .
other hand, we are also interested in choosirtig achieve fast Puting the optimal weights for the W-PEACH estimator has the

convergence in the polynomial expansion. Among the valué8me asymptotic complexity scaling as computing the oaigin
that satisfy the condition in Propositioh 1, the choice MMSE estimator. To benefit from the weighting we thus need

9 to find a low-complexity approach to compute the weights.

QPEACH = == - == o
max, A, (PRP# + S) + min, \,(PRP# 4 8S) SW-PEACH is obtained by expanding ea¢h— o(PRPH + S))! as a
(9) binomial series, collecting terms, and replacing consfactors with weights.



C. Low-Complexity Weights Algorithm 1: Low-complexity weights for W-PEACH
Next, we propose a low-complexity algorithm to compute Input: Polynomial orderL and time windowT’;

weights for the W-PEACH estimator. We will exploit that Input: Current timet;
L Input: New and old reEeived~signa§st,yt,T;
(PRPY 4+ 8) = E{vec(Y)vec(Y)?} = lim = Z”yg{’ Input: ApproximationsA;_,b;_1 at previous time/—1;
T=oo T =1 (15) 1 Set [At]ij = [Atfl]ij
wherey; = vec(Y) denotes the received signal at estimation aiti H (~ S H S SH i+»_2)
. . : ~ : PR*“P" (PRP S)rJ
time instant¢. This means thafPRP” + S) is closely * T ‘yt ( +8) v
approximated by the sample covariance ma#igtll vy _ A (SRepH PR i+j—2) ;o
if the number of sample¥ is large. Although one generally T Yt-T (PR PY(PRPY +8) Y1 Vi j

needsT > BN, to get a good approximation, we can gel, get [Bt]' _ [Bt i
away with much smallef” since we will only compute traces. ’ o

. > P> T ~ ~ ~ ~ .
For any fixedT' > 1 and: > 1, we now observe that n %yfl (PRQPH(PRPH n S)Z,Q) Vi
pDH PpRDH iD .
tr (RP¥(PRP" + 5)'PR) . o« (BRI (BRB" 1 8-7) yr vi> 2
T Yi—r Yi—-T Vi =

T
I , 1 -
- H H i1 L H ~ .
~ tr (RP (PRP" +8) (T ; yiy: ) PR) a7 3 Set[by]; = % Z?:l VlHPRQPHVi for v; NCN(O, I);
- 4 COMPUteW . pprox.t = A7 'by;

T
_ % Z yf (f)RQf)H(f)Rf)H + S)iq) vi. (18) Output: Approximate weightswapprox,: at timet;
t=1

Since the elements oA and b in (I3) are of the form
in (I6), we can approximate each element using fl1By D. Summary of Computational Complexity
computing/updating these approximations over a slidineti  The complexity of the conventional estimators and proposed
window of lengthT', we obtain Algorithm[lL. At any time ppaCH estimators are summarized as follows:
instantt, this algorithm computes approximationsAfb, de-

noted by;&hf)t, by using the received Signays, . .., ys_111. Channel Estimators Computatlon3al glomplexny
These are used to compute approximate wWeighiSyrox,:- MMSE and MVU O(N; QNTQ)

To reduce the amount of computatiorfst,f)t are obtained PEACH (Z(Lévt g\]") 3

from A;_1,b;_; by adding one term per element based on the W-PEACH O(L"N{ N, + L)

current received signat; and removing the impact of the old
received signay;_r (which is now outside the time window).
The algorithm can be initialized in any way; for example, b
accumulatingl’ received signals to fill the time window.
The complexity of computing the elements i, b, is
O(L*M?) per time instantsince there argL + 1)(L + 1)
elements inA; and L + 1 elements inb; to be computed,
which results in(L + 2)(L + 1) elements in total, and
we need to compute a series of multiplications between IV. NUMERICAL EVALUATION
vectors and matrices. Furthermos@,,p.ox,: IS Obtained by
solving an L-dimensional system of equations, which haﬁ
complexity O(L?). To summarize, the W-PEACH estimator,
along with Algorithm[ has a computational complexity o

2 2 2 3\ _ 2 2 3 i i

O(L°M JgLM + L7 = O(.L M”+ L7), which is smaller networks with pilot contamination. We describe the latter

thanO(M*?) of the MMSE estimator fol. < v M = /N;N,.. L detail si o f th in chall
One additional feature of Algorithid 1 is that it can easily bgcenarlo In more detall since It IS one of the main challenges
. ) ._Ih the development of large-scale MIMO systemis [4].
extended to practical scenarios where also the true coxaria
matricesR and (PRP# + S) are approximated by samplea. Noise-Limited Scenario
covariance matrices. This would enable adaptive tracking o
the slow variations in channel and disturbance statisties t

appear in practice. We leave this extension for future work.

. B. Pilot Contamination Scenario
4Note thatby = tr(PR2PH) needs to be treated differently since there is . . i .
no (PRPH + ) term. For some predefined vectors~ CA/(0, T), Algo- A scenario that has received much attention in the large-

rithm [ uses the approximation(PR2P) ~ ¢ S°T  vFPR?PHv,.  scale MIMO literature is when there is disturbance from

1

We note that the cubic complexity scaling iy V,. for the
conventional MMSE and MVU estimators have been reduced
o squared complexity for the proposed PEACH estimators.
The orderL of the polynomial expansion has a clear impact
on the complexity, but recall that it generally needs notesca
with N;N,. [12]. In the next section, we will illustrate that
small values onl yields good performance.

In this section, we illustrate the performance of the preplos
EACH and W-PEACH estimators. The analysis so far has
een generic with respect to the disturbance covariancexmat
. Here, we consider two scenarios: noise-limited and aallul

A commonly studied scenario is when there is only uncor-
related receiver noise; thi&= 21 wheres? is the variance.



simultaneous reuse of pilot signals in neighboring cells- [2

[6]. Such reuse is often necessary due to the finite chan ‘ ‘ ‘ " [—— MU estimatorp=01
. . . . — # — MVU estimator-=0 i
coherence time (i.e., the time that a channel estimate can -a¥ —+— PEACH estimator-§=01 ||
considered accurate), but leads to a special form of inemte A 01
called pilot contamination. It can be modeled as =T = © — W-PEACH estimatorB=0 ||
—+8— MMSE estimator-f=0.1
Z g _ — t— —4— — 4 — 4 — —4— —4— o — B — MMSE estimator-3=0 b
N — HZP + N (19) 5 * - - - -+ -
ieT

whereZ is the set of interfering cell§I; is the channel from
the ith interfering cell to the receiver in the cell under stud

andvec(N) ~ CN(0,021) is uncorrelated receiver noise. If
H; is Rayleigh fading withvec(H;) ~ CN(0,3;), then

Normalized MSE (dB)

o

S = Zf)zzf)H +02:[_ (20) B -8--4a- —I:I——E-—E:-2:—-3-———8-—_8—_-8—_—-8-_—_8:8—_-é

-9t

€T B p s _é 10 12 14

Note that only the sum covariance matiix,_, 3; needs to repnemeteer @
be known when computing the proposed PEACH estimatorsg. 2. MSE comparison of different estimators for differgrolynomial

When @) is substituted into the PEACH and W—PEACHrder; whens € {0, 0.1}, which represents noise-limited and pilot contam-
estimator expressions ifl(7) and (10) we get contaminat'mite seenarios.
terms of the formRPPPX,P¥. These terms are small if 15
R and X; have very different span, or ifr(3;) is weak 104
altogether—this is easily observedBf P is a scaled iden-
tity matrix. Similar observations were recently made in th
capacity analysis of [3] and when developing a pilot allaoat 0
algorithm in [5]. Under certain conditions, the subspace
of the useful channel and pilot contamination can be ma
orthogonal by coordinated pilot allocation across cellsdb
by exploiting both received pilot and data signals for clenn

—#— MVU estimator-f=0.1

— # — MVU estimator-p=0

—+— PEACH estimator-f=0.1

— + — PEACH estimator-B=0
W-PEACH estimator—3=0.1

— © — W-PEACH estimator-=0

—+&— MMSE estimator-f=0.1

= B — MMSE estimator-p=0
—_—

Normalized MSE (dB)
i
o
T

estimation as in[[6]. -20F N

C. Numerical Examples =il Ny
To evaluate the performance of our proposed estimato or b

we consider a large-scale MIMO system with. = 100 and a5—— L . e

N; = 10 antennas in addition to the pilot length= 10. We SNR (dB)

follow the Kronecker mOdel [16] to_descrlbe correlation argo Fig. 3. MSE comparison of different estimators for differaralues of
antennas of the desired and disturbance MIMO channels SNR~ when 8 € {0, 0.1}, which represents noise-limited and pilot
In this model, the covariance matrix of a MIMO channegontaminated scenarios.

H _ N¢X Ny
is modeled asR = R¢ ® R, whereR, € C™*™ and We use the normalized MSE, defined # E), as perfor-

Npx N, i i i i
R, € .(C d are_the %patlal Covarlarlme rﬂatnces at thl%ance measure. In all the figures, we compare the performance
transmitter and receiver sides, respectively. Followirggsame of the proposed estimators with the conventional MMSE and

modeling, we haves; = X, @ Xy, for i € I. M\{U estimators. The pilot matrix i® = /PrL
To generate covariance matrices, we use the exponentig|, Fig. [, MSE has been plotted as a function of the

- . : X
mod_el [l‘]'. Without .IOSS of generality, all the covarnanc olynomial orderL. The noise-limited scenario is given by
matrices will have diagonal elements equal to one whi

Its i R) — (2 — NN W hat th = 0, while 5 = 0.1 (we assume thaB; = By = f)
results intr( . ) n tr.( i) = [VelVp. VVE assume t_at t ererepresents the scenario where the two interfering cell® hav
are two dominating interfering cells,= 1, 2, for which the

. . kened by the f interfering channels which are) dB weaker than the desired
covariance matrices are weakened by the fabist 5; < 1, channels. The SNR isy = 5 dB. As can be seen from

i.e., 5;3;. This factor represents how severe the pilot CO"I‘—'ig.[Z, both PEACH and W-PEACH detract by increasihg

tamination part is;3; = 0 represents the noise-limited case, outperform MVU forL > 2. Interestingly, W-PEACH

Wh”? Bi_ — 1 represents the case when the useful chaqnel roaches the MSE-values of the MMSE estimator very
the ith _mterfgnng_channel are equ_ally strong. V7\£e define t ickly, while PEACH needs a highdr than W-PEACH to
normahlzed pllo}{sgnal-to-nmse ratlp (SNR) @s= —F where get close to the MMSE curves.
Pr = x;tr(PPY) is the average pilot power. In Fig.[3, we compare different estimators with or without
5 ] ) . ) ) ) additional interference from pilot contamination. We ddies
Cell 7 can use an arbitrary pild®;, but only pilots with overlapping span

(i.e., P;PH £ 0) will cause interference. Therefore, the case of a commd fixed L = 10 and vary the SNR’V' As expected, the
reused pilotP; = P is of main interest, while extensions are straightforwardMSE of the MMSE and MVU estimators decay steeply to



T T T
—O— Exact W-PEACH
- - - Approximate W-PEACH

Normalized MSE (dB)

1 L L L L L L L L L
1 15 2 25 3 3.5 4 4.5 5 55 6

a key to achieve these potential improvements in practice.
Since the conventional pilot-based MMSE and MVU channel
estimators have a computational complexity unsuitable for
scenarios with large numbers of antennas, we proposed a set
of low-complexity PEACH estimators. These are based on ap-
proximating the inversion of covariance matrices in the MMS
estimator by anL-order matrix polynomial. The proposed
estimators converge to the MMSE estimatorZagrows large,

but by deriving the optimal coefficients for the polynomial
we can obtain near-optimal MSE performance at small values
on L. In practice, the orded. can be selected to balance
between complexity and MSE performance. Numerical results
are given for noise-limited scenarios as well as under pilot

Polynomial Order (L)

Fig. 4. Comparison of W-PEACH estimator and Approximate BAEH
estimator in a noise-limited scenari@ & 0) for different SNR~ values.

contamination from pilot reuse in adjacent systems. Algiou
pilot contamination can create an MSE floor, it is actually
beneficial to the proposed estimators in the sense thatesmall

L can be used to achieve good performance.

zero when the~ increases in the noise-limited scenario,
while the MSE saturates to a non-zero error floor under pilot
contamination. The MSE floor whed # 0 is due to the [
fact that the normalized signal-to-interference-andsaaatio
(SINR) becomes almost constant-agcreases. To show this, [2]
we define the normalized SINR as

v 21) [3]

1+ KBy (

whereK is the number of interferers. Asincreases, the SINR (41
in 27) approachesKl—[3 > 0, then the MSE values, which
are different functions of the SINR for different estimator
approach some non-zero limits.

We observe from Fig[]3 that pilot contamination does
not make significant impact on the PEACH and W-PEACHS]
estimators; in fact, pilot contamination is beneficial ire th
sense that it reduces the gap to the optimal MMSE estimatot.
This remarkable result is explained as follows. For any fixedBl
L, PEACH and W-PEACH will converge to a non-zero MSE
when v increases, due to the bias generated by the approy;
imation error. Since this also happens for the MMSE and
MVU estimators under pilot contamination, the relativesla$ [10]
using the proposed low-complexity estimators will be sevall
Consequently, we can redugeas( increases and still achieve
near-optimal performance. [

Finally, we focus on the low-complexity approach in Al-
gorithm[1 for finding the weights. Fid.] 4 considers a noise-
limited scenario and a time window of length = 100.
Although T" <« BN,., we observe that the approximate W-
PEACH estimator which exploits the approximate weightg3]
from Algorithm[1 gives almost identical performance as W-
PEACH with optimal weights computed according to Theoreiig
[2. This confirms that the W-PEACH estimator is indeed a low-
complexity channel estimator suitable for large-scale @M
systems.

11]

[15]

[16]
V. CONCLUSIONS
Large-scale MIMO techniques offer a high spatial resoly;-
tion that can drastically increase the spectral and/orggner
efficiency of wireless systems. Acquiring accurate CSI is
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