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Abstract—In this paper, we propose a novel user-cell association
approach for wireless small cell networks that exploits previously
unexplored context information extracted from users’ devices,
i.e., user equipments (UEs). Beyond characterizing precise quality
of service (QoS) requirements that accurately reflect the UEs’
application usage, our proposed cell association approach accounts
for the devices’ hardware type (e.g., smartphone, tablet, laptop).
This approach has the practical benefit of enabling the small cells to
make better informed cell association decisions that handle practical
device-specific QoS characteristics. We formulate the problem as
a matching game between small cell base stations (SBSs) and
UEs. In this game, the SBSs and UEs rank one another based
on well-designed utility functions that capture composite QoS
requirements, extracted from the context features (i.e., application
in use, hardware type). We show that the preferences used by the
nodes to rank one another are interdependent and influenced by
the existing network-wide matching. Due to this unique feature of
the preferences, we show that the proposed game can be classified
as a many-to-one matching game with externalities. To solve this
game, we propose a distributed algorithm that enables the players
(i.e., UEs and SBSs) to self-organize into a stable matching that
guarantees the required applications’ QoS. Simulation results show
that the proposed context-aware cell association scheme yields
significant gains, reaching up to 52% improvement compared to
baseline context-unaware approaches.

I. INTRODUCTION

The deployment of small cell base stations (SBSs) (i.e.,

picocell, microcell, femtocell), overlaid on current cellular archi-

tecture, has emerged as a key solution for meeting the stringent

quality-of-service (QoS) requirements of emerging wireless and

mobile services. However, reaping the benefits of small cell

deployments is contingent upon addressing a number of fun-

damental challenges that include network modeling and analysis

and resource management, among others [1].

In this respect, most existing works on small cell networks

have focused on physical layer aspects such as resource manage-

ment [1–3], user admission control [4], and coordination [5], [6].

In particular, one fundamental challenge in small cell networks

is the problem of associating the user equipments (UEs) to their

serving SBSs for downlink transmission [1]. For instance, the

challenges of the user association problem in small cell networks

is significantly different from those dealt with in traditional

macro-cellular networks due to the density of SBSs, their hetero-

geneity (disparate coverage areas and cell sizes), and their limited

available resources [1], [2], [4–6]. These unique features of small

cell networks limit the applicability of macrocell-oriented user

association techniques such as [7–10] (and references therein),

which can often lead to unbalanced traffic loads at the SBSs and

are unable to meet each individual user’s QoS.

To this end, one promising approach for addressing the cell

association problem is by making the network better informed

of its environment and users, hence enhancing its ability to make

efficient user association decisions. In particular, we propose to

explore additional context information extracted from the user’s

devices that include the hardware (HW) type of the device (e.g.,

category and screen size) and the set of active applications. By

becoming aware of the UEs’ context and QoS requirements,

the network can make more accurate decisions on which UE

should be serviced, by which SBS, and when. Consequently, such

a context-aware UE-SBS association scheme allows to provide

precise QoS measures tailored to each UE’s context and based

on the actual requirements of each UE’s applications.

The concept of context awareness, as complementary to lo-

cation awareness, has been widely studied in pervasive com-

puter science, and it is relatively novel in wireless networks

[11]. Thereby, context information is typically used to recog-

nize a network condition or the deployment scenario [11](and

references therein), hence, for passive, monitoring, operations.

In contrast, active network operations, such as most existing

cell association schemes, particularly for small cell networks,

have been restricted to physical layer aspects [2–6], [9]. In

this respect, we define new, composite (i.e., multi-dimensional)

QoS requirements for multi-tasking UEs (e.g., smartphones or

tablets). By doing so, we are able to devise better-informed UE-

SBS associations, which meet application and device-specific

QoS requirements. To our best knowledge, beyond [12] which

addressed context-awareness for scheduling in macro-cell net-

works, little work has been done to develop context-aware UE-

SBS association schemes tailored to small cell networks.

The main contribution of this paper is to study and design

novel strategies for context-aware SBS-UE association in the

downlink of wireless small cell networks. We formulate the

problem as a matching game in which the SBSs and the UEs are

the players that need to rank one another so as to find a suitable

association. The ranking is done by using utility functions that

properly capture the application and device context information

(at the UE side) as well as the interference and current network

congestion (at the SBS side). The key advantage of the proposed

model and approach lie in the fact that the UE-SBS association

is achieved through distributed decisions at each UE and SBS

that are based on practical UEs’ context information such as

the individual application set, their QoS needs, and the devices’

hardware characteristic. We show that the performance of each

UE and SBS is strongly affected by the dynamic formation of

other UE-SBS links due to the dependence of the utility functions



on externalities. For the proposed game, these externalities relate

to the unique features of small cell networks such as interference

limitations, spectrum availability, and network congestion. While

some work on matching games in wireless networks exist such

as in [7], [10], [13], these works are not tailored to small cell

networks and do not account for externalities as done here. In

fact, the works in [7], [10], [13] assume that the individual

players’ utilities are unaffected by the other player’s preferences,

which is impractical for the studied small cell association prob-

lem. To solve the proposed matching game with externalities,

we propose a novel, distributed algorithm that allows the UEs

and SBSs to interact so as to optimize their interdependent

utilities. We show that the proposed algorithm efficiently handles

the game’s externalities and allows the SBSs and UEs to self-

organize into a suitable stable UE-SBS matching. This stable

outcome accounts for the available context at both the SBS and

UE sides. Simulation results assess the various properties of

the proposed approach and show significant performance gains

compared to baseline context-unaware cell association.

The rest of this paper is organized as follows. In Section II, we

present the system model and we introduce the concept of user

context. In Section III, we formulate the UE-SBS association

problem as a matching game with externalities, and we propose

a novel algorithm to solve it. Simulation results are analyzed in

Section IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

A. Network Model

Consider the downlink transmission of a single orthogonal

frequency division multiple access (OFDMA) macrocell (e.g.,

an LTE-Advanced or WiMAX network). In this network, M

UEs and N SBSs are deployed. Let M = {1, ...,M} and

N = {1, ..., N} denote, respectively, the set of all UEs and

all SBSs. In conventional systems [8], each UE is typically

serviced by the SBS with the highest receive signal strength

indicator (RSSI). Here, we denote by Li the set of UEs serviced

by an SBS i and, by wi,m, the bandwidth that SBS i allocates to

each UE m ∈ Li. The transmit power for each transmission to

an UE m ∈ Li is denoted by pi. The packet generation process

at SBS i is modeled as an M/D/1 queuing system. Here, the

aggregated input traffic of UE m ∈ Li is composed by packets

of constant size generated using a Poisson arrival process with

an average arrival rate of λm, in bits/s. For the transmission of

these packets, the capacity between SBS i and UE m is given

by:

µi,m(γi,m) = wi,m log(1 + γi,m), (1)

where γi,m =
pihi,m

σ2+Ii,m
is the signal-to-interference-plus-noise

ratio (SINR) with hi,m indicating the channel gain between SBS

i and UE m and σ2 the variance of the Gaussian noise. Here,

the interference component Ii,m =
∑

j 6=i pjhj,m, j ∈ N \ {i}
relates to the transmissions from other SBSs j to their respective

UE n ∈ Lj , which use the same subchannels of wi,m. pj , and

hj,m respectively denote the transmit power and the channel

realization between SBS j and UE m.

The probability of packet error during the transmission be-

tween an SBS i and a UE m, can be expressed via the probability

of having the SINR below a target level Γi, and, for uncoded

quadrature amplitude modulation (QAM)1, this packet error

rate (PER) is given by:

PERi,m(γi,m) =

{

ei exp(−fi γi,m), if γi,m ≥ Γi,

1, otherwise,
(2)

where ei, fi are packet-size dependent constants and Γi is a

minimum SINR threshold for the correct demodulation. For ease

of analysis, we do not consider the retransmission of the packets

which are erroneously received. In such a conventional approach

where the SBS has little practical information on the UE type,

each SBS considers that the traffic streams of its UEs have the

same priority, such as in [1]. Thus, it will schedule them with

a uniform probability. In this respect, the delay for each UE

m ∈ Li depends on the aggregated input traffic of the other

UEs n ∈ Li \ {m}, serviced by SBS i, which can be computed

by combining the traffic arrival rates: λi,m = λm +
∑

n∈Li
λn.

Consequently, for a given UE m served by SBS i, we express

the average delay by Little’s theorem [14]:

di,m =
λi,m

2µi,m(µi,m − λi,m)
. (3)

From the above formulation, we note that the performance of

a UE m serviced by SBS i is affected by both the interference

from the other noncooperative SBSs and the traffic generation

process of the remaining UEs n 6= m serviced by SBS i.

B. Notion of UEs’ Context

In existing networks, the best serving SBS is identified based

on indicators of the wireless link quality at the UEs, such as

the received signal strength indicators (RSSIs) or the SINRs [1].

Such existing UE-SBS association schemes are based solely on

the physical properties of the wireless link, and, thus, they lead

to two key drawbacks. First, the SBSs are unable to differentiate

between individual traffic requests generated from each UE’s

application. Therefore, the traffic streams are typically scheduled

independently with an uniform priority. However, in practical

systems, not all applications have the same priority at the UE

side. This is particularly important for modern smartphones

which can host a diverse number of applications. For example,

applications with “always active” traffic request (e.g., HD video

streaming) or “keep alive”-type applications with periodic traffic,

that mostly relate to feeds and notifications. Second, given the

richness of emerging wireless services, features such as the

hardware capabilities of the UE play a key role in the perceived

QoS at the UE side. For example, for devices with large screen

size and high resolution such as tablets and laptops, the user’s

QoS perception of video applications is more sensitive than on

smaller devices such as smartphones. Due to the relevance of the

set of active applications at the UE and its HW characteristics

(e.g., the screen size is a key factor for determining the QoS of

video services), we define the user’s context as the set of all the

relevant information that relates to the UE’s hardware type and

the properties of its active applications. Despite the important

role of such context information in determining QoS provisions,

1Nevertheless, the proposed solution can accommodate any other modulation
scheme, without loss of generality.



TABLE I
TYPICAL QOS REQUIREMENTS OF MULTIMEDIA APPLICATIONS [1].

Application Data rate [kbps] Delay [ms] PER

HD video streaming 800 2000 0.05
Video conferencing 700 30 0.01
VoIP 512 150 0.01
Audio streaming 320 200 0.08
File download 200 3000 0.1

existing approaches for cell association in small cell networks,

such as [1–3], [6], [9], do not take that into account. In fact,

the knowledge of the UEs’ context information leads to new

perspectives for the problem of SBS-UE association, by allowing

to differentiate the UEs’ QoS based on individual properties of

the UEs’ devices; hence yielding a smarter resource allocation.

In order to capture such context information, for each UE

m ∈ M, we construct an am × bm dimension matrix Am that

reflects the practical QoS parameters of popular wireless services

such as those shown in Table I (naturally, this matrix can also

accommodate any other application). Here, am represents the

number of active applications and bm the number of minimum

QoS requirements.

We model the UE hardware type by distinguishing three UE

categories, depending on their screen size: smartphones, tablets,

and laptops. These categories evenly partition the set of UEs

M. For the UE’s application set, we propose that each UE m

constructs an am×1 dimension vector gm, with each component

gm,x representing a priority for the x-th active application in

Am. Such priorities are defined as follows. If Am includes

video applications, these will have the highest priority for tablets

and laptops. File downloads are assigned the lowest priority,

since they often run as background applications. For any other

combination of the active applications, the priority is arbitrarily

defined by the UE. Consequently, the context of each UE m

is defined by its active applications in Am and their respective

priorities in gm. For example in (4), we show an illustrative

example of Am and gm for a tablet UE m with HD video

streaming as the main application (gm,2 = 1), followed by VoIP

gm,1 = 2 and file download (gm,3 = 3).

Am =





512 150 0.01
800 2000 0.05
200 3000 0.1



 , gm =





2
1
3



 . (4)

Using this model, we are able to define a context-aware UE-

SBS association scheme that differentiates and prioritizes the

traffic generated from different applications and UE hardware

types. In particular, for an aggregated traffic λm of UE m, each

SBS i is able to discriminate the traffic stream of each application

λm,x, for which
∑am

x=1 λm,x = λi,m. Based on this, each SBS

is able to schedule each traffic stream x with priority k = gm,x,

as extracted from UE m’s context. In this context-aware case,

the traffic at each SBS is modeled as a priority-based M/D/1

queueing system. In such a system, the traffic requests of each

UE m are serviced according to the context-dependent priorities

in gm. The delay of UE m depends on the traffic load of the

other UEs n ∈ Li currently serviced by SBS i. Here, without loss

of generality, we consider a nonpreemptive policy in which the

traffic requests of a high priority user can move ahead of all the

low priority traffic waiting in the queue. However, low priority

packets in service are not interrupted by the higher priority users’

packet arrivals. Thus, the UEs n ∈ Li incur an initial delay for

UE m denoted by Dm(Li). In this scenario, the average delay

for the k-th priority stream of UE m serviced by SBS i is given

by:

dki,m =

∑am

x=1 λm,xM̄
2
m

2(1−
∑k−1

x ρm,x)(1−
∑k

x ρm,x)
+

1

µi,m

+Dm(Li),

(5)

where ρm,x =
λm,x

µi,m
is the utilization factor for the x-th stream

of UE m and M̄2
m the second moment of service time. By com-

paring the delay expressions in (3) and in (5), we can clearly see

that the knowledge of context information enables each SBS to

better prioritize application requests. In addition, context-aware

SBSs and UEs are able to devise better-informed associations

by guaranteeing the QoS constraints of each individual traffic

requests.

With these considerations in mind, we propose that upon cell

association, each UE and the SBSs in its vicinity exchange

information on the UE’s context and the SBSs’ average perfor-

mance metrics2 gm. Note that such information exchange solely

involves UEs and SBSs in the vicinity of one another.

III. CELL ASSOCIATION AS A MATCHING GAME WITH

EXTERNALITIES

A. Problem Formulation

For associating UEs to SBSs, each SBS aims at identifying

the largest set of UEs, for which it can meet the respective

QoS requirements. In order to formalize the UE-SBS association

problem, we define a suitable context-aware utility function for

a UE m ∈ Li serviced by SBS i ∈ N as follows:

Ui,m(Am, gm, γi,m, η) =
µi,m(η)(1− PERi,m(η))

∑am

k dki,m(gm, η)
. (6)

Note that this utility function captures the data rate and packet

error rate that SBS i can deliver, given the SINR γi,m. Moreover,

the utility in (6) properly accounts for the UE’s required QoS

and context in terms of applications (through Am) and hardware

type (through gm).

Having defined such utility, we aim at solving the problem

of assigning each UE m ∈ M to the best serving base station

i ∈ N through a matching η : M → N . Essentially, this yields

the following optimization problem:

argmax
η : (i,m)∈η

∑

i∈N

∑

m∈Li

Ui,m(Am, gm, γi,m, η) (7)

s.t., µi,m(γi,m, η) ≥ max
x

Am(x, 1), ∀m ∈ M, i ∈ N (8)

dki,m(gm, η) ≤ Am(x, 2), ∀k, k = gm,x, ∀m ∈ M, i ∈ N
(9)

PERi,m(γi,m, η) ≤ min
x

Am(x, 3), ∀(i,m) ∈ η. (10)

2This feedback can be done on traditional control channels such as in [1].



Note that the above optimization problem is subject to context

dependent QoS constraints. Namely, constraint (8) ensures that

each SBS-UE link (i,m) ∈ η satisfies the most stringent

requirements of data rate. Constraint (9) accounts for individual

delay constraints of each of the applications in Am. Finally,

constraint (10) captures the minimum requirement of packet error

rate per application of each UE m.

In terms of complexity, solving the UE-SBS association us-

ing classical optimization techniques as per (7) is an NP-hard

problem, which depends on the number of SBSs and UEs in

the network. Even by relaxing some of the constraints in (8)-

(10), the exponential complexity renders a centralized approach

intractable, especially for small cell networks in which the

number of UEs and SBSs can significantly grow. This complexity

coupled with the need for self-organizing solutions in small

cells mandate a distributed approach in which UEs and SBSs

autonomously decide on the best UE-SBS association, based on

their individual objectives. Accordingly, we propose that a dis-

tributed approach that accounts for the individual decisions and

context information available at the UEs and SBSs, based on the

context-aware utility as per (6). One suitable tool for developing

such a self-organizing SBS-UE cell association approach which

can solve (7) (while avoiding combinatorial complexity) is given

by the framework of matching games [15]:

Definition 1: A matching game is defined by two sets of

players (M,N ) and two preference relations ≻m, ≻i allowing

each player m ∈ M, i ∈ N to build preferences over one

another, i.e., to rank, respectively, the players in N and M.

The outcome of a matching game is a matching function (or

association) η that bilaterally assigns to each player m ∈ M,

a player i = η(m), i ∈ M, and vice versa (i.e., m = η(i)).
Here, a preference relation ≻ is defined as a complete, reflexive,

and transitive binary relation between the players in M and N .

Thus, for any UE m, a preference relation ≻m is defined over

the set of SBSs N such that, for any two SBSs i, j ∈ N 2, i 6= j,

and two matchings η, η′ ∈ M×N , i = η(m), j = η′(m) :

(i, η) ≻m (j, η′) ⇔

Ui,m(Am, gm, γi,m, η) > Uj,m(Am, gm, γj,m, η′). (11)

Similarly, for any SBS i a preference relation ≻i over the set

of UEs M is defined as follows, for any two UEs m,n ∈ M,

m 6= n and two matchings η, η′ ∈ M×N , m = η(i), n = η′(i):

(m, η) ≻i (n, η
′) ⇔

Ui,m(Am, gm, γi,m, η) > Ui,n(An, gn, γi,n, η
′). (12)

By observing (11) and (12), we can see that the preferences

of each UE over the set of SBS N depend on the existing

matching η in place in the network. In fact, for a UE-SBS link

(i,m) ∈ η, the data rate in (1) and the PER in (2) depend on the

interference produced by the other UE-SBSs links (j, n) ∈ η,

(i,m) 6= (j, n). Similarly, the delay of UE m as per (5) is

affected by the contexts of other users n ∈ Li serviced by SBS i.

As a result, for the studied problem, the preferences of UEs and

SBSs are interdependent, i.e., they are influenced by the existing

matching.

While most literature that deals with matching games, such as

[7], [9], [10], [13], assumes that the preferences of a player do

Algorithm 1: UE-SBS Cell Association Algorithm.

Data: Each UE is initially associated to a randomly selected SBS i.
Result: Convergence to a stable matching η.

Phase I - SBS Discovery and Utility Computation;
• Each UE m discovers the SBSs in the vicinity;
• UEs and SBSs exchange context data (Am, gm) and networks
performance metrics in (1), (2), (5);
Phase II - Swap-matching Evaluation;
repeat

• The utility Ui,m(η) is updated based on the current η;
• UEs and SBSs are sorted by ≻m and ≻i;
if (j, ηmi,j) ≻m (i, η) then

• Each UE m sends a proposal to SBS j;
• SBS j computes Uj,m(ηmi,j) for the swap matching ηmi,j ;

if (m, ηmi,j) ≻j (m, η) and (8)-(10) are satisfied then

• Lj ← Lj ∪ {m};
• η ← ηmi,j ;

else
• SBS j refuses the proposal, and UE m sends a proposal
to the next preference.

end

end

until ∄ηmi,j : (j, ηmi,j) ≻m (i, η) and (m, ηmi,j) ≻j (m, η);

Phase III - Context-aware Resource Allocation;
• For each active link, the SBSs initiate the context-aware transmissions
as described in Section II.

not depend on the other players choices, this assumption does

not hold for the considered UE-SBS association problem. Such

external effects that dynamically affect the performance of each

UE-SBS link, are called externalities, and a suitable framework

for studying them is given by matching games with externalities

[15]. Unlike conventional matching games, when dealing with

externalities, the potential matching (i,m) between an SBS i and

a UE m depends on the other UE-SBS associations in η \(i,m).
These externalities captured in the preferences in (11) and (12)

lead to two important considerations. First, traditional concept

solutions based on preference orders, such as the deferred

acceptance algorithm used in [7], [10], [13], are unsuitable as

the ranking of the preference changes as the matching forms.

Second, choosing greedy utility-maximizing preferences does not

ensure matching stability. In fact, due to externalities, a player

may continuously change its preference order, in response to the

formation of other UE-SBS links, and never reach a final UE-

SBS association, unless externalities are well-handled.

B. Proposed Solution and Algorithm

To solve the problem in (7) in a decentralized approach, we

propose that the SBSs and UEs define individual preferences

over one another, based on the preference relations in (11)

and (12). The aim of each UE (SBS) is to maximize its

own utility, or equivalently, to become associated with the

most preferred SBS (UE)3. Due to the externalities, we look at

a new stability concept, based on the idea of swap-matching [16]:

Definition 2: Given a matching η, a pair of UEs m,n ∈ M
and SBSs i, j ∈ N with (i,m), (j, n) ∈ η, a swap-matching is

defined as ηmi,j = {η\(i,m)}∪(j,m). Here, a matching is stable

if there exist no swap-matchings ηmi,j , such that:

3Henceforth, for notation simplicity, we only highlight the dependence of the
utility in (6) on the current matching, while implying users’ context information.
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• ∀x ∈ {m,n, i, j}, Ux,ηm
i,j

(x)(η) > Ux,η(x)(η) and

• ∃x ∈ {m,n, i, j}, Ux,ηm
i,j

(x)(η) ≥ Ux,η(x)(η).

Given the notion of a stable swap-matching, at the network

level, a matching η with link (i,m) ∈ η is said to be stable if

there does not exist any UE n or SBS j, for which SBS i prefers

UE n over UE m, or any UE m which prefers SBS j over i. Such

network-wide matching stability is reached by guaranteeing that

swaps occur if they are beneficial for the involved players (i.e.

{m,n, i, j}), given the externalities in the current matching η.

In fact, in a swap-matching ηmi,j , a UE m can only switch from

an SBS i to an SBS j, if this strictly increases the utility for any

of the players in {m,n, i, j}, without decreasing the utilities of

the other players (both UEs and SBSs). Thus, through swap-

matchings, the order of preferences for each player not involved

in the swap is unaltered. Hence, no player has an incentive to

swap from its current association, leading to a network-wide

stable SBS-UE association.

To find a stable matching for the small cell user association

problem in (7), we propose Algorithm 1, composed of three main

phases: SBS discovery, swap-matching evaluation, and context-

aware resource allocation. Initially, each UE is associated to a

randomly4 selected SBS i. Then, each UE m discovers the SBSs

j ∈ N in the vicinity, using standard techniques such as in [1].

Next, UE m exchanges its context information (i.e., Am and gm)

with SBS j, which, in turn, informs the UE m on its performance

metrics µi,m(γi,m, η), PERi,m(γi,m, η)) and dki,m(gm, η), based

on the current matching η. In the second phase, based on the

current matching, UEs and SBSs update their respective utilities

and individual preferences over one another. If a UE m is not

currently served by its most preferred SBS (denoted by j), it

sends SBS j a matching proposal. Upon receiving a proposal,

SBS j updates its utility and accepts the request of the UE only

if strictly beneficial in terms of utility Uj,m(ηmi,j). Otherwise, if

rejected, UE m proposes to the next SBSs in its preference list.

Both UEs and SBSs periodically update their respective utilities

and preferences according to the current matching and ensure

that they are associated to their respective first preference. The

convergence of Algorithm 1 follows from:

4Equivalently, the UE can be initially associated to the closest SBS or to the
MBS.
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Fig. 2. Average individual utility per SBS as a function of the number of UEs
M , N = 25 SBSs, am = 3.

Lemma 1: Upon convergence of Phase II, Algorithm 1

reaches a stable matching.

Proof: The proof follows from two considerations. First,

due to their transmission range, an UEs can only reach a

limited number of SBSs in its vicinity, and thus, the number of

possible swaps is finite. Moreover, only the swaps which strictly

increase a player’s utility can occur. Second, once all the possible

swaps have been evaluated, Phase II terminates and each UE

remains associated to the most preferred SBS, and vice versa.

Therefore, no further improvement can be achieved by swaps

among neighboring UEs and SBSs.

IV. SIMULATION RESULTS

For our simulations, we consider a single macro-cell with a

radius of 1 km and a bandwidth of 20 MHz. In this cell, M UEs

and N SBSs are uniformly deployed. The transmit power of

each SBS i is pi = 33 dBm. Transmissions are affected by

distance dependent path loss and shadowing according to 3GPP

specifications [8]. The minimum SINR required by each UE is

Γi = 9.56 dB [8], the noise level is σ2 = −121 dBm. The traffic

rates λm are based on the typical values in Table 1 assuming a

standard packet size of 2000 bytes [8].

For comparison purposes, we consider two additional schemes,

which represent baseline solutions for the user cell association

problem [1], [8]. In the first scheme, the UE is associated to the

SBS providing the strongest RSSI, while, in the second scheme,

each UE is assigned to SBS providing the strongest SINR.

Naturally, in the above schemes, which are context-unaware, the

UEs are scheduled with an even priority.

Figure 1 shows the average utility per UE as a function of the

number of SBSs N , in a network with M = 60 UEs, using

am = 3 applications. Figure 1 shows that, in the proposed

context-aware approach, the UEs become associated to the SBSs

which can jointly provide enhanced SINRs (and, thus, increased

rates and successful transmission rates), and lower delays, via

context-based associations. As a result, by making context-

aware decisions, the resulting UE-SBS association significantly

increases the UEs’ utilities. For instance, Figure 1 shows that

the proposed context-aware matching game yields significant

performance gains, increasing with the network size N , reaching



up to 48% and 78% relative to the maximum SINR-based and

the RSSI-based criteria, respectively.

Figure 2 shows the average utility per SBS as a function of

the number of UEs M , for a network with N = 25 SBSs,

am = 3. Figure 2 shows that the SBS utility in the three studied

schemes is ultimately limited by different factors. In context-

unaware RSSI- and SINR-based schemes, each UE tends to

become associated to the closest SBS. However, in such cases,

the traffic load at each SBS can rapidly increase leading to

larger delays and largely unequal loads. In contrast, the proposed

context-aware approach is able to better balance the traffic load

in the network, based on the knowledge of the UEs’ context

information (applications and HW type). As seen in Figure 2, the

proposed context-aware approach yields an increased sum-utility

while avoiding unequal traffic loads. For larger networks, the

maximum achievable utility for all the studied schemes decreases

due to the the increased interference, which grows with the num-

ber of SBS N , in the network. Nonetheless, Figure 2 shows that

the proposed context-aware yields significant performance gains

for all network sizes, reaching up to 52% over the maximum

SINR-based approach and 119% over the RSSI-based approach,

in a network with M = 50 UEs and N = 25 SBSs. As a result,

from Figure 1 and Figure 2, we clearly see that the proposed

approach brings relevant performance gains in terms of balanced

traffic load distribution, increased rates, and reduced delays.

Figure 3 shows the average number of algorithm iterations

(Phase II in Algorithm 1) needed by each player to achieve

convergence to a stable matching, as a function of the number

of SBSs in the network and the number of applications at each

UE. In Figure 3, we can see that the number of applications am
affects the number of instances that each UE m has to evaluate,

due to the constraints in (7). For instance, the average number of

algorithm iterations when each UE requires am = 3 applications

is 14% and 21% larger than the cases with am = 2 and am = 1.

However, even for SBSs network of reasonable size (N ≤ 50),

the average number of iterations never exceeds 4.1. In summary,

Figure 3 shows that the network converges to a stable matching

by performing a reasonable number of algorithm iterations at

each UE, hence requiring a low overhead.

V. CONCLUSIONS

In this paper, we have presented a novel, context-aware

approach to the cell association problem in small cell net-

works. Beyond including accurate QoS requirements, our cell

association scheme accounts for the UEs’ hardware type (e.g.,

smartphone, tablet, laptop), the application in use, and the UEs

individual priorities over them. The proposed scheme brings

forward the important advantage of providing the a UE-SBS

association which can best accommodate the individual QoS

requirements, based on the distributed knowledge of practical

context information extracted from modern UE devices. We have

formulated the problem as a matching game with externalities, in

which the UEs and SBSs build preferences over one another so as

to choose their preferred matching. In this game, the preferences

are interdependent and are a function of the potentially resulting

matching. We have proposed a context-based algorithm that

enables both UEs and SBSs to generate a list of preferences,

while accounting for the network externalities. We have shown
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Fig. 3. Average number of iterations per UE for reaching a stable matching η,
for different number of required applications am, M = 50 UEs.

that, with the proposed algorithm, SBSs and UEs reach a

stable matching in a reasonable number of simulation iterations.

Simulation results have shown that the proposed context-aware

approach can provide significant gains in terms of increased data

rates and reduced delays, reaching up to 52%, with respect to a

traditional context-unaware SBS-UE association which is based

on the maximum SINR.
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