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Abstract—There is always the need to calculate the response
of a layered composite material to a source that is not close
to the domain of interest when dealing with the imaging of an
anomaly that might be affecting such a background medium. If
this medium is anisotropic, the availability of an efficient and
accurate method to calculate this response becomes essential. A
novel interpolation and integration method that is taking care of
fast oscillating spectral response due to a source that is not close
to the domain of interest is proposed herein. The implementation
of such a technique to the multiple signal classification (MUSIC)
imaging method is presented also.

Index Terms—Planar-layered media, anisotropy, Green’s func-
tion, numerical interpolation, imaging, MUSIC

I. Introduction

Availability of accurate computational models of complex

multi-layer composite materials and robust, fast, end-user’s

friendly imaging procedures for problems of quality, viability,

and safety of complex systems is getting quite essential

nowadays. From eddy currents to microwaves and beyond,

a good example is the non-destructive testing-evaluation (of-

ten referred with acronym NdT-E) of manufactured parts in

aeronautics and in automotive industry [1], [2].

Often, the structures under investigation can be considered,

at least at some first level of modeling, as a succession of

planar slabs (panels) one over the other; each slab is usually

formed from a bundle of fibers within some polymer matrix,

the orientation of the bundles being parallel with the interfaces

and usually differing from one slab to the next [3]. The fibers

themselves or the way they are organized might lead to either

electromagnetic isotropy or electromagnetic anisotropy of the

layered material: in the isotropic case, the material parameters

in any given layer are described by scalar quantities, while the

anisotropic case leads to tensor quantities.

Disorders that might affect these structures are of many

kinds: internal cracks and voids, delaminations, fiber break-

ings, etc., with impact on their electromagnetic behaviors.

So, making available to end-users images of the structures in

order to indicate the presence, position, and geometric and

electromagnetic parameters of a defect is needed. Imaging

techniques are then involved, those being usually tailored to

the expected electric size of the defect (to be appraised vs.

the local wavelengths or skin-depths), and in most cases, the

response of the background medium is needed.

A fast algorithm to construct the impedance matrix used

in the method of moments is proposed in [5], where the

response to a current source of layered anisotropic media on a

rectilinear mesh can be efficiently and accurately computed. A

sophisticated numerical interpolation and integration method

is adopted, based on the recently proposed Padua points [4]

involving one-dimensional Chebyshev polynomials.

Given such a fast algorithm, the response of the background

layered media on a rectilinear mesh (often used in imaging) to

a dipole source of arbitrary orientation and located anywhere is

possible. Yet, directly using the fast algorithm in the imaging

problem may not be so smart. Indeed, if in [5], since the

challenge is to construct the impedance matrix, the current

source can be set at the origin of the x − y plane (z as

vertical coordinate, all slab interfaces parallel to x − y), and

the spectrum of the response is a smoothly varying one easily

interpolated from a small number of polynomials [4]. How-

ever, in imaging, the measurement could be a few wavelengths

away from the origin. This means a fast oscillating spectrum

of the response, and the interpolation and integration method

of [4] is not efficient anymore, since the required number of

the polynomials could become quite large.

Applying the Fourier transform property, if the source is

shifted away from the origin of the x − y plane, the spectrum

of the response is simply the multiplication of the original

spectrum for the source at the origin and a sinusoidal term.

Using [6], one then extends the method of [4] in order to

deal with the oscillating spectrum with a sinusoidal type of

oscillation, yielding an efficient and accurate computation of

the response of the layered media to a current source not close

to the origin. Further on, the technique is implemented in the

multiple signal classification (MUSIC) imaging to locate small

defects affecting the anisotropic layering.
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Fig. 1: Planar structure of anisotropic media.

II. Methodology

From now, one considers the physical scenario as sketched

in Fig. 1, where each anisotropic slab is characterized by a

permittivity tensor. In [5], the response on a rectilinear mesh

of such a layering is given when the current source is located

close to the origin of the x − y plane as already commented

upon. Since the background slabs are invariant along the x− y

plane, the electromagnetic response is invariant as well. If one

shifts the source from the origin of the x − y plane to a new

position, say (xs, ys), the spatial response of the layering is

not changed referring to the source, and so it is just laterally

shifted by (xs, ys).

The corresponding change in the spectral domain of the

response is a phase shift according to the Fourier transform

property, i.e.,

η̃(kx, ky) = η̃0(kx, ky) exp
(

−ikxxs − ikyys

)

(1)

where η̃(kx, ky) = FT {η0(x − xs, y − ys)} is the spectral response

of the layering after shifting the source, and η̃0(kx, ky) =

FT {η0(x, y)} is its spectral response when the source is lo-

cated at the origin of the x − y plane, with FT {·} being the

Fourier transform. From this equation, one notices that the

new spectrum can be factorized into two terms: the original

spectrum and an extra sinusoidally-oscillating term.

In [4], the entire integrand of the integral is interpolated

by means of the Chebyshev polynomials and the weights

are calculated based on the samplings at Padua points. This

facilitates the integration since integrals of the Chebyshev

polynomials can be easily calculated as
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But, once the integrand is fast oscillating, one needs to

separate the oscillating term from other smooth functions,

such that the interpolation with the smooth functions can still

be efficient. To deal with the integration itself, one needs to

manage the Chebyshev polynomials as
∫ 1

−1

T̂n(x) exp(−ixa)dx. (3)

Such integrations can be carried out by using the recipe given

in [6]. With such a new interpolation and integration technique,

the oscillating spectrum can thus be efficiently and accurately

taken care of, and the response of the background layered

medium obtained subsequently.

III. Implementation intoMUSIC

The complex multi-layered composite structures of interest

here are as said affected by many kinds of defects. Among the

imaging methods which are developed in the literature, the so-

called MUSIC algorithm [7] [8] is a good imaging method to

locate small inclusions, that is, whose dimensions are much

smaller than the local wavelength (in the undamaged material),

or skin depth if this medium is essentially conductive.

With MUSIC, one needs to have at hand the dyadic Green’s

functions that take from the domain of interest (the one in

which the defect is sought) to the domain of measurements

(where a multistatic response matrix is to be collected). To

obtain such functions, the reciprocity theorem means that one

can assume the dipole sources being set within the domain

of measurements, and then calculate the responses within the

domain of interest.

However, when the dipole source is not close to the origin of

the x− y plane, the spectrum of the response to such a source

could be fast oscillating as aforementioned. So, the method

proposed in the previous section could be implemented in such

a MUSIC imaging to generate a reliable result as it will be

discussed in more depth and illustrated in the extended paper.
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