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Global asymptotic stabilization for some nonlinear models of flexible

aerospace vehicles

Laurent Burlion1, Elodie Duraffourg1, Tarek Ahmed-Ali2 and Françoise Lamnabhi-Lagarrigue3

Abstract— New strategies are proposed to design GAS con-
trollers for two significant classes of nonlinear flexible systems.
Inspired by a non affine control technique, we have designed
some novel nonlinear control laws which use the full state in
order to enhance the damping of the flexible modes: this new
design is all the more interesting than the classes of considered
systems belong to non triangular nonlinear systems. Finally, the
effectiveness of our approach is illustrated on simplified models
of a flexible launcher and spacecraft.

I. INTRODUCTION

In the last years the stabilization problem of flexible

nonlinear systems has received a great attention. This interest

is motivated by the fact that flexible modes can generate

a very bad transient even if the system is a minimum-

phase one. Several results concerning this topic exist in the

literature : a typical design is to combine a nominal nonlinear

controller with a vibration absorber controller.

This ’vibration absorber’ is often based on the well known

method of Input Shaping [1], [2], [3], [4] which has the major

advantage to require merely relatively good approximation of

modeling coefficients instead of direct measurements of the

flexible modes : however, this useful method is by nature a

linear method which can be used when the initial conditions

are known and when the interaction between the flexible state

and rigid ones is linear (although a few results exist in the

nonlinear case e.g [5]). Another approach is to combine a

nonlinear controller with a linear controller which uses the

flexible modes and (only) locally damps them out [6], [7].
Open loop or robust feedforward methods can also be used

to design a reference trajectory for the rigid state such

that the oscillations of the flexible modes remain relatively

low [8], [5], [9] but it seems tricky to apply these methods

on a large nonlinear operating domain when the systems

parameters are uncertain and when there is a lot of flexible

modes.

Recently, new nonlinear Lyapunov based approaches have

been proposed for the stabilization problem of flexible

aerospace systems when there is a large number of flexible

modes and a strong nonlinear coupling between flexible and

rigid modes [10], [11], [12], [13] : technically speaking, al-

though these systems are minimum phase, they belong to the

1 L. Burlion and E. Duraffourg are with Onera - The French Aerospace
Lab, F-31055 Toulouse, France. Laurent.Burlion (at)
onera.fr Elodie.Duraffourg (at) onera.fr

2 T. Ahmed-Ali is with Ecole Nationale Supérieure d’Ingénieurs de Caen
(ENSICAEN), 6 boulevard du Marchal Juin 14050 Caen Cedex 4, France.
tarek.ahmed-ali (at) greyc.ensicaen.fr

3 F. Lamnabhi-Lagarrigue is with L2S-CNRS, Supélec, 3 rue
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class of underactuated non triangular nonlinear systems [15],
which renders tedious the twofold objective of stabilizing

the system and damping out the oscillations of the flexible

modes. In this paper, we propose to enlarge these results

by either adding more damping to the flexible dynamics

[10], [12], [13] either studying larger classes of systems [11].
The control schemes developed in this paper are based on the

result of [16] which is a systematic design approach to add

Lyapunov decrease to non affine nonlinear systems whose

free dynamics are stable. Moreover, the major difference

of our approach compared to classical methods is the fact

that the controllers are first designed to stabilize the flexible

modes (i.e the zero dynamics) and then extended to stabilize

the full state.

The present paper is organized as follows : in section II, the

class of nonlinear systems studied here are presented and

motivated by some examples of flexible nonlinear systems.

Then, we briefly recall the result of [16] used to determine

the new control laws proposed in this paper : we show how

one can both globally stabilize these classes of systems and

add damping to the flexible dynamics. The two following

sections illustrate our results on a flexible launch vehicle

and a spacecraft model. We finally give our conclusions and

some future research directions.

A. Notations

Let m∈N . Throughout the paper, the following notations

will be used:

• ‖.‖ is the Euclidean norm in Rm

• Given a smooth function V : R2m −→ R and a vector

field g : R2m −→ R2m, LgV := ∂V
∂x

g denotes the Lie-

derivative of V with respect to g

• a continuous function σ : R>0 −→R>0 belongs to class

K it is monotonic increasing and σ(0) = 0

• a continuous function σ of class K belongs to class

K∞ if it is unbounded

• given a symmetric matrix P, its minimal (resp. maximal)

eigenvalue is denoted by λmin(P) (resp. λmax(P))

II. PROBLEM FORMULATION

In this paper, we consider the stabilization problem of the

following classes of minimum-phase nonlinear systems :

A. Class I















ẋ1 = x2

ẋ2 = u

η̇1 = η2

η̇2 = Aη η +Bη u+P1
η(x1)+P2

η(x1)x2

(1)
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This class of systems satisfies the following properties :

• x1,x2,u ∈ R and η := [η1;η2] ∈ R2m, m ∈ N

•

[

0 Im

Aη

]

is a real Hurwitz matrix and its eigenvalues are

all complex conjugates

• η1 is a vector whose coordinates are called the flexible

modes

• the dynamics of x = [x1;x2] (resp. [η1;η2]) is called the

rigid (resp. flexible) dynamics

• all the eT
i P1

η , i ∈ {1,m} are polynomials of degrees ≤

d1 , where d1 ∈ N . Moreover, each eT
i P1

η , i ∈ {1,m}
vanishes at 0.

• all the eT
i P2

η , i ∈ {1,m} are polynomials of degrees ≤ d2

, where d2 ∈ N

B. Class II















ẋ1 = x2

ẋ2 = u

η̇1 = η2

η̇2 = Aη η +Bη u+ fη(x1)+gη(x1,η1)x
2
2

(2)

which verifies the following properties:

• x1,x2,u ∈ R and η := [η1;η2] ∈ R2m, m ∈ N

•

[

0 Im

Aη

]

is a real Hurwitz matrix and its eigenvalues are

all complex conjugates

• η1 is a vector whose coordinates are called the flexible

modes

• the dynamics of x = [x1;x2] (resp. [η1;η2]) is called the

rigid (resp. flexible) dynamics

• fη (resp.gη ) is a smooth and globally k f -(resp.

kg)Lipschitz function and all the eT
i Pη , i ∈ {1,m} are

polynomials of degrees ≤ l , where l ∈ N

It has to be noticed that there exist several flexible aerospace

vehicles which are described by the above two classes of

nonlinear systems. We can cite for instance :

• the rotational dynamics of a flexible hypersonic vehicle

belongs to class I (see for more details the modeling

in [17] and some changes of coordinates leading to the

class I form in [11]).
• the longitudinal dynamics of a flexible launch vehicle

belongs to class I (see [18])
• the model of a spacecraft with a flexible attachment

belongs to class II (see [14])
• the rotational dynamics of space vehicles with propel-

lant sloshing mode belongs to class II (see [12], [13]
when ax = az = 0)

It is well-known that if the zero dynamics of the above

systems are supposed asymptotically stable and by con-

sidering the state x1 as output, then there exist several

classical methods(e.g Backstepping [19] and Input/Output

Linearization [20]), which solve the global asymptotic sta-

bilization problem of these classes of systems. The most

important drawback of these methods is that they do not

integrate the zero dynamics in the design of the proposed

controllers. This fact generates bad performances of the zero

dynamics transients, which means that the flexible modes

of several aerospace vehicles will exhibit some undesired

oscillations. In the present work, we shall design some

nonlinear controllers which simultaneously ensure a global

asymptotic stability in closed loop and also improve the tran-

sient dynamics of the flexible modes. The major difference

of the proposed schemes compared to the classical methods

is in the fact that the controller is at first designed to stabilize

the zero dynamics. This fact induces an improvement of the

flexible modes behavior quality.

III. MAIN RESULTS

Before presenting our main results, we need to give the

following important technical result which is largely derived

from the work of [16] :

Lemma 1[Wei Lin, [16]] : Consider a single-input non affine

nonlinear system of the following form :

ż = f0(z)+g0(z)u+
l

∑
i=2

gi(z)u
i (3)

where u ∈ R, gi : R2m −→ R2m, 2 ≤ i ≤ l, are smooth

functions. Suppose the unforced dynamics f0 is such that

there exists a function V : R2m −→ R, α0 of class K , and

α1,α2 of class K∞ such that ∀z

α1(‖z‖)≤V (z)≤ α2(‖z‖) (4)

V̇|u=0 =
∂V

∂ z
f0(z)≤−α0(z) (5)

then the unforced system is GAS and the following control

law

u(z) = ϕ(z) :=
−β

1+‖∂V/∂ z‖2ρ(z)2

Lg0
V (z)

1+(Lg0
V (z))2

(6)

where

ρ(z)≥
l

∑
i=2

1+‖gi(z)‖
2 (7)

and β ∈]0,1[ still renders system (3) GAS such that :

V̇ ≤ V̇|u=0 −
(1−β )

1+‖∂V/∂ z‖2ρ(z)2

(Lg0
V (z))2

1+(Lg0
V (z))2

≤ V̇|u=0

(8)

In this case, we say that u adds damping to system (3)
since it achieves more Lyapunov decrease.

Now, we are able to give the following propositions:

A. Stabilization of Class I

Proposition 1: let us consider the class of systems (1),
then there exists a nonlinear feedback control law which

simultaneously ensures the global asymptotic stability of the

origin of the closed loop system and improves the transient

of its corresponding zero dynamics.

Proof:
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In order to prove the above proposition, let us consider the

following change of coordinates:
{

η̄1 = η1 −Bη x1

η̄2 = η2 −Bη x2
(9)

then, we obtain :














ẋ1 = x2

ẋ2 = u
˙̄η1 = η̄2

˙̄η2 = Aη η̄ +P1
η̄(x1)+P2

η̄(x1)x2

(10)

where :

P1
η̄(x1) := P1

η(x1)+Aη

[

Bη

0

]

x1

P2
η̄(x1) := P2

η(x1)+Aη

[

0

Bη

]

From this, we can easily see that system (10) is a non-

triangular nonlinear system non affine in x1 but affine in

x2 according to the classification of underactuated nonlinear

systems proposed in [15]. In order to remove x2 in the flexi-

ble dynamics, let us use the following change of coordinates:










z1 = η̄1

z2 = η̄2 −
[

∫ 1
0 P2

η̄(sx1)ds
]

x1

:= η̄2 −P3
η̄(x1)x1

(11)

Indeed, one can check that :

d

dt
P3

η̄(x1)x1 = P2
η̄(x1)x2

and that P3
η̄(x1)x1 is a polynomial of degree ≤ d2, then we

obtain














ẋ1 = x2

ẋ2 = u

ż1 = z2 +P3
η̄(x1)x1

ż2 = Aη z+P4
η̄(x1)

(12)

where

P4
η̄(x1) = Aη

[

0

P3
η̄(x1)x1

]

+P1
η̄(x1)

is of degree ≤ max{d1,d2}.

Let us set z = [z1;z2]. As we can see from (12), the z-

dynamics of the above system can now be viewed as a non

affine triangular nonlinear system with respect to the input x1.

Since

[

0 Im

Aη

]

is Hurwitz, then there exists Pz = PT
z ,Qz > 0

such that :
[

0 Im

Aη

]T

Pz +Pz

[

0 Im

Aη

]

≤−Qz. (13)

We thus propose to use Vz = zT Pzz and we compute ϕ
according to (6) where :

V := Vz

g0(z) = g0 =

[

P3
η̄(0)

d
dx1

P4
η̄(0)

]

gi(z)
∀i∈{2,l}
= gi =





(i−1)! di−1

dxi−1
1

P3
η̄(0)

i! di

dxi
1

P4
η̄(0)



 (14)

We choose

δ1 = x1 −ϕ(z) (15)

Using (8) and the fact that :

∀i ∈ N , xi
1 = [ϕ +δ1]

i = ϕ i +
i−1

∑
k=0

Ck
i ϕkδ i−k

1

then we have

V̇ ≤ −zT Qzz−
(1−β )

1+‖∂V/∂ z‖2ρ(z)2

(Lg0
V (z))2

1+(Lg0
V (z))2

+






(Lg0

V )+ ∑
2≤i≤l

0≤k≤i−1

Ck
i ϕk(Lgi

V )δ i−k−1
1






δ1

Now, in order to design our controller, we shall use the

classical Backstepping design [19] and consider the following

Lyapunov function:

W1 =V (z)+
1

2
δ 2

1 +
1

2
δ 2

2 (16)

where δ2 := x2 − x̄2 and

x̄2 =−k1δ1 + ϕ̇ −






(Lg0

V )+ ∑
2≤i≤l

0≤k≤i−1

Ck
i ϕk(Lgi

V )δ i−k−1
1







(17)

where k1 > 0. If we choose the following control law :

u =−δ1 − k2δ2 +
d

dt
(x̄2) (18)

where k2 > 0, then we obtain

Ẇ1 = −zT Qzz−
(1−β )

1+‖∂V/∂ z‖2ρ(z)2

(Lg0
V (z))2

1+(Lg0
V (z))2

−k1δ 2
1 − k2δ 2

2 (19)

which means the origin is GAS. This ends the proof.

B. Stabilization of Class II

Proposition 2: let us consider the class of systems (2)
and define a bounded C1 function χ and a positive constant

Mχ > 0 such that ∀x1,

{

|χ(x1)| ≤ Mχ min(|x1|,1)
x1χ(x1) ≤ −Mχ‖x1‖

(20)

then there exists a nonlinear feedback control law which

simultaneously ensures the global asymptotic stability of the

origin of the closed loop system and improves the transient

of the corresponding zero dynamics.

Proof:

Let us give step by step the control law design:

1) Firstly, as for the above proposition, let us introduce a

change of coordinates to eliminate u from the flexible

dynamics:
{

η̄1 = η1 −Bη x1

η̄2 = η2 −Bη x2
(21)
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in order to obtain a non linear system of the following

form :














ẋ1 = x2

ẋ2 = u
˙̄η1 = η̄2

η̇2 = Aη η̄ + f̄η(x1)+ ḡ2x2 + ḡη(x1, η̄1)x
2
2
(22)

where ḡ2 := Aη

[

0

Bη

]

, f̄η(x1) = fη(x1)+Aη

[

Bη

0

]

and

ḡη(x1, η̄1) = g(x1,η1).
It is worth noting that such a system is a nontriangular

nonlinear system non affine in x1 and x2 according to

the classification of underactuated nonlinear systems

proposed in [15].

2) Let us note z = [x1; η̄1; η̄2] and let us use the fact

that x2 = χ(x1)+ (x2 − χ(x1)). Then, let us write the

dynamics of z :

ż = f0(z)+g0(z)(x2 −χ(x1))+g2(z)(x2 −χ(x1))
2

(23)

where:

f0(z) =







χ(x1)
η̄2

Aη η̄ + f̄ (x1)+ ḡ2χ + ḡη(x1, η̄1)χ
2

g0(z) =







1

0

ḡ2 +2ḡη(x1, η̄1)χ(x1)

g2(z) =







0

0

ḡη(x1, η̄1)

3) then, given Pz = PT
z ,Qz > 0 satisfying (13), we pro-

pose:

V = log
(

1+ η̄T Pzη̄
)

+
c1

2
x2

1

:= log(1+Vη̄)+
c1

2
x2

1 (24)

where c1,c2 > 0 are given below.

From this we obtain :

V̇ =
−η̄T Qzη̄

1+Vη̄
+ c1x1χ(x1)

+2
η̄T Pz

1+Vη̄

(

f̄ (x1)+ ḡ2χ(x1)+ ḡη(x1, η̄1)χ
2(x1)

)

+(Lg0(z)V )(x2 −χ(x1))+(Lg2(z)V )(x2 −χ(x1))
2

(25)

4) Using the fact that 2
η̄T Pz

1+Vη̄
= 2η̄T P

1/2
z

1+(P
1/2
z η̄)T (P

1/2
z η̄)

P
1/2
z and

the assumptions on f̄ , ḡ, and χ , then we have :

∥

∥

∥

∥

2
η̄T Pz

1+Vη̄
f̄ (x1)

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(

2η̄T P
1/2
z

1+Vη̄

)

P
1/2
z f̄ (x1)

∥

∥

∥

∥

∥

≤ k f λmax

(

P
1/2
z

)

‖x1‖ (26)
∥

∥

∥

∥

2
η̄T Pz

1+Vη̄
ḡ2χ(x1)

∥

∥

∥

∥

≤ Mχ‖g2‖λmax

(

P
1/2
z

)

‖x1‖

(27)

∥

∥

∥

∥

2
η̄T Pz

1+Vη̄
ḡη χ2(x1)

∥

∥

∥

∥

≤ M2
χ λmax

(

P
1/2
z

)

‖x1‖

+2kgMχ‖x1‖ (28)

So, let us choose c1 > 0 such that :

c1 =
c̄1 +(k f +Mχ‖g2‖+ kgM2

χ)λmax

(

P
1/2
z

)

+2kgMχ

Mχ
(29)

with c̄1 > 0, then we obtain,

V̇ ≤
−η̄T Qzη̄

1+Vη̄
− c̄1‖x1‖+(Lg0(z)V )(x2 −χ(x1))

+(Lg2(z)V )(x2 −χ(x1))
2 (30)

5) then we use x2 − χ(x1) = (x2 − χ(x1)−ϕ(z))+ϕ(z)
where ϕ is given by (6). After a few computations,

we obtain :

V̇ ≤
−η̄T Qzη̄

1+Vη̄
− c̄1‖x1‖

−
(1−β )

1+‖∂V/∂ z‖2ρ(z)2

(Lg0
V (z))2

1+(Lg0
V (z))2

+
[

(Lg0
V )+2ϕ(z)Lg2

V +(Lg2
V )δ2

]

δ2

(31)

where

δ2 := x2 −χ(x1)−ϕ(z) (32)

6) finally, if we use the following Lyapunov candidate

function :

W2 =V +
1

2
δ 2

2 (33)

and by choosing the following control law :

u = −k2(x2 −χ(x1))− (Lg0
V )−2ϕ(z)Lg2

V

−(Lg2
V )δ2 +

d

dt
(χ(x1)+ϕ(z)) (34)

where k2 > 0, we derive that :

V̇ ≤
−η̄T Qzη̄

1+Vη̄
− c̄1‖x1‖− k2δ 2

2

−
(1−β )

1+‖∂V/∂ z‖2ρ(z)2

(Lg0
V (z))2

1+(Lg0
V (z))2

(35)

from this we conclude that the origin of system (2) is

GAS.

IV. APPLICATION TO A NONLINEAR MODEL OF A

FLEXIBLE LAUNCH VEHICLE

A. Mathematical Model

From the full Mathematical model of a flexible launch

vehicle obtained by using the Lagrange equations, we extract

the rotational ’fast’ dynamics (for more details, see ([18])):










ψ̇ = q

q̇ = −
laero

IL

L(ψ)+
T

IL

(LT r−h)η1 +
T LT

IL

β

η̈1 = −ω2η1 −2ξ ωη̇1 +hrT η1 +hT β

(36)

4



where ψ,η1 belong to R (We only consider the first flexible

mode which is known to be the only one to be relevant to

consider in the control design) and β ∈ R is the control.

where the lift is a non-linear function of the attitude, given

by:

L(ψ) = q̄S
(

C1
Lψ +C2

Lψ2
)

= L̄(ψ)ψ

B. Controller design

First we use the notation :

u :=−
laero

IL

L(ψ)+
T

IL

(LT r−h)η1 +
T LT

IL

β

By noting x1 = ψ,x2 = q, η̇1 = η2, we obtain a model which

belongs to the Class I :














ẋ1 = x2

ẋ2 = u

η̇1 = η2

η̇2 = −ω̄2η1 −2ξ ωη2 +
hlaero

LT
L(x1)+

hIL
LT

u

(37)

with ω̄2 := ω2 +
hT

LT

(LT r−h)−hrT .

Applying the design method described in the proof of

proposition 1, then we obtain : the following dynamics :






























ẋ1 = x2

ẋ2 = u

ż1 = z2 −2ξ ω hIL
LT

x1

ż2 = −ω̄2z1 −2ξ ωz2 +
h

LT

(

4ξ 2ω2IL − ω̄2IL

+laeroq̄SC1
L

)

x1 +
hlaero

LT
q̄SC2

Lx2
1

We then numerically solve the Lyapunov equation by con-

sidering the equality (instead of the inequality) associated to

(13). We obtain :

V = zT Pzz (38)

we then compute ϕ according to (6) ; in this case, we use :

g0 =
h

LT

[

−2ξ ωIL

4ξ 2ω2IL − ω̄2IL + laeroq̄SC1
L

]

(39)

g2 =
h

LT

[

0

laeroq̄SC2
L

]

(40)

Then, given two gains k1,k2 > 0 the proposed controller is :

u =−(x1 −ϕ(z))− k2(x2 − x̄2)+
d

dt
x̄2 (41)

where:

x̄2 = −k1(x1 −ϕ(z))+ ϕ̇ −Lg0
V

−(Lg2
V )(x1 −ϕ(z))−2ϕ(z)(Lg2

V )

= −k1(x1 −ϕ(z))+ ϕ̇ −Lg0
V − (Lg2

V )(x1 +ϕ(z))

(42)

This law is compared to the following ’nominal’ Backstep-

ping law :

u0 = −x1 − k2(x2 − x̄20)+
d

dt
x̄20

:= −x1 − k2(x2 + k1x1)−
d

dt
(k1x1)

= −(1+ k1k2)x1 − (k1 + k2)x2 (43)

C. Numerical results

The damping of the flexible mode is chosen very low

(0.01) and the simulations are performed under the initial

conditions ψ(0) = 20 deg, q(0) = 20 deg/s far from the

origin.

Figure (1) shows in blue (resp. in orange) the evolution of

both ψ and η1 when the controller u (resp. u0) is applied

to the system. We observe that controller u enhances the

transient of the flexible mode.

V. APPLICATION TO A NONLINEAR MODEL OF A

FLEXIBLE SPACECRAFT

A. Mathematical Model

We consider the following model of a flexible attachment

to a spacecraft which has been obtained after a partial

feedback linearization [14]














ẋ1 = x2

ẋ2 = u

η̇1 = η2

η̇2 = −ω2η1 −2ξ ωη2 +η1x2
2 −αu

(44)

B. Controller design

Applying the design method described in the proof of

proposition 2, we first use the following change of coor-

dinates :

z =







x1

η̄1

η̄2

:=







x1

η1 +αx1

η2 +αx2

(45)

We then numerically solve the Lyapunov equation by con-

sidering the equality (instead of the inequality) associated to

(13). We obtain :

Vη̄ = η̄T Pzη̄ (46)

Then we choose (for instance)

χ(x1) =−Mχ tanh(x1) (47)

where Mχ > 0 and we rewrite the dynamics as follows :

ż = f0(z)+g0(z)(x2 −χ(x1))+g2(z)(x2 −χ(x1))
2

= f0(z)+g0(z)ϕ(z)+g2(z)ϕ
2 +g0(z)δ2

v+2g2(z)ϕ(z)δ2 +g2(z)δ
2
2 (48)

we then compute ϕ according to (6) ; in this case, we use :

V = log(1+Vη̄)+
1

2
c1x2

1

f0 =















χ(x1)
η̄2

−ω2η̄1 −2ξ ωη̄2 +ω2αx1

+2ξ ωαχ(x1)+(η̄1 −αx1)χ
2(x1)

g0 =







1

0

2ξ ωα +2(η̄1 −αx1)χ(x1)

g2 =







0

0

η̄1 −αx1

5



Our control law is finally given by (41) and compared to the

following ’nominal’ Backstepping control law :

u0 = −k2(x2 −χ(x1))+ χ̇(x1)

= −k2(x2 +Mχ tanh(x1))−Mχ(1− tanh2(x1))x2

(49)

C. Numerical results

In order to give more importance to the nonlinear term

in x2
2, we used a high coupling coefficient α = −1 (by

comparison to the very small value of a real model [14]).
Moreover, the damping of the flexible mode is chosen

very low (0.01) and the simulation model is run under the

following initial conditions x1(0) = 45 deg, x2(0) = 0 deg/s

far from the origin. Figure (2) clearly shows the damping

enhancement of the flexible mode when we apply our novel

controller (in blue).

VI. CONCLUSIONS

New strategies have been proposed to design GAS con-

trollers for two significant classes of nonlinear minimum

phase systems. Inspired by a non affine control method

[16], we have designed some novel nonlinear control laws

which take into account the zero dynamics of the considered

systems. In future work, we will extend our results to systems

with uncertain parameters and unmeasured flexible states.

VII. FIGURES

Fig. 1. Application 1 : evolution of ψ(t) and η1(t) (below)
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