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Abstract

The use of multiple antennas at base stations is a key component

in the design of cellular communication systems that can meet

high-capacity demands in the downlink. Under ideal conditions, the

gain of employing multiple antennas is well-recognized: the data

throughput increases linearly with the number of transmit antennas

if the spatial dimension is utilized to serve many users in parallel.

The practical performance of multi-cell systems is, however, limited

by a variety of nonidealities, such as insufficient channel knowledge,

high computational complexity, heterogeneous user conditions, limited

backhaul capacity, transceiver impairments, and the constrained level

of coordination between base stations.



This tutorial presents a general framework for modeling different

multi-cell scenarios, including clustered joint transmission, coordinated

beamforming, interference channels, cognitive radio, and spectrum

sharing between operators. The framework enables joint analysis and

insights that are both scenario independent and dependent.

The performance of multi-cell systems depends on the resource

allocation; that is, how the time, power, frequency, and spatial

resources are divided among users. A comprehensive characterization

of resource allocation problem categories is provided, along with the

signal processing algorithms that solve them. The inherent difficulties

are revealed: (a) the overwhelming spatial degrees-of-freedom created

by the multitude of transmit antennas; and (b) the fundamental trade-

off between maximizing aggregate system throughput and maintaining

user fairness. The tutorial provides a pragmatic foundation for resource

allocation where the system utility metric can be selected to achieve

practical feasibility. The structure of optimal resource allocation is

also derived, in terms of beamforming parameterizations and optimal

operating points.

This tutorial provides a solid ground and understanding for opti-

mization of practical multi-cell systems, including the impact of the

nonidealities mentioned above. The Matlab code is available online for

some of the examples and algorithms in this tutorial.



1

Introduction

This section describes a general framework for modeling different types

of multi-cell systems and measuring their performance — both in terms

of system utility and individual user performance. The framework is

based on the concept of dynamic cooperation clusters, which enables

unified analysis of everything from interference channels and cognitive

radio to cellular networks with global joint transmission. The concept of

resource allocation is defined as allocating transmit power among users

and spatial directions, while satisfying a set of power constraints that

have physical, regulatory, and economic implications. A major compli-

cation in resource allocation is the inter-user interference that arises

and limits the performance when multiple users are served in parallel.

Resource allocation is particularly complex when multiple antennas

are employed at each base station. However, the throughput, user sat-

isfaction, and revenue of multi-cell systems can be greatly improved if

we understand the nature of multi-cell resource allocation and how to

exploit the spatial domain to obtain high spectral efficiencies.

Mathematically, resource allocation corresponds to the selection of

a signal correlation matrix for each user. This enables computation

of the corresponding signal-to-interference-and-noise ratio (SINR) of

115
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each user. For a given resource allocation, this section describes differ-

ent ways of measuring the performance experienced by each user and

the inherent conflict between maximizing the performance of different

users. The performance region and channel gain regions are defined

to illustrate this conflict. These regions provide a bridge between user

performance and system utility. Resource allocation is then naturally

formulated as a multi-objective optimization problem and the bound-

ary of the performance region represents all efficient solutions.

This section formulates the general optimization problem, discusses

the different solution strategies taken in later sections, and derives some

basic properties of the optimal solution and the performance region.

A detailed outline of this tutorial is given at the end of this section.

Mathematical proofs are provided throughout the tutorial to facilitate

a thorough understanding of multi-cell resource allocation.

1.1 Introduction to Multi-Antenna Communications

The purpose of communication is to transfer data between devices

through a physical medium called the channel. This tutorial focuses

on wireless communications, where the data is sent as electromag-

netic radio waves propagating through the environment between the

devices (e.g., air, building, trees, etc.). The wireless channel distorts

the emitted signal, adds interference from other radio signals emitted

in the same frequency band, and adds thermal background noise. As

the radio frequency spectrum is a global resource used for many things

(e.g., cellular/computer networks, radio/television broadcasting, satel-

lite services, and military applications) it is very crowded and spec-

trum licenses are very expensive, at least in frequency bands suitable

for long-range applications. Therefore, wireless communication systems

should be designed to use their assigned frequency resources as effi-

ciently as possible, for example, in terms of achieving high spectral

efficiency (bits/s/Hz) for the system as a whole. This becomes partic-

ularly important as cellular networks are transitioning from low-rate

voice/messaging services to high-rate low-latency data services. The

overall efficiency and user satisfaction can be improved by dynamic

allocation and management of the available resources, and service
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providers can even share spectrum to further improve their joint

spectral efficiency.

The spectral efficiency of a single link (from one transmitter to

one receiver) is fundamentally limited by the available transmit power

[236], but the spectral efficiency can potentially be improved by allow-

ing many devices to communicate in parallel and thereby contribute to

the total spectral efficiency. This approach will however create inter-

user interference that could degrade the performance if not properly

controlled. As the power of electromagnetic radio waves attenuates with

the propagation distance, the traditional way of handling interference

is to only allow simultaneous use of the same resource (e.g., frequency

band) by spatially well-separated devices. As the radio waves from a

single transmit antenna follow a fixed radiation pattern, this calls for

division of the landscape into cells and cell sectors. By applying fixed

frequency reuse patterns such that adjacent sectors are not utilizing

the same resources, interference can be greatly avoided. This near-

orthogonal approach to resource allocation is, however, known to be

inefficient compared to letting transmitted signals interfere in a con-

trolled way [227].

In contrast to classical resource allocation with single-antenna

transmitters [197, 267, 316], modern multi-antenna techniques enable

resource allocation with precise spatial separation of users. By steer-

ing the data signals toward intended users, it is possible to increase

the received signal power (called an array gain) and at the same time

limit the interference caused to other non-intended users. The steer-

ing is tightly coupled with the concept of beamforming in classic array

signal processing; that is, transmitting a signal from multiple antennas

using different relative amplitudes and phases such that the compo-

nents add up constructively in desired directions and destructively in

undesired directions. Herein, steering basically means to form beams in

the directions of users with line-of-sight propagation and to make mul-

tipath components add up coherently in the geographical area around

non-line-of-sight users. The beamforming resolution depends on the

propagation environment and typically improves with the number of

transmit antennas [220]. The ability to steer signals toward intended

users ideally enables global utilization of all spectral resources, thus
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Fig. 1.1 Illustration of the difference between single-antenna and multi-antenna transmis-
sion. With a single antenna, the signal propagates according to a fixed antenna pattern
(e.g., equally strong in all directions) and can create severe interference in directions where
the intended user is not located. For example, interference is caused to User 2 when User
1 is served. With multiple antennas, the signal can be steered toward the intended user
which enables simultaneous transmission to multiple spatially separated users with con-
trolled inter-user interference.

removing the need for cell sectoring and fixed frequency reuse patterns;

see Figure 1.1. This translates into a much higher spectral efficiency but

also more complex implementation constraints — as described later in

this section.

The seminal works of [74, 187, 261] provide a mathematical moti-

vation behind multi-antenna communications; the spectral efficiency

increases linearly with the number of antennas (if the receiver knows

the channel and has at least as many antennas as the transmitter).

The initial works considered point-to-point communication between

two multi-antenna devices — a scenario that is fairly well-understood

today [89, 165, 196, 269]. Encouraging results for the single-cell down-

link where one multi-antenna device transmits to multiple user devices

(also known as the broadcast channel) were initially derived in [46, 283].

The information-theoretic capacity region is now fully characterized,

even under general conditions [295]. The optimal spectral efficiency is

achieved by nonlinear interference pre-cancelation techniques, such as

dirty paper coding [56]. The single-cell scenario is more challenging than

point-to-point since the transmitter needs to know the channel direc-

tions of the intended users to perform nonlinear interference precance-

lation or any sensible linear transmission [84]. Thus, sufficient overhead

signaling needs to be allocated for estimation and feedback of channel
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information [15, 44, 113]. On the other hand, high spectral efficiency can

be achieved in single-cell scenarios while having low-cost single-antenna

user devices and non-ideal channel conditions (e.g., high antenna

correlation, keyhole-like propagation, and line-of-sight propagation)

[84] — this is not possible in point-to-point communication.

The multi-cell downlink has attracted much attention, since the

system-wide spectral efficiency can be further improved if the frequency

reuse patterns are replaced by cooperation between transmitters. Ide-

ally, this could make the whole network act as one large virtual cell that

utilizes all available resources [81]. Such a setup actually exploits the

existence of inter-cell interference, by allowing joint transmission from

multiple cells to each and every user. Unlike the single-cell scenario, the

optimal transmit strategy is unknown even for seemingly simple multi-

cell scenarios, such as the interference channel where each transmitter

serves a single unique user while interference is coordinated across all

cells [69, 101, 157, 235]. Part of the explanation is that interference pre-

cancelation, which is optimal in the single-cell case, cannot be applied

between transmitters in the interference channel. Among the schemes

that are suboptimal in the capacity-sense, linear transmission is prac-

tically appealing due to its low complexity, asymptotic optimality (in

certain cases), and robustness to channel uncertainty. The best linear

transmission scheme is generally difficult to obtain [157, 168], even in

those single-cell scenarios where the capacity region is fully charac-

terized. Recent works have however derived strong parameterizations

[16, 180, 235, 325] and these will be described in Section 3.

This tutorial provides theoretical and conceptual insights on the

optimization of general multi-cell systems with linear transmission. To

this end, the tutorial first introduces a mathematical system model for

the single-cell downlink. This model serves as the foundation when mov-

ing to the multi-cell downlink, which has many conceptual similarities

but also important differences that should be properly addressed.

1.2 System Model: Single-Cell Downlink

Consider a single-cell scenario where a base station with N antennas

communicates with Kr user devices, as illustrated in Figure 1.2. The
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Fig. 1.2 Illustration of the downlink multi-user system in Section 1.2. A base station with
N antennas serves Kr users.

kth user is denoted MSk (the abbreviation stands for mobile station)

and is assumed to have a single effective antenna1; the case with mul-

tiple antennas per user is considered in Section 4.6. This scenario can

be viewed as the superposition of several multiple-input single-output

(MISO) links, thus it is also known as the MISO broadcast channel or

multi-user MISO communication [46]. It is also frequently described

as multi-user MIMO (multiple-input multiple-output) (cf. [84]), refer-

ring to that there are Kr receive antennas in total, but we avoid this

terminology as it creates confusion.

The channel to MSk is assumed to be flat-fading2 and represented

in the complex baseband by the dimensionless vector hk ∈ CN . The

complex-valued element [hk]n describes the channel from the nth

transmit antenna; its magnitude represents the gain (or rather the

attenuation) of the channel, while its argument describes the phase-

shift created by the channel. We assume that the channel vector is

quasi-static; that is, constant for the duration of many transmission

symbols, known as the coherence time. The collection of all channel

vectors {hk}Kr

k=1 is known as the channel state information (CSI) and

is assumed perfectly known at the base station. We also assume that

the transceiver hardware is ideal, without other impairments than can

1 This means that MSk is equipped with either a single antenna or Mk > 1 antennas that
are combined into a single effective antenna (e.g., using receive combining or antenna
selection). There are several reasons for making this assumptions: it enables noniterative
transmission design, put less hardware constraints on the user devices, requires less channel
knowledge at the transmitter, and is close-to-optimal under realistic conditions [15, 28,
268].

2 Flat-fading means that the frequency response is flat, which translates into a memoryless
channel where the current output signal only depends on the current input signal.
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Fig. 1.3 Block diagram of the basic system model for downlink single-cell communications.
Kr single-antenna users are served by N antennas.

be included in the channel vector and background noise. These assump-

tions are idealistic, but simplify the conceptual presentation in this and

subsequent sections. It is generally impossible to find perfect models of

reality, or as famously noted in [34]: “Remember that all system models

are wrong.” Therefore, the goal is to formulate a model that enables

analysis and at the same time is accurate enough to provide valuable

insights. Relaxations to more realistic conditions and assumptions are

provided in Section 4.

Under these assumptions, the symbol-sampled complex-baseband

received signal at MSk is yk ∈ C and is given by the linear input–output

model

yk = hH
k x + nk, (1.1)

where nk ∈ C is the combined vector of additive noise and interference

from surrounding systems. It is modeled as circularly symmetric com-

plex Gaussian distributed, nk ∼ CN (0,σ2), where σ2 is the noise power.

This input–output model is illustrated in Figure 1.3. In a multi-carrier

system, for example, based on orthogonal frequency-division multiplex-

ing (OFDM), the input–output model (1.1) could describe one of the

subcarriers. For brevity, we concentrate on a single subcarrier in Sec-

tions 1–3, while the multi-carrier case is discussed in Section 4.5.

The transmitted signal x ∈ CN contains data signals intended for

each of the users and is given by

x =

Kr∑

k=1

sk, (1.2)
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where sk ∈ CN is the signal intended for MSk. These stochastic data

signals are modeled as zero-mean with signal correlation matrices

Sk = E{sks
H
k } ∈ CN×N . (1.3)

This transmission approach is known as linear multi-stream beamform-

ing (rank(Sk) is the number of streams) and the signal correlation

matrices are important design parameters which will be used to opti-

mize the performance/utility of the system.

Definition 1.1. Each selection of the signal correlation matrices

S1, . . . ,SKr is called a transmit strategy. The average transmit power

allocated to MSk is tr(Sk).

The only transmit strategies of interest are those that satisfy the

power constraints of the system, which are defined next.

1.2.1 Power Constraints

The power resources available for transmission need to be limited some-

how to model the inherent restrictions of practical systems. The average

transmit power tr(Sk) and noise power σ2 are normally measured in

milliwatt [mW], with dBm as the corresponding unit in decibels. We

assume that there are L linear power constraints, which are defined as

Kr∑

k=1

tr(QlkSk) ≤ ql l = 1, . . . ,L, (1.4)

where Qlk ∈ CN×N are Hermitian positive semi-definite weighting

matrices and the limits ql ≥ 0 for all l,k. If Qlk is normalized and dimen-

sionless, then ql is measured in mW and serves as an upper bound on the

allowed transmit power in the subspace spanned by Qlk. To ensure that

the power is constrained in all spatial directions, these matrices satisfy∑L
l=1Qlk ≻ 0N for every k. These constraints are given in advance and

are based on, for example,

• physical limitations

(e.g., to protect the dynamic range of power amplifiers);
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• regulatory constraints

(e.g., to limit the radiated power in certain directions);
• interference constraints

(e.g., to control interference caused to certain users);
• economic decisions

(e.g., to manage the long-term cost and revenue of running

a base station).

Two simple examples are a total power constraint (i.e., L = 1 and

Q1k = IN for all k) and per-antenna constraints (i.e., L = N and Qlk

is only nonzero at the lth diagonal element). While these examples can

be viewed as two extremes, practical systems are typically limited in

both respects.

The matrices Qlk might be the same for all users, but can also

be used to define subspaces where the transmit power should be kept

below a certain threshold when transmitting to a specific user (or sub-

set of users). The motivation is, for example, not to disturb neighbor-

ing systems and the corresponding constraints are called soft-shaping

[107, 230], because the shape of the transmission is only affected if the

power without the constraint would have exceeded the threshold ql.

For example, if the inter-user interference caused to MSk should not

exceed ql, then we can set Qli = hkh
H
k for all i �= k and Qlk = 0N . This

is relevant both to model so-called zero-forcing transmission (i.e., with

zero inter-user interference) and in the area of cognitive radio, where a

secondary system is allowed to use licensed spectrum if the interference

caused to the system of the licensee is limited.

The L linear sum power constraints introduced in (1.4) can be also

decomposed into per-user power constraints as

tr(QlkSk) ≤ qlk k = 1, . . . ,Kr, l = 1, . . . ,L, (1.5)

for some limits qlk ≥ 0 for all l,k. In order to fulfill (1.4), the per-user

power limits need to satisfy the conditions

Kr∑

k=1

qlk ≤ ql l = 1, . . . ,L. (1.6)

This equivalent representation of the L linear sum power constraints is

useful to derive structural results on the optimal transmit strategies.
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Selecting the limits qlk is part of the performance optimization and

basically corresponds to the per-user power allocation.

1.2.2 Resource Allocation

The signal correlation matrices are important parameters that shape

the transmission and ultimately decide what is received at the different

users. Having defined the input–output model in (1.1) and the power

constraints in (1.4), we are ready to give a first brief definition of the

resource allocation problem considered in this tutorial.

Definition 1.2. Selecting a transmit strategy S1, . . . ,SKr in compli-

ance with the power constraints is called resource allocation.

The selection should be based on some criterion on user satisfac-

tion, which will be properly defined later in Section 1.4. Observe that

resource allocation implicitly includes selecting which users to transmit

to, the spatial directivity of the signals to selected users, and the power

allocation. In principle, tr(Sk) describes the power allocated for trans-

mission to MSk, while the eigenvectors and eigenvalues of Sk describe

the spatial distribution of this power. The rank of Sk equals the number

of simultaneous data streams that are multiplexed to MSk. The gen-

eral case when multiple users are served simultaneously is called spatial

division multiple access (SDMA) [217], while the special case when only

one user is allocated nonzero power at a time is known as time division

multiple access (TDMA). The N transmit antennas can be viewed as

having N spatial degrees-of-freedom in the resource allocation, which

can be utilized for sending a total of N simultaneous data streams in a

controlled manner. The spectral efficiency is not always maximized by

sending the maximum number of streams, since this might create much

inter-user interference and can be very sensitive to CSI uncertainty —

TDMA is the better choice in the absence of CSI [84].

SDMA is the main focus of this tutorial and we assume that there

is an infinite queue of data to be sent to each user; thus, all users

are available for transmission and are not upper-limited on how high
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performance they can achieve. The data is delivered to the base station

through a backhaul network, which also will be used for base station

coordination when we extend the single-cell model into a multi-cell

model in Section 1.3.

Remark 1.1 (Basic Channel Modeling). The analysis in this

tutorial is applicable under any channel conditions, noise power, and

power constraints. Some intuition on typical system conditions (used

in numerical simulations) might however aid the understanding.

The channel vector is often modeled as complex Gaussian, hk ∼
CN (h̄k,Rk), where the mean value h̄k ∈ CN describes the line-of-sight

propagation (if it exists) and the covariance matrix Rk ∈ CN×N char-

acterizes the varying nature of the channel. This model is called Rician

fading or Rayleigh fading (if h̄k = 0), since the magnitude of each chan-

nel element is Rice or Rayleigh distributed, respectively. Although sim-

ple, this model makes sense in rich multipath scenarios (e.g., based on

the Lindeberg Central limit theorem [309]) and has been validated by

measurements [54, 132, 288, 294, 306]. The spatial directivity is speci-

fied by the off-diagonal elements in Rk and the exponential correlation

model in [162] provides a simple parametrization. The channel attenua-

tion depends strongly on the distance between the transmitter and the

receiver; this is modeled as −128.1 − 37.6log10(d) dB in 3GPP Long

Term Evolution (LTE) [1], where d is the separation in kilometers.

Accordingly, tr(Rk)
N lies in the range of −70 dB to −140 dB in cellular

systems. Further reduction are introduced by signal penetration losses,

while antenna gains improve the conditions.

The noise power σ2 can be modeled as −174 + 10log10(b) + nf

dBm, where b is the bandwidth in Hertz and nf is the noise figure

caused by hardware components. For example, the noise power is −127

dBm for a 15 kHz subcarrier with a 5 dB noise figure. Furthermore,

the transmit power (per flat-fading subcarrier) is typically in the range

of 0–20 dBm. As the received signal power and the noise power are

both very small quantities, normalization is often beneficial in numer-

ical computations.
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1.3 Extending Single-Cell Downlink to Multi-Cell Downlink

In traditional multi-cell systems, each user belongs to one cell at a time

and resource allocation is performed unilaterally by its base station.

This is enabled by having frequency reuse patterns such that cell sec-

tors utilizing the same resources cause negligible interference to each

other. The single-cell system model, defined in the previous section,

can therefore be applied directly onto each cell sector — at least if

the negligible interference from distant cell sectors is seen as part of

the additive background noise. Accordingly, the base station can make

autonomous resource allocation decisions and be sure that no uncoor-

dinated interference appears within the cell.

A different story emerges in multi-cell multi-antenna scenarios

where all base stations are simultaneously using the same frequency

resources (to maximize the system-wide spectral efficiency). The coun-

terpart of SDMA in multi-cell systems have been given many names,

including co-processing [233], cooperative processing [321], network

MIMO [279], coordinated multi-point (CoMP) [202], and multi-cell pro-

cessing [81]. It is based on the same idea of exploiting the spatial

dimensions for serving multiple users in parallel while controlling the

interference. Network MIMO is particularly important for users that

experience channel gains on the same order of magnitude from multiple

base stations (e.g., cell edge users). The initial works in [125, 233, 321]

assumed perfect co-processing at the base stations and modeled the

whole network as one large multi-user MISO system where the trans-

mit antennas happen to be distributed over a large area; all users were

served by joint transmission from all base stations and the multi-cell

characteristics were essentially reduced to just constraining the trans-

mit power per antenna array or antenna, instead of the total transmit

power (as traditionally assumed for single-cell systems). The optimal

spectral efficiency under these ideal conditions can be obtained from

the single-cell literature, in particular [295]. Although mathematically

convenient, this approach leads to several implicit assumptions that

are hard to justify in practice. First, global CSI and data sharing is

required, which puts huge demands on the channel estimation, feed-

back links, and backhaul networks [122, 174, 175, 200, 247, 312, 313].
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Second, coherent joint transmission (including joint interference cance-

lation) requires very accurate synchronization3 between base stations

[18, 262, 318] and increases the delay spread [322], potentially turning

flat-fading channels into frequency-selective. Third, the complexity of

centralized resource allocation algorithms is infeasible in terms of com-

putations, delays, and scalability [21]. On the other hand, the early

works on the multi-cell downlink provide (unattainable) upper bounds

on the practical multi-cell performance.

Various alternative models have been proposed to capture multi-

cell-specific characteristics. The CSI requirements were reduced in

[191, 114, 246] by using the so-called Wyner model from [299] where

interference only comes from immediate neighboring cells; see Exam-

ple 1.1 for details. This enables relatively simple analysis, but the

results can also be oversimplified [300]. Another approach is to divide

base stations into static disjoint cooperation clusters as in Figure 1.4

[106, 174, 323]. Each cluster is basically operated as a single-cell system.

Fig. 1.4 Schematic illustration of static disjoint cooperation clusters.

3 Synchronization is very important to enable signal contributions from different base sta-
tions to cancel out at nonintended users. Precise phase-synchronization can potentially be
achieved and maintained by sending a common reference signal to the base stations from
a master oscillator [8, 177], using reference clocks that are phase-locked to the GPS [124],
or by estimating and feeding back the offset at the users [318].
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If the clusters are sufficiently small (e.g., cell sectors connected to the

same eNodeB in an LTE system), this approach enables practical chan-

nel acquisition, coordination, and synchronization within each cluster.

Networks with static clusters unfortunately provide poor spectral effi-

ciency when the user distribution is heterogeneous [173] and suffer from

out-of-cluster interference [77]. The impact of these drawbacks can be

reduced by having different static disjoint cooperation clusters on differ-

ent frequency subcarriers [176], by increasing the cluster size and serve

each user by a subset of its base stations [33], by having frequency reuse

patterns in the cluster edge areas [146], and by changing the disjoint

clusters over time [173, 199]. These approaches can however be viewed

as treating the symptoms rather than the actual problem, namely the

formation of clusters based on a base station-perspective. Steps toward

more dynamic and flexible multi-cell coordination were taken in

[18, 77, 109, 128, 129, 263] by creating clusters from a user-centric per-

spective. This means that the set of base stations that serve or reduce

interference to a given user is based on the particular needs of this

user. Consequently, each base station has its own unique set of users to

coordinate interference toward and serves a subset of these users with

data. Each base station coordinates its resource allocation decisions

with exactly those base stations that affect the same users. This is very

different from the disjointness mentioned above, because each base

station basically cooperates with all of its neighbors and forms different

cooperation clusters when serving different users. The geographical

location of a user has a large impact on the clustering [109], but the

desirable cooperation and coordination also change with time, for

example, based on user activity levels, mobility of users, and macro-

scopic conditions such as congestion in certain areas. This tutorial

considers dynamic cooperation clusters of this user-centric type and

the framework includes the scenarios described above as special cases.

A seemingly different multi-cell setup arises in the area of cognitive

radio [90, 102, 230]. Frequency spectrum is traditionally licensed to

companies or agencies, which are given exclusive rights for utilization.

Therefore, the licensee can unilaterally manage the transmissions and

guarantee the service quality for its users. However, a major part

of the licensed spectrum is under-utilized today, thus providing the
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opportunity for improvements in spectral efficiency [55]. The cognitive

radio paradigm is based on having secondary systems that are allowed

to use the spectrum if they are not disrupting the primary system

(which owns the license). Three ways for the secondary system to

achieve this are: interweave (detect and transmit when primary sys-

tem is inactive), underlay (steer signals away from primary users

to avoid interference), and overlay (compensate for the interference

caused to primary users by participating in joint transmission of their

intended signals). These cognitive radio scenarios can be modeled

using the framework of this tutorial (see Section 4.8), and can nat-

urally be extended for spectrum sharing between operators on equal

terms.

1.3.1 Dynamic Cooperation Clusters

Next, we extend the downlink single-cell system model in Section 1.2

to a multi-cell scenario with Kt base stations. The jth base station

is denoted BSj and is equipped with Nj antennas. The antenna array

can have any structure and we assume that Nj is a fixed parameter.4

Observe that the total number of transmit antennas is still denoted

N =
∑Kt

j=1 Nj . Based on the discussion in the previous section and

on [18], our general multi-cell system model will embrace the following

observations:

• Each user is jointly served by a subset of all base stations;
• Some base stations and users are very far apart, making it

impractical to estimate and separate the interference on these

channels from the background noise.

Based on these observations, we make the following definition.

4 The hardware design of antenna arrays has important implications on channel properties
such as spatial correlation, mutual antenna coupling, and aperture — all of which are
affecting the spatial resolution of beamforming. Release 9 of the LTE standard supports
Nj = 8 antennas [1], but current research investigates the potential of having much larger
arrays (up to several hundred of antennas). We refer to [220] for a recent survey on the
challenges and opportunities of having unconventionally large numbers of antennas.
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Definition 1.3. Dynamic cooperation clusters (DCC) means that:

• BSj has channel estimates to users in Cj ⊆ {1, . . . ,Kr}, while

interference generated to users i �∈ Cj is negligible and can be

treated as part of the Gaussian background noise;
• BSj serves the users in Dj ⊆ Cj with data.

This coordination framework is characterized by the sets Cj ,Dj ∀j,

which are illustrated in Figure 1.5. In this figure, the inner set Dj con-

tains the users that BSj might serve with data. The larger outer set Cj

contains all users that BSj should take into consideration and coordi-

nate interference toward. The mnemonic rule is that Dj describes data

from BSj , while Cj describes coordination from BSj . The membership

of users in these sets changes dynamically during operation (e.g., based

on individual user locations and the user density in different areas) and

it should be noted that each base station may cooperate with different

subsets of base stations for each of its users; in other words, the users

can generally not be divided into disjoint groups served by disjoint

groups of base stations.

How to select Cj ,Dj efficiently is a very important and com-

plex problem [45]. On the one hand, joint transmission and interfer-

ence coordination provide extra degrees-of-freedom to separate users

spatially. This benefit comes, on the other hand, at the cost of spending

Fig. 1.5 Schematic intersection of two cells. BSj serves users in the inner circle (Dj), while
coordinating interference to users in the outer circle (Cj). The interference caused to users
outside both circles is negligible and included in the respective noise terms.
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backhaul and overhead signaling on obtaining CSI, sharing data, and

achieving base station synchronization. Increased expenditure is only

well motivated if it leads to substantial improvements in spectral effi-

ciency; joint transmission is more costly (it requires data sharing and

tight synchronization) than interference coordination, thus we can gen-

erally expect Dj to be a much smaller set than Cj . The clustering prob-

lem is discussed in Section 4.7, but for now we assume that the sets

Cj ,Dj ∀j are given and known everywhere needed.

The reason for basing the tutorial on DCC is twofold. First, it

enables joint analysis of different levels of multi-cell coordination (from

the Wyner model or cognitive radio to global joint transmission). Sec-

ond, it can resolve some of the issues that appear when the multi-cell

downlink is viewed as a single-user system with a large distributed

transmit antenna array and distributed power constraints. According

to Definition 1.3, BSj only needs to know its own channel to users

that receive non-negligible interference from it — a natural assumption

since these are the users for which BSj can achieve reliable channel esti-

mates.5 In addition, only neighboring base stations need to be phase

synchronized6 and joint transmission only creates a small increase in

delay-spread (which is easy to handle in OFDM systems by increasing

the cyclic prefix [322]).

1.3.2 Extended System Model: Multi-Cell Downlink

In the multi-cell scenario, the channel from all base stations to MSk

is denoted hk = [hT
1k . . .hT

Ktk
]T ∈ CN , where hjk ∈ CNj is the channel

from BSj . Based on the DCC in Definition 1.3, only certain channel

elements of hk will carry data and/or non-negligible interference. These

can be selected by the diagonal matrices Dk ∈ CN×N and Ck ∈ CN×N ,

5 There are two main system categories: Frequency division duplex (FDD) and Time divi-
sion duplex (TDD). The main difference is that each frequency subcarrier in FDD is used
for either downlink or uplink transmission, while each subcarrier in TDD switches between
downlink and uplink transmission. TDD seems particularly useful for multi-cell coordina-
tion, because multiple base stations can exploit the same uplink pilot signal to estimate
their respective channels (if channel reciprocity can be utilized [96]). The CSI acquisition
is more demanding in FDD, since more resources are required for CSI feedback to the
additional base stations (and possibly some extra backhaul signaling).

6 Note that local phase synchronization does not imply global phase synchronization,
because small deviations between neighboring base stations are acceptable but can grow
into large deviation between distant base stations.
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which are defined as

Dk =



D1k 0

. . .

0 DKtk


 where Djk =

{
INj

, if k ∈ Dj ,

0Nj
, otherwise,

(1.7)

Ck =



C1k 0

. . .

0 CKtk


 where Cjk =

{
INj

, if k ∈ Cj ,

0Nj
, otherwise.

(1.8)

Thus, hH
k Dk is the channel that carries data to MSk and hH

k Ck is

the channel that carries non-negligible interference.7 It is necessary to

have both Dk and Ck, to make sure that only the correct base stations

transmit to MSk when optimizing the resource allocation.

Extending the single-cell input–output model in (1.1), the symbol-

sampled complex-baseband received signal at MSk is

yk = hH
k Ck

Kr∑

i=1

Disi + nk (1.9)

and is illustrated in Figure 1.6.8 The additive term nk ∼ CN (0,σ2
k) is

now assumed to model both noise and weak uncoordinated interference

from all BSj with k �∈ Cj (see Definition 1.3). This assumption limits the

amount of CSI required to analyze the transmission and is reasonable

if only users that would receive signals that are stronger than the back-

ground noise are included in Cj . This might be satisfied if base stations

coordinate interference to all cell edge users of adjacent cells (similar to

the Wyner model [299]). The variance σ2
k is generally different among

the users (representing how weak the uncoordinated interference is at

7 The antennas that transmit to a certain user can, for simplicity, be thought of as being a
single transmitter, although the antennas might belong to different base stations. The real-
ity is however more complex, for example, due to base station-specific power constraints,
separate channel acquisition, and distributed resource allocation; see Section 4.

8 This tutorial considers transmission using linear beamforming over a single subcarrier and
channel use. Higher spectral efficiency can potentially be achieved using nonlinear interfer-
ence pre-subtraction at the base stations (e.g., dirty paper coding [56, 46, 283, 295]) or by
extending the transmission over, for instance, a collection of channel realizations (e.g., inter-
ference alignment [41]). The truly optimal transmission scheme is unknown for general multi-
cell systems, thus the linear beamforming considered in this tutorial should be viewed as a
practically appealing transmission approach rather than the overall optimal strategy.
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Fig. 1.6 Block diagram of the general system model for downlink multi-cell communications.
Kr single-antenna users are served by N antennas.

a certain user) and is estimated and tracked using the received sig-

nals.9 It is worth pointing out that σ2
k is implicitly coupled with the

power constraints; if the system-wide power usage is increased, then the

uncoordinated interference will also increase. This relationship has no

particular impact on this tutorial since our power constraints are fixed,

but is of paramount importance in any asymptotic analysis because

multi-cell systems are fundamentally interference-limited in the high-

SNR regime [164]. When nothing else is said, BSj is assumed to know

the channels hjk and variances σ2
k perfectly to all users k ∈ Cj . The case

with CSI uncertainty is considered in Section 4.

Just as in the single-cell scenario, the transmission is limited by the

L power constraints in (1.4). An important difference is that the actual

transmitted signals are Dksk (and not sk), thus each weighting matrix

Qlk should satisfy the additional condition that Qlk − DH
k QlkDk is

diagonal for all l,k (e.g., being zero). This technical assumption makes

sure that power cannot be allocated to unallowed subspaces for the

purpose of reducing the (measured) power in the subspaces used for

transmission — which is only possible when Qlk is nondiagonal.

It is frequently assumed in multi-cell scenarios (but not necessary)

that each power constraint only affects the signals from one of the base

stations; for example, per-transmitter power constraints is represented

by having L = Kt and the constraint affecting BSl is

Qper-BS
lk = DH

k diag
(
0N1+···+Nl−1

,1Nl
,0Nl+1+···+NKt

)
Dk ∀l. (1.10)

9 It is implicitly assumed that nk is an ergodic process, which is not necessarily satisfied
if unknown communication systems with fast adaptive resource allocation strategies are
creating the interference; a further discussion is available in [302].
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The analysis in this tutorial is applicable to any feasible set of power

constraints, when nothing else is stated.

1.3.3 Examples of Multi-Cell Scenarios

We conclude this section by illustrating that the proposed DCC can

describe a variety of multi-cell scenarios. Different examples are given

on the following pages.

Fig. 1.7 Illustration of the multi-cell scenario called the one-dimensional/linear Wyner
model. Users are jointly served by the closest base station and its two neighbors (in a cyclic
manner), and only experience interference from these three base stations.

Example 1.1(Wyner model). Based on an idea by A. Wyner [299],

it can be assumed that users only receive signals from their own base

station and the immediate neighboring base stations. This abstraction

is supposed to capture the locality of interference. The one-dimensional

(or linear) version of this model, where all devices are located on the

boundary of a large circle, is illustrated in Figure 1.7. It is usually

assumed that all users in the jth cell are jointly served by BSj−1, BSj ,

and BSj+1. This model was originally proposed for uplink transmission,

but was used in [114, 191, 246] to analyze the ideal performance of joint

downlink transmission.

Assume that there are Kt base stations and Kr users. If

MSk is geographically closest to BSj , then we have Dk = Ck =

diag(0N1+···+Nj−2 ,INj−1+Nj+Nj+1 ,0Nj+2+···+NKt
) since MSk is served by

BSj−1, BSj , and BSj+1 and only experiences interference from these

base stations.
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Fig. 1.8 Illustration of the multi-cell scenario of coordinated beamforming. Users are served
by their own base station while interference is coordinated by joint resource allocation
between all base stations.

Example 1.2 (Coordinated Beamforming). Coordinated beam-

forming means that each base station has a disjoint set of users to

serve with data, but selects transmit strategies jointly with all other

base stations to reduce inter-cell interference [59, 82, 139, 211]; see

Figure 1.8. There is an arbitrary number of users in each cell. The spe-

cial case with only one user per cell is called the interference channel

[69, 101, 157, 235].

Assume that there are Kt = 2 base stations and Kr users.

Then, Dk = diag(IN1 ,0N2) for all MSk served by BS1, while Dk =

diag(0N1 ,IN2) for all MSk served by BS2. In addition, C1 = C2 = IN

due to the global interference coordination.
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Fig. 1.9 Illustration of the global joint transmission scenario, where all cells and cell sectors
are connected and perform joint transmission to all users in the whole network.

Example 1.3 (Global Joint Transmission). Ideally, all base sta-

tions can serve and coordinate interference to all users [125, 233, 321].

Even if the cellular network was originally built with many cells and cell

sectors, this type of ideal/full CoMP turns the system into a single cell

with distributed antenna arrays; see Figure 1.9. The main difference

from the classic single-cell scenario might be the power constraints,

which typically are defined per-antenna or per-transmitter.

This type of global joint transmission and interference coordination

is represented by having Dk = Ck = IN for all users k.
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Fig. 1.10 Illustration of the scenario of underlay cognitive radio, where the secondary system
is allowed to use frequency resources licensed by the primary system if the interference is
kept below a threshold.

Example 1.4 (Cognitive Radio). Underlay cognitive radio is a sce-

nario where a secondary system is allowed to use the licensed spectrum

of a primary system if it causes mild interference on the primary sys-

tem [90, 120, 230, 327]; see Figure 1.10. This scenario is particularly

relevant when the primary system is not fully utilizing its spectrum.

Assume that users with indices in Kprimary = {1, . . . ,Kprimary}
belong to the primary systems, while users in Ksecondary = {Kprimary +

1, . . . ,Kr} belong to the secondary system and are served by joint

transmission. We then have Dk = 0N for k ∈ Kprimary and Dk = IN for

k ∈ Ksecondary. We also have Ck = IN since interference is coordinated

toward all users. Finally, we have Kprimary soft-shaping constraints of

the form Qki = hih
H
i ∀k ∈ Ksecondary to limit the interference toward

each primary user i ∈ Kprimary. The corresponding qi defines the max-

imal interference power that can be caused to user i ∈ Kprimary.
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Fig. 1.11 Illustration of the scenario of spectrum sharing between two operators covering
the same area, creating inter-operator interference.

Example 1.5 (Spectrum Sharing Between two Operators).

Spectrum sharing between operators is a scenario where two operators

agree to share some portion of their licensed frequency bands; see Fig-

ure 1.11 where Operator 1 has circular antenna arrays and serve laptops

while Operator 2 has triangular arrays and serve smartphones.

Suppose MSk is served by BS1 of Operator 1 with Dk =

diag(IN1 ,0N2 , . . .). The signal received at MSk is a superposition of

the signals from BS1 of Operator 1 and BSA,BSB,BSC of Operator 2,

thus Ck = diag( IN︸︷︷︸
BS 1

,0, . . . ,0,INA
,INB

,INC︸ ︷︷ ︸
BSA,BSB,BSC

,0, . . .). This model is easily

extended to the case in which inter-cell interference from the same

operator is also considered (by modifying the matrix Ck accordingly).

Another extension is to apply full joint transmission within one opera-

tor, which could be modeled by Dk = diag(IN1 ,0N2 ,IN3 ,0N4 , . . .).



1.4 Multi-Cell Performance Measures and Resource Allocation 139

1.4 Multi-Cell Performance Measures and

Resource Allocation

In this section, we define a general way of measuring the performance

in multi-cell systems. It is instructive to separate the performance into

two parts: (1) the performance that each user experiences; and (2) the

system utility which is a collection of simultaneously achievable user

performances. These two parts are described and analyzed in the fol-

lowing subsections.

1.4.1 User Performance

To enable low-complexity and energy-efficient receivers, we assume sin-

gle user detection meaning that a user is not attempting to decode

and subtract interfering signals while decoding its own signals. This

assumption is limiting in terms of spectral efficiency, except in the low-

interference regime [4, 234], but requires less complex signal processing

algorithms for reception. In principle, it also places the responsibility for

interference control at the transmitter-side, where the computational

resources are available. The corresponding SINR for MSk is

SINRk(S1, . . . ,SKr) =
hH

k CkDkSkD
H
k CH

k hk

σ2
k + hH

k Ck(
∑
i�=k

DiSiDH
i )CH

k hk

=
hH

k DkSkD
H
k hk

σ2
k + hH

k Ck(
∑

i∈Ik

DiSiDH
i )CH

k hk
, (1.11)

where the second equality follows from CkDk = Dk and CkDi �= 0

only for users i in

Ik =
⋃

{j∈J :k∈Cj}
Dj \ {k}. (1.12)

This is the set of co-users being served by the same base stations that

coordinate interference toward MSk. Observe that the SINR is a dimen-

sionless quantity, thus it does not matter if the transmit and noise
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powers are measured in milliwatt or watt. For brevity, we frequently

write SINRk instead of SINRk(S1, . . . ,SKr) in this tutorial.

The signal-to-noise ratio (SNR) can be defined accordingly by

removing the interference term in (1.11). We will however mostly use

this term as an indication of the ideal signaling conditions to a given

user: qj
‖hH

k
CkDk‖2

2

σ2
k

, where qj is the constraint that ultimately limits the

transmit power. We show in Section 3.4 that the optimal transmission

structure depends strongly on the SNR — roughly speaking, a low SNR

is below 0 dB and a high SNR is above 20 dB.

Note that other channel gain based SINR expressions are possible.

Consider the case in which MSk receives two statistically independent

data signals with correlation matrices S
(1)
k and S

(2)
k , for example, from

two different base stations. Then, the resulting SINR expression useful

for information rate computation (after optimal receive processing with

successive interference cancelation) is given by

SINR2-signals
k (S1, . . . ,SKr) =

hH
k CkDk(S

(1)
k + S

(2)
k )DH

k CH
k hk

σ2
k + hH

k Ck(
∑
i�=k

DiSiD
H
i )CH

k hk

. (1.13)

This expression is equivalent to (1.11) if all data signals are indepen-

dent.10 However, if S
(2)
k represents a multi-cast signal meant for mul-

tiple users, then (1.13) cannot be written as (1.11). Multi-cast signals

can, for example, be used for overhead signaling to different groups of

users [127, 245]. This type of multi-cast scenario is further described in

Section 4.

Each user k has its own quality measure represented by the user per-

formance function gk : R+ → R+ of the SINR. This function describes

the satisfaction of the user and generally depends on the service

currently used (e.g., its throughput and delay constraints11) and on

the priority given by the subscription profile.

10 This is can be seen by defining Sk = S
(1)
k

+ S
(2)
k

.
11 Voice traffic is an inelastic service as the user requires short delays and that a minimum

information rate is constantly available (while higher rates unnecessary). On the contrary,
Internet traffic is elastic as it can accept long delays and variations in the information
rate, while the satisfaction is strictly increasing with the information rate.
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Definition 1.4(User Performance Function). The performance of

MSk is measured by an arbitrary continuous, differentiable, and strictly

monotonically increasing12 function gk(SINRk) of the SINR. This func-

tion satisfies gk(0) = 0, for notational convenience.

With this definition, it is preferable for MSk to have a large posi-

tive value on gk(SINRk) because it corresponds to good performance.13

Ideally, the function gk(·) should be selected to quantify the perfor-

mance quality in a way comprehensible to the user and the system

provider. It is certainly difficult to summarize and connect the user

expectations and final service quality with a physical entity such as

the SINR. Nevertheless, Definition 1.4 gives a reasonable structure

since improving the signal quality should always increase the perfor-

mance [196], or at least not degrade it [40].

Most of the analytical results in this tutorial only requires the struc-

tural properties in Definition 1.4 and are indifferent to the actual choice

of user performance functions, therefore we will only explicitly specify

gk(·) when needed. Furthermore, the functions only need to satisfy the

continuity and monotonicity properties in Definition 1.4 in the SINR

ranges supported by the power constraints in (1.4). The assumption

gk(0) = 0 is nonlimiting and always fulfilled after a simple variable

transformation. Here follow some common examples on performance

measures that satisfy our definition.

Example 1.6(Information Rate). The achievable information rate

(or mutual information) is gk(SINRk) = log2(1 + SINRk) and describes

the number of bits that can be conveyed to user k (per channel use) with

an arbitrarily low probability of decoding error [57]. The underlying

12 A function gk : R → R is strictly monotonically increasing if it for any x,x′ ∈ R such that
x > x′ also follows that f(x) > f(x′).

13 If we would like to minimize some kind of error ǧk(SINRk) that is strictly monotonically
decreasing (e.g., mean square error or bit error rate), this can be reformulated into a
maximization of the multiplicative inverse as gk(SINRk) = 1

ǧk(SINRk)
− 1

ǧk(0)
or maxi-

mization of the additive inverse as gk(SINRk) = ǧk(0) − ǧk(SINRk). Observe that both
possibilities satisfy the condition of gk(0) = 0 in Definition 1.4.
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assumption is an infinite constellation sk ∼ CN (0,Sk), error-control

coding over very many channel uses, and ideal decoding [65].

Example 1.7 (Mean Square Error). The sum mean square error

(MSE) is MSEk = E{‖ŝk − sk‖2
2}, where ŝk is an estimate of sk

obtained using the optimal Wiener filter [195] and noniterative recep-

tion. If M data streams are intended for transmission to user k

(i.e., rank(Sk) ≤ M), then MSEk = M − SINRk

1+SINRk
. This error measure

should be minimized, thus it is equivalent to maximizing gk(SINRk) =
SINRk

1+SINRk
.

Example 1.8 (Bit Error Rate). The bit error rate (BER) for Gray

coded transmission of a 16-QAM constellation is

Pk,16-QAM =
3

8
erfc

(√
1

10
SINRk

)
+

1

4
erfc

(√
9

10
SINRk

)

− 1

8
erfc

(√
5

2
SINRk

)
,

(1.14)

where erfc(x) = 2√
π

∫∞
x e−t2dt is the complementary error function and

rank(Sk) ≤ 1 [73, 189]. This error measure should be minimized, thus

it is equivalent to maximizing gk(SINRk) = 0.5 − Pk,16-QAM.

In terms of merits and demerits, the information rate has a simple

and marketable interpretation, but builds on idealized coding and sig-

nal processing assumptions. The MSE often gives simple expressions,

but it can be argued that it is only vaguely connected to the user-

experienced service quality. The BER is somewhat self-explanatory,

but typically has complicated expressions (as seen from Example 1.8)

and ignores channel coding which has a large impact on the effective

error rate.

The actual throughput in modern communication systems, such as

3GPP LTE systems, can often be predicted as β1 log2(1 + SINRk/β2),

for some parameters β1 ∈ [0.5,0.75] and β2 ∈ [1,2] that reflect the
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practical bandwidth and SNR efficiency, respectively [183]. This mod-

ified information rate expression is not perfect but is generally a good

choice, because the parameters β1,β2 can be fitted to the output of a

system-level simulator. However, there are certain practical situations

in which adaptive coding and modulation is not possible (e.g., systems

with very low-complexity devices) and BER/MSE measures are more

appropriate.

The analysis and optimization procedure in this tutorial is appli-

cable to any gk(·) satisfying Definition 1.4; the particular choice will

not affect the approach to achieve optimal resource allocation, but will

certainly affect what is considered optimal.

Each transmitted data signal will in general affect all users and the

impact is characterized by the channel gain region.

Definition 1.5 (Channel Gain Region). Consider the signal with

correlation matrix Sk. The received signal power at user i is given by

xki(Sk) = hH
i CiDkSkD

H
k CH

i hi. The channel gain region of this signal

is defined as

Ωk =
{
(xk1(Sk), . . . ,xkKr

(Sk)) : Sk � 0N ,tr(QlkSk) ≤ qlk ∀l
}
.

(1.15)

The set Ωk depends only on the signal correlation matrix Sk and

on the per-user power constraints in (1.5). It describes the impact of

the choice of Sk on the received channel gain at all users.

Note that the definition of the channel gain region in Definition 1.5

is different from the definition in [180] because of the feasible transmit

strategies. Therefore, the next result which shows that Ωk is compact

and convex extends [180, Lemma 1].

Definition 1.6. A set S ⊆ RKr is compact if it is closed and bounded.

S is convex if tr1 + (1 − t)r2 ∈ S whenever r1,r2 ∈ S and t ∈ [0,1].

Lemma 1.1. The channel gain region Ωk is compact and convex.
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Proof. Define the vector with achievable channel gains as xk(Sk) =

[xk1(Sk) . . . xkKr
(Sk)]

T . The set of feasible signal correlation matrices

is Sk =
{
Sk:Sk � 0N , tr(QlkSk) ≤ qlk ∀l

}
and is compact and closed.

Since Ωk is achieved by a continuous mapping from the closed set Sk, we

can invoke [219, Theorem 4.14] to conclude that also Ωk is a closed set.

It remains to show that Ωk is convex: For any two points xk(S
(1)) ∈

Ωk and xk(S
(2)) ∈ Ωk, we have to show that xk(Sz(t)) ∈ Ωk for Sz(t) =

tS(1) + (1 − t)S(2) and t ∈ [0,1]. It holds as

xki(Sz(t)) = hH
i CiDkSz(t)D

H
k CH

i hi

= hH
i CiDk

(
tS(1) + (1 − t)S(2)

)
DH

k CH
i hi

= txki(S
(1)) + (1 − t)xki(S

(2)). (1.16)

Furthermore, tr(QlkSz(t)) ≤ qlk is satisfied because tr(QlkSz(t)) =

ttr(QlkS
(1)) + (1 − t)tr(QlkS

(2)) ≤ tqlk + (1 − t)qlk = qlk.

This lemma establishes the basic structure of the channel gain

regions. The exact shape depends on the power constraints and

the correlation between the channel vectors CH
i hi of the users, as

illustrated in Figure 1.12. If we consider a total power constraint, Ωk

resembles a triangle when the user channels are almost orthogonal (see

Figure 1.12(a)), while it looks a line from the origin if the channels

are almost parallel (see Figure 1.12(b)). Furthermore, the relative

path losses ‖CH
i hi‖2 determine if the region looks thin or fat (see

Figure 1.12(c)-(d)).

The relationship between individual user performance and channel

gain regions is observed from the following SINR expression for MSk,

SINRk(x1k(S1), . . . ,xKrk(SKr)) =
xkk(Sk)

σ2
k +

∑
i∈Ik

xik(Si)
. (1.17)

From (1.17) the monotonicity of the SINR with respect to the different

channel gains is easily observed. The SINR of MSk is strictly monotonic

increasing in xkk(Sk) and strictly monotonic decreasing in xik(Si) for

all interfering links i ∈ Ik. The conflict between the SINR expressions

of different links becomes visible: increasing the own channel gain xkk

might increase the channel gain xki at some other user i and thereby

lower its SINR.
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(a) Almost Orthogonal Channels

(c) Unequal Path Losses (d) Equal Path Losses

(b) Almost Equal Channels

Fig. 1.12 Examples of channel gain regions with different shapes, but all being compact and
convex. (a) and (b) illustrate the extremes of almost orthogonal and parallel channel vectors,
respectively. (c) and (d) illustrate unequal and equal path losses ‖CH

i hi‖2, respectively.

The user performance function introduced in Definition 1.4 can also

be expressed as a function of the channel gains,

gk(SINRk) = gk(x1k(S1), . . . ,xKrk(SKr)). (1.18)

By the monotonicity of the user performance function it follows that

gk(·) is also strictly monotonic increasing in xkk(Sk) and strictly mono-

tonic decreasing in xik(Si) for all interfering links i ∈ Ik.

1.4.2 Multi-Objective Resource Allocation

The channel gain regions highlight the inherent conflict and tradeoffs

that appear when we want to maximize the performance of multiple users

simultaneously. Each user has its own objective gk(SINRk) to be opti-

mized, thus there areKr different objectives that typically are conflicting.
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Optimization problems with multiple objectives appear naturally in

many engineering fields to model tradeoffs between, for example, appli-

cation performance, operational expenses, logistics, and environmental

impacts. To analyze and obtain insights on such problems — without

imposing any additional structure — it is common to formulate them

mathematically as multi-objective optimization problems (MOPs). This

tutorial will present and utilize some results and methods from the math-

ematical field of MOPs, but we refer to [38] for an in-depth survey.

Without loss of generality, our resource allocation problem is for-

mulated as

maximize
S1�0N ,...,SKr �0N

{g1(SINR1), . . . ,gKr(SINRKr)}

subject to

Kr∑

k=1

tr(QlkSk) ≤ ql ∀l.
(1.19)

This MOP can be interpreted as searching for a transmit strategy

S1, . . . ,SKr that satisfies the power constraints and maximizes the per-

formance gk(SINRk) of all users [38]. Since the performance of different

users are coupled by both power constraints and inter-user interference,

there is generally not a single transmit strategy that simultaneously

maximizes the performance of all users. For example, SINRk in (1.11)

improves if less interference is caused to MSk, but decreasing the inter-

ference at MSk typically requires decreasing the useful signal power

at other users and thereby degrading their SINRs. To study the con-

flicting objectives of a MOP it is instructive to consider the set of all

feasible operating points g = [g1 . . . gKr ]
T in (1.19) [38], which we call

the performance region.14

Definition 1.7. The achievable performance region R ⊆ R
Kr
+ is

R =
{(

g1(SINR1), . . . ,gKr(SINRk)
)
: (S1, . . . ,SKr) ∈ S

}
(1.20)

where S is the set of feasible transmit strategies:

S =

{
(S1, . . . ,SKr): Sk � 0N ,

Kr∑

k=1

tr(QlkSk) ≤ ql ∀l

}
. (1.21)

14 The performance region can also be called the utility region or something that reflects the
choice of user performance function (e.g., capacity region, rate region, or MSE region).
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This region describes the performance that can be guaranteed

to be simultaneously achievable by the users.15 The Kr-dimensional

performance region is nonempty as {0Kr×1} ∈ R and its shape depends

strongly on the channel vectors, power constraints, and dynamic coop-

eration clusters. In general, R is not easily characterized and might be

a nonconvex set, but we can prove that R is compact and normal [274].

Definition 1.8. A set T is called normal on S ⊆ RKr if for any

point r ∈ T , all r′ ∈ S with r′ ≤ r also satisfy r′ ∈ T (componentwise

inequality).

Normal sets are also known as comprehensive sets [39, 193].

Lemma 1.2. The achievable performance region R is compact and

normal on R
Kr
+ .

Proof. To prove that R is a compact set, observe that the set of fea-

sible transmit strategies S in (1.21) is compact. Next, observe that

gk(SINRk) are continuous functions of S1, . . . ,SKr by definition. The

compactness of R follows by invoking [219, Theorem 4.14], which says

that the continuous mapping of a compact set is also a compact set.

Since R is the image of a continuous mapping from S, it is compact.

Proving that R is normal on R
Kr
+ is a bit involved, although this

property is quite intuitive. We outline the proof from [14, Lemma

5.1]. For any given r = (r1, . . . , rKr) ∈ R, we need to show that any

r′ = (r′
1, . . . , r

′
Kr

) ∈ R
Kr
+ with r′ ≤ r also belongs to R. To this end, let

S∗
1, . . . ,S

∗
Kr

be a feasible transmit strategy that attains r and consider

the alternative transmit strategy p1S
∗
1, . . . ,pKrS

∗
Kr

, where p1, . . . ,pKr is

a set of power allocation coefficients that should belong to

A =

{
(p1, . . . ,pKr):

Kr∑

k=1

pktr(QlkS
∗
k) ≤ ql ∀l

}
(1.22)

15 Nonconvex performance regions can be increased by allowing for time-sharing between
multiple operating points. This approach gives a region that equals the convex hull of
R, but the corresponding resource allocation problems are very complicated and not
considered in this tutorial. The general framework for time-sharing in [39] can however
be combined with the results in this tutorial. We also note that time-sharing can be
viewed as part of the scheduling; see Section 4.7.
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to make the strategy feasible. Obviously, the point r is achieved by

selecting (p∗
1, . . . ,p

∗
Kr

) = (1, . . . ,1). To prove that a given r′ ≤ r also

belongs to R, we need to find (p1, . . . ,pKr) ∈ A that gives this point.

This corresponds to the conditions SINRk = g−1
k (r′

k) ∀k, which can

be formulated as Kr linear equations and solved using the approach

in [205]. Finally, the existence of a (p1, . . . ,pKr) ∈ A for any r′ ≤ r can

be proved using interference functions, see [227, Theorem 3.5].

This means that for any point g ∈ R, all points that give weaker

performance than g are also in R. This property is very natural and

rational. In fact, if a region is not normal it looks very unnormal; see

the illustrations in Figure 1.13 where only (b)–(f) are possible shapes

for a performance region, while (a) is not a simply-connected set (i.e.,

contains holes) and has a strange boundary. Figure 1.13 also illustrates

how the interference coupling and power constraints affect the region:

(b) represents the degenerate case when the user have orthogonal chan-

nels and individual power constraints, while (c)–(f) describe a gradually

increasing coupling between the users. Roughly speaking, R is convex

when the users are weakly coupled and concave under strong coupling,

while practical performance regions are hybrids of these extremes.

Apart from being compact, the performance region can also be

upper bounded by a certain box.

Definition 1.9. A box is denoted [a,b], for some a,b ∈ RKr , and is

the set of all g ∈ RKr such that a ≤ g ≤ b (componentwise inequality).

Lemma 1.3. The performance region R satisfies R ⊆ [0,u], where u =

[u1 . . . uKr ]
T is called the utopia point. The element uk is the optimum

of the single-user optimization problem

maximize
Sk�0N

gk

(
hH

k DkSkD
H
k hk

σ2
k

)

subject to tr(QlkSk) ≤ ql ∀l.

(1.23)

Proof. The single-user problem in (1.23) is achieved from the MOP

in (1.19) by setting Si = 0N for all i �= k. As inter-user interference
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Fig. 1.13 Examples of compact regions with different shapes. Only (b)–(f) are normal and
can thus be performance regions. The outer boundaries of (c), (e), (f) satisfy the conditions
for both weak and strong Pareto optimality, while the horizontal and vertical parts of the
outermost boundaries in (b) and (d) only satisfy weak Pareto optimality.

only can reduce SINRk, (1.23) provides an achievable upper bound on

the performance of MSk and it follows that R ⊆ [0,u].

The utopia point u is the unique solution to (1.19) in degenerate

scenarios (when the optimization decouples and all users can achieve
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Fig. 1.14 Example of a performance region. The utopia point is shown, along with the
single-user points achieved by solving (1.23).

maximal performance simultaneously, see Figure 1.13(b)). In general,

u �∈ R and represents an unattainable upper bound on performance; see

Figure 1.14. Since there is no total order of vectors in R
Kr
+ , we can only

achieve a set of tentative vector solutions to (1.19) which are mutually

unordered. These tentative solutions are all operating points in R that

are not dominated by any other feasible point. These points are called

Pareto optimal and are such that the performance cannot be improved

for any user without deteriorating for at least one other user.

Definition 1.10. A point y ∈ Rn
+ is a strong Pareto optimal point of

a compact normal set T ⊆ Rn
+, if y ∈ T while {y′ ∈ Rn

+ : y′ ≥ y} ∩ T \
{y} = ∅. The set of all strong Pareto optimal points is called the strong

Pareto boundary of T and is denoted ∂T .

In addition, a point y ∈ Rn
+ is a weak Pareto optimal point of a com-

pact normal set T ⊆ Rn
+, if y ∈ T while {y′ ∈ Rn

+ : y′ > y} ∩ T = ∅.

The set of all weak Pareto optimal points is called the weak Pareto

boundary of T and is denoted ∂+T .

This definition distinguishes between (a) the strong Pareto bound-

ary ∂R where the performance cannot be unilaterally improved for any

user and (b) the weak Pareto boundary ∂+R where we might be able

to improve performance for some of the users but not simultaneously

for all users. The strong Pareto boundary can be seen as the proper

definition of the tentative solutions to a MOP, but we will see that

the weak definition has better structural and analytical properties. The
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strong Pareto boundary is always a subset of the weak Pareto boundary:

∂R ⊆ ∂+R. The difference is visualized in Figure 1.13(b),(d), where the

weak Pareto boundary contains the whole outermost boundary (includ-

ing the vertical and horizontal parts) while the strong Pareto boundary

only contains a subset of it. The single-user points [0 . . .0 uk 0 . . .0]T are

always Pareto optimal, but might only satisfy the conditions for weak

Pareto optimality.

Knowing that R is a normal, compact, and contained in [0,u] sim-

plifies the search for weak Pareto optimal points, particularly since

these properties imply that R is simply-connected (i.e., contains no

holes). We have the following result.

Lemma 1.4. The weak Pareto boundary ∂+R of the performance

region R is a compact and simply-connected set.

Proof. The compactness follows from that R is bounded and that the

limit of any sequence of weak Pareto points must be contained in ∂+R
(easily shown by contradiction, see [40, Proposition A.3.4]). ∂+R is

simply-connected if there is a path in the set between any two points

r1,r2 ∈ ∂+R. As R is normal there will always be a path between r1

and r2 that goes through the interior of R, and every point on this

path can be replaced by a dominating weak Pareto point to construct

a Pareto optimal path; thus, ∂+R is simply-connected.

In comparison, the strong Pareto boundary ∂R need not be simply-

connected, but can be a disconnected subset of the weak Pareto bound-

ary. Therefore, it is easier to search for and characterize the weak Pareto

boundary. This is mainly an academic limitation, because ∂R = ∂+R
in most realistic scenarios. The explanation is that there are no truly

orthogonal channels or resources in practice, thus there will always be

some interference leakage that prevents unilateral improvements. As

all properties of ∂+R also hold for ∂R, we sometimes refer to both as

simply the Pareto boundary. We will later describe different algorithms

for solving MOPs and as the Pareto boundary contains all tentative

solutions, searching for Pareto optimal points is always an important

part of such algorithms.
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By the monotonicity of the user performance functions gk(·) on the

channel gains xki(Sk), there is a tight connection between the Pareto

boundary of R and certain parts of the channel gain regions Ωk. Since

the channel gain regions are not normal, we need to make a few defini-

tions before specifying this relationship.

Definition 1.11. A vector x dominates a vector y in direction e ∈
{−1,+1}n, written as x ≥e y, if xiei ≥ yiei for all i = 1, . . . ,n and there

is at least one strict inequality.

Using this terminology, it is possible to describe the part of the

boundary of a compact convex set we are interested in.

Definition 1.12. A point y ∈ Rn
+ is called an upper boundary point

of a compact convex set C ⊆ Rn
+ in direction e ∈ {−1,+1}n if y ∈ C

while the set {y′ ∈ Rn
+ : y′ ≥e y} ⊆ Rn

+ \ C. We denote the set of upper

boundary points in direction e as ∂eC.

An illustration of the definition is shown in Figure 1.15. The upper

boundaries in the three directions e1 = [+1 + 1]T , e2 = [+1 − 1]T , and

e3 = [−1 + 1]T are shown by the arrows. Note that the direction vector

with all components equal to −1 is typically not of interest, as the

Fig. 1.15 Example of a channel gain region with upper boundary in direction e1 = [+1 +
1]T , e2 = [+1 − 1]T , and e3 = [−1 + 1]T .
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corresponding upper boundary is the origin. Also note that the upper

boundary in direction e1 coincides with the usual Pareto boundary.

Lemma 1.5. Suppose the strong Pareto boundary of the performance

region R is achieved by a transmit strategy S1, . . . ,SKr . For each k, the

matrix Sk also achieves the upper boundary of the channel gain region

Ωk in the direction ek = [−1 . . . − 1 + 1 − 1 . . . − 1]T , where only the

kth component is positive.

Proof. The proof works by contradiction. Assume that S1, . . . ,SKr

achieve the strong Pareto boundary of R but there is a user k that

does not achieve the upper boundary of Ωk in direction ek. Then, it is

possible to shift the operating point xk(Sk) in Ωk in the direction of the

kth component without changing the other Kr − 1 components; that

is, we can find x′
k ∈ Ωk with increased channel gain x′

kk > xkk for the

intended user and the same channel gains x′
ki = xki for all other users

i �= k. Since this new x′
k ∈ Ωk there exists a corresponding S′

k which

achieves this point. Using the same set of signal correlation matrices

for all other users but replacing Sk with S′
k leads to improved perfor-

mance of user k and unchanged performance for all other users. This is

a contradiction to the assumption that S1, . . . ,SKr achieved the strong

Pareto boundary of R.

The directions in Lemma 1.5 correspond to the monotonicity of

the user performance functions on the channel gains. The performance

function of user k is monotonically increasing in xkk and monotonically

decreasing in all other channel gains, therefore we want to maximize the

channel gain xkk and minimize all other channel gains. This corresponds

to a direction ek = [−1 . . . − 1 + 1 − 1 . . . − 1]T with [ek]k = 1.

1.5 Basic Properties of Optimal Resource Allocation

Having defined the user performance functions and the concepts of per-

formance region and channel gain regions, we have sufficient structure

to derive two fundamental properties of the optimal multi-objective

resource allocation:
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• Sufficiency of single-stream beamforming;
• Conditions for full power usage.

These optimality properties are derived in this subsection. Taking these

properties into account when solving (1.19) will greatly reduce the

search space for optimal solutions. We will utilize the derived properties

for simplified resource allocation in the remainder of this tutorial.

1.5.1 Sufficiency of Single-Stream Beamforming

The first property is the sufficiency of having signal correlation matri-

ces Sk that are rank one. This might seem intuitive when each user only

has a single (effective) receive antenna and is often assumed in resource

allocation without discussion (see e.g., [59, 263, 264, 280, 308, 329]).

In general, high-rank solutions might be necessary for optimality — it

depends on the type of user performance functions and receive process-

ing that is considered. In this tutorial, we assume single-user detection

and gk(·) of the type in Definition 1.4. We will show that it is sufficient

(but not always necessary) to consider signal correlation matrices with

rank one under these conditions. As the rank equals the number of data

streams, this is called single-stream beamforming. First, we give a toy

example from [18] showing that high-rank solutions sometimes can give

the same performance (but never better) than the rank-one solutions.

Example 1.9 (Rank of Optimal Strategy). Consider a point-to-

point system (Kt = Kr = 1) with N = 2 transmit antennas, the channel

vector h1 = [1 0]T , and per-antenna power constraints

tr

([
1 0

0 0

]
S1

)
≤ 1, tr

([
0 0

0 1

]
S1

)
≤ 1. (1.24)

The MOP in (1.19) reduces to a single-objective resource allocation

problem which is solved optimally by both the rank-one matrix S1 =

[1 0
0 0 ] and by the rank-two matrix S1 = [1 0

0 1 ].

To prove the sufficiency of rank-one signal correlation matrices, we

will make use of some basic results in optimization theory (see Sec-

tion 2.1 for an introduction to this topic). We start with a lemma.
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Lemma 1.6. Consider the optimization problem

maximize
V�0

tr(AV)

subject to tr(BmV) ≤ bm m = 1, . . . ,M,
(1.25)

with an arbitrary Hermitian matrix A, Hermitian matrices Bm � 0

that satisfy
∑M

m=1Bm ≻ 0, and scalars bm ≥ 0 ∀m.

This problem is linear in V (and hence convex) and always has

optimal solutions with rank(V) ≤ 1.

Proof. This is a linear optimization problem in V (see Sec-

tion 2.1). The Lagrangian function is L(V,λ) = −tr(AV) +∑M
m=1 λm (tr(BmV) − bm) and the dual problem is

minimize
λm≥0

M∑

m=1

λmbm

subject to

M∑

m=1

λmBm − A � 0.

(1.26)

Observe that (1.25) and (1.26) are always feasible because V = 0

satisfies all primal constraints and
∑M

m=1Bm ≻ 0 implies dual feasibil-

ity. Therefore, strong duality holds (see Lemma 2.4) and the KKT con-

ditions are necessary and sufficient for any optimal solution to (1.25):

tr(BmV) ≤ bm ∀m, (1.27)

M∑

m=1

λmBm − A � 0, (1.28)

λm (tr(BmV) − bm) = 0 ∀m, (1.29)

tr

(
V

(
M∑

m=1

λmBm − A

))
= 0, (1.30)

V � 0, λm ≥ 0 ∀m. (1.31)
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To prove the sufficiency of rank-one solutions V = vvH , we consider

the following alternative optimization problem

maximize
v

vHAv

subject to vHBmv ≤ bm ∀m.
(1.32)

We want to show that every optimal solution v∗ to (1.32) also

satisfies (1.27)–(1.31) for V = v∗(v∗)H and thus is optimal for (1.25).

Although the cost function in (1.32) is generally nonconvex, the

constraint functions are convex and thus the KKT conditions are nec-

essary for v∗ (see Lemma 2.2). Now, observe that (1.26) is also the dual

problem of (1.32), therefore the feasibility is ensured by the same argu-

ment as above. Furthermore, (1.27) and (1.28) are satisfied by v∗ and

its corresponding Lagrange multipliers µ∗
m. Next, (1.29) follows from

the corresponding complementarity condition µ∗
m(vHBmv − bm) = 0.

Finally, (1.30) follows from multiplying the stationarity condition

of (1.32),
(∑M

m=1 λmBm − A
)
v = 0, with vH from the right-hand

side.

Before we show the sufficiency of rank-one signal correlation matri-

ces for the performance region R, we show the corresponding sufficiency

for the channel gain regions Ω1, . . . ,ΩKr .

Lemma 1.7. All upper boundary points of the channel gain region Ωk

in some arbitrary direction e ∈ {−1,+1}Kr can be achieved by signal

correlation matrices with rank(Sk) ≤ 1.

Proof. Since Ωk is convex and compact, the boundary can be achieved

using the Supporting hyperplane theorem [273, Theorem 1.5] by the

following optimization problem

maximize
Sk�0

Kr∑

i=1

λixki(Sk)

subject to tr(QlkSk) ≤ qlk ∀l.

(1.33)
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The objective function in (1.33) can be rewritten as

Kr∑

i=1

λixki(Sk) =

Kr∑

i=1

λih
H
i CiDkSkD

H
k CH

i hi

=

Kr∑

i=1

λitr(D
H
k CH

i hih
H
i CiDkSk)

= tr

(
Kr∑

i=1

λiD
H
k CH

i hih
H
i CiDk

︸ ︷︷ ︸
Ak

Sk

)
.

(1.34)

This is an optimization problem of the form (1.25) and thus the exis-

tence of solutions with rank(Sk) ≤ 1 follows from Lemma 1.6.

Note that rank(Sk) ≤ 1 implies that the signal correlation matrix Sk

is either rank one or identically zero; Sk = 0N means no transmission.

By Lemma 1.7, the sufficiency of single-stream beamforming follows

immediately for the performance region.

Theorem 1.8. Every point in the performance region R (including

the weak Pareto boundary) can be achieved using single-stream beam-

forming (i.e., rank(Sk) ≤ 1 ∀k).

Proof. Lemma 1.7 shows that the boundary of each channel gain region

Ωk is obtained by Sk with rank(Sk) ≤ 1. Since the strong Pareto bound-

ary of the performance region is achieved by transmit strategies which

achieve also the boundary of the channel gain regions (see Lemma 1.5),

sufficiency of rank(Sk) ≤ 1 follows. To show that also points on the

weak Pareto boundary (and all other points in R) are achievable by

rank-one solutions, we can simply repeat the approach in the proof of

Lemma 1.2 (which showed that R is normal by fixing the beamforming

directions and changing the power allocation).

The implication of Theorem 1.8 is that any operating point in R
(and particularly Pareto optimal points) can be achieved using single-

stream beamforming, thus all tentative solutions to the MOP in (1.19)
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are achievable by Sk = vkv
H
k for some beamforming vectors vk ∈

CN×1 ∀k. Without loss of generality, we can reformulate (1.19) as

maximize
v1,...,vKr

{g1(SINR1), . . . ,gKr(SINRKr)}

subject to SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

|hH
k CkDivi|2

∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

(1.35)

Considering (1.35) instead of (1.19) greatly reduces the search space

for optimal solutions and makes the solution easier to implement in

practice, because vector coding or successive interference cancelation

are required if rank(Sk) > 1 [89]. The problem formulation in (1.35)

will be used as the starting point in the remainder of this tutorial.

1.5.2 Conditions for Full Power Usage

If only the total transmit power over all base stations is constrained, it

is trivial to prove that any Pareto optimal solution to (1.19) and (1.35)

will use all available power. Under general power constraints, it may be

better not to use full power at each transmitter or antenna; there is a

balance between increasing channel gains of useful signals and limiting

the interference. This is illustrated by the following toy example, which

is based on [18].

Example 1.10(Limited Power Usage). Consider a two-user inter-

ference channel with single-antenna base stations (Kt = Kr = 2, N1 =

N2 = 1) and the channel vectors h1 = [1
√

1/10]T and h2 = [
√

1/2 1]T .

BSj transmits to MSj and coordinates interference to both users, mean-

ing that D1 = [1 0
0 0 ], D2 = [0 0

0 1 ], and C1 = C2 = I2. The per-transmitter

power is constrained as tr(DjSj) ≤ 20 ∀j.

The single-user point of MS1 is achieved by S1 = 20D1 and S2 = 02,

while the corresponding point for MS2 is achieved by S1 = 02 and S2 =

20D2. Observe that only the base station associated with the active user

is satisfying its power constraint with equality.
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Furthermore, the operating point where both users have exactly the

same SINR is achieved by S1 = 10D1 and S2 = 20D2. This transmit

strategy gives SINR1 = SINR2 = 10
3 . Observe that only BS2 uses full

power and if BS1 would increase its power then SINR2 decreases. This

shows that this is a strong Pareto optimal point.

In principle, knowing that a certain constraint is active (i.e., satisfied

with equality at the optimal solution) removes one dimension from the

resource allocation problem. The following theorem provides conditions

for when full power should be used in general multi-cell systems.

Theorem 1.9. The following holds for the multi-objective resource

allocation problems (1.19) and (1.35):

• Every weak Pareto optimal point can be achieved by a trans-

mit strategy that satisfies at least one power constraint with

equality.
• If only the total power per transmitter is constrained, then

every strong Pareto optimal point requires that BSj uses full

power if Dj �= ∅ and the channels hjk for all users k ∈ Cj are

linearly independent.

Proof. If ql = 0 for some l, the first part of the theorem is always satis-

fied. Now assume that ql > 0 ∀l. Let S∗
1, . . . ,S

∗
Kr

be a transmit strategy

that achieves the weak Pareto boundary and assume that all power

constraints in (1.4) are inactive. We define

ς = max
1≤l≤L

Kr∑

k=1

tr(QlkS
∗
k)

ql
(1.36)

and note that ς > 1 since all constraints are inactive. The alternative

strategy ςS∗
1, . . . , ςS

∗
Kr

will satisfy all constraints and at least one of

them will be active. The performance is not decreased since ς can be

seen as decreasing the relative noise power in each SINR in (1.11).

Thus, there always exists a solution with at least one active constraint.
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The second part is proved by contradiction. Suppose S̃1, . . . , S̃Kr

achieves a strong Pareto optimal point and that BSj is not using full

power (but satisfies the conditions in the theorem); that is,

Kr∑

k=1

tr
(
Qper-BS

jk S̃k

)
< qj (1.37)

where Qper-BS
jk was defined in (1.10). The assumption of linear indepen-

dence means that it exists k ∈ Dj with

hjk �∈ span


 ⋃

i∈Cj\{k}
{hji}


 . (1.38)

Therefore, it exists a unit-norm vector v �= 0Nj×1 such that hH
jkv �= 0

and hH
jiv = 0 for all i ∈ Cj \ {k} (i.e., a zero-forcing vector). Then, the

alternative signal correlation matrix Sk = S̃k + ṽṽH with

ṽ =


01×N1+···+Nj−1

√
qj −

∑

k

tr(Qper-BS
jk S̃k)v

T 01×Nj+1+···+×NKt




T

(1.39)

will strictly increase the signal power and cause exactly the same inter-

user interference as S̃k. As gk(·) is strictly increasing we have unilater-

ally improved the performance of MSk which is a contradiction to the

strong Pareto optimality.

The first implication from Theorem 1.9 is that at least one power

constraint should be active at any Pareto optimal point. Second,

observe that the linear independence of user channels is a very mild

condition when |Cj | ≤ Nj (e.g., satisfied with probability one when the

channel realizations are drawn from a stochastic distribution with non-

singular covariance matrices). Roughly speaking, the fewer users that

a base station coordinates interference to, the more power is used at

this base station at strong Pareto optimal points. The condition on

linear independence can be relaxed to the existence of (at least) one
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user in Dj with a channel linearly independent to all other users in Cj

that are actually scheduled (i.e., receive nonzero signal power).

1.6 Subjective Solutions to Resource Allocation

Recall that the Pareto boundary of the performance region contains all

tentative solutions to the MOP in (1.35), each representing a certain

tradeoff between the users’ performance. Whenever the utopia point

is outside of the performance region, there is no objectively optimal

resource allocation — there are multiple strong Pareto optimal points

and none of these are distinctly better than the others. To actually com-

pare the merits of different Pareto optimal points, the system designer

(or decision maker) needs to bring in its own subjective perspective on

system utility. Different methods to obtain subjectively optimal solu-

tions are outlined in this section and will be the subject of the subse-

quent sections of this tutorial.

A common approach is to let the system designer describe its pref-

erences as an aggregate system utility function f : R → R that takes

any point in R as input and produces a scalar value describing how

preferable this point is (large output means high preference).

Definition 1.13(System Utility Function). A system utility func-

tion is denoted f(g1(SINR1), . . . ,gKr(SINRKr)) and is Lipschitz contin-

uous16 and monotonically increasing17 on [0,u].

This definition incorporates most system utility functions that

appear in literature. In fact, many frequently used functions are strictly

increasing functions, as seen in the following example [130, 168].

Example 1.11 (System Utility Functions). For a given operat-

ing point g = (g1, . . . ,gKr) ∈ R, the following system utility functions

16 A function f : [a,b] → R is Lipschitz continuous with Lipschitz constant Lf if |f(g) −
f(g′)| ≤ Lf ‖g − g′‖1 for all g,g′ ∈ [a,b].

17 A function f : Rn → R is monotonically increasing if for any g,g′ ∈ Rn such that g ≥ g′

it follows that f(g) ≥ f(g′). The function is strictly monotonically increasing if for any
g,g′′ ∈ Rn such that g > g′′, it also follows that f(g) > f(g′′).
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satisfy18 Definition 1.13:

• Weighted arithmetic mean: f(g) =
∑

k wkgk

(also known as weighted sum utility);
• Weighted geometric mean: f(g) =

∏
k gwk

k

(also known as weighted proportional fairness [130]);

• Weighted harmonic mean: f(g) =
(∑

k
wk

gk

)−1
;

• Weighted max-min fairness: f(g) = mink
gk

wk

(also known as weighted worst-user performance);
• Weighted compromise: f(g) = −(

∑
k(wk(r

∗
k − gk))

p)1/p

(for some reference point r∗ ∈ Rn
+\R and 1 ≤ p ≤ ∞).

The weighting factors wk ≥ 0 can be taken to have unit sum,∑Kr

k=1 wk = 1, without loss of generality. In case of equal weighting

factors, the arithmetic mean maximizes the aggregate system utility∑
k gk, while the geometric mean, harmonic mean, and max-min fair-

ness gradually sacrifice aggregate utility to achieve more fairness among

the users. For a given type of system utility function, the weighting fac-

tors can compensate for heterogeneous user channel conditions, handle

delay constraints, enforce subscription profiles, etc.

There are other system utility functions, for example, the α-

proportional fairness in [179] that bridges the gap between proportional

fairness and max-min fairness by varying a parameter (the arithmetic

and harmonic means are also represented by certain parameter values).

Weighted utilities for best-effort users are given in [112].

Based on a system utility function, the multi-objective optimiza-

tion problem in (1.35) can be converted (called scalarization) to the

18 Every continuously differentiable function is locally Lipschitz continuous, but some func-
tions are not globally Lipschitz since the first derivative becomes infinite when approach-
ing the origin. The weighted geometric mean

∏
k g

wk
k

has such problems, but this can
be resolved by optimizing

∏
k g

cwk
k

instead where c is selected to make cwk > 1∀k. The
weighted harmonic mean also needs additional treatment.
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following single-objective optimization problem

maximize
v1,...,vKr

f (g1(SINR1), . . . ,gKr(SINRKr))

subject to SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

|hH
k CkDivi|2

∀k, (1.40)

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

This problem has a single (nonunique) solution, because the system

utility function resolves the conflicting interests in the MOP. The selec-

tion of f(·) is therefore very important and should be based on a pro-

found knowledge of R — the alternative of just selecting f(·) out of

the blue corresponds to making decisions without knowing the alter-

natives. Two of the main objectives of this tutorial is to characterize

the performance region and develop a framework for solving any single-

objective resource allocation problem of the form (1.40). The latter can

be viewed as a network utility maximization [40, 53, 131, 194], thus we

can utilize many of the results on distributed optimization that has

been developed under this umbrella; see Section 4.2.

Remark 1.2 (All Utility Functions are Subjective). Observe

that all utility functions are subjective by nature, because each func-

tion imposes a certain order of vectors in the performance region and in

R
Kr
+ . Although this transforms the resource allocation into the tractable

form (1.40) where there is a single solution, this is only because all other

Pareto optimal points are discarded by the choice of f(·). Therefore,

we stress that the particular choice of f(·) should always be clearly

motivated in research papers and not considered as given beforehand.

The basic connection between R and f(·) is given by the following

important result.

Lemma 1.10. If f(·) is an increasing function, then the global

optimum to (1.40) is attained on ∂+R. In addition, for any g̃ ∈ ∂+R
there exists a (strictly) increasing f(·) for which (1.40) has g̃ as global

optimum.
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Proof. For the first statement, assume that ḡ �∈ ∂+R is a global opti-

mum to (1.40). By the definition of the weak Pareto boundary and

using that f(·) is increasing, there exist a point g′ ∈ ∂+R with g′ ≥ ḡ.

This point satisfies f(g′) ≥ f(ḡ) and therefore also solves (1.40).

The second statement is proved using the weighted max-min fairness

function f(g) = min{k: g̃k>0} gk/g̃k for given g̃ = (g̃1, . . . , g̃Kr) ∈ ∂+R.

Obviously, maxg∈R f(g) ≥ f(g̃) = 1 and assume for the purpose of con-

tradiction that there exists g∗ ∈ R that achieves strict inequality. This

means that g∗ > g̃ and thus g̃ cannot be a weak Pareto optimal point

since it requires {y′ ∈ Rn
+ : y′ > g̃} ∩ R �= ∅ (see Definition 1.10). This

contradiction yields maxg∈R f(g) = f(g̃) and thus g̃ is the (nonunique)

global optimum.

Based on this lemma, we only need to search the weak Pareto bound-

ary of R to solve any resource allocation problem of the form (1.40).

Unfortunately, this is not as simple as it seems; we will show in Section 2

that (1.40) can only be solved in an efficient manner in certain special

cases (e.g., depending on f(·), the number of transmit antennas, and

the structure of the power constraints).

Similar to Lemma 1.10, there is an important connection

between (1.40) and the channel gain regions.

Corollary 1.11. Suppose the solution to the optimization problem

in (1.40) is achieved by signal correlation matrices S1, . . . ,SKr (with

rank(Sk) ≤ 1∀k). Each Sk achieves a point on the upper boundary of

the corresponding channel gain region Ωk in direction ek for all k.

Proof. The corollary follows from the monotonicity of f(·), Lemma 1.5,

and Lemma 1.10.

It is important to note that the set of transmit strategies that

achieve points on the upper boundaries of the channel gain regions

is much larger than the set of transmit strategies that achieves oper-

ating points on the Pareto boundary of R, which again is much larger

than the set of transmit strategies that maximizes f(·) in (1.40). The

reason is that the upper boundary of each of the Kr channel gain
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regions has dimension Kr − 1 whereas the Pareto boundary of R has

only dimension Kr − 1.

1.6.1 Four Methods to Solve Resource Allocation Problems

We have shown how scalarization converts the MOP in (1.35) into a

single-objective problem (1.40) with a single solution. There are differ-

ent ways of utilizing scalarization for finding a Pareto optimal point

that makes the system designer satisfied. The preferable approach

depends on how well the system designer can specify its subjective

views in mathematical terms, and whether the system designer is tak-

ing an active or passive part in the optimization. The different methods

can be categorized as follows [38, 324]:

(1) No-preference methods are applied when the system designer

has no subjective preference on the final solution. To empha-

size neutrality, (1.40) can be solved using a weighted system

utility function (see Example 1.11) where the weighting fac-

tors are used for normalization (i.e., using the utopia point

for weighting as wk = uk∑Kr
i=1 ui

).

(2) A priori methods are used when the system designer has

a clear invariable goal, corresponding to a certain f(·). For

instance, an optimistic reference point r∗ might be given in

advance and the optimal solution minimizes the distance to

this point as f(g) = −‖r∗ − g‖p in the Lp-norm (i.e., a com-

promise problem). Maximizing the sum utility is another

example. Any prior knowledge of the performance region and

system-wide preference on the final solution should be taken

into account when selecting f(·).
(3) A posteriori methods generate a set of sample points on the

Pareto boundary (the whole set is infinite and nontrivial to

characterize) and let the system designer select among these

points. Based on Lemma 1.10, sample points are achieved by

solving (1.40) for a set of different system utility functions.

For example, a certain type of function can be selected from

Example 1.11 and the weighting factors are then varied over
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a grid. Keep in mind that the whole Pareto boundary cannot

be reached by all types of functions (see Remark 1.3).

(4) Interactive methods can be viewed as an iterative combi-

nation of a priori and a posteriori methods, where each

iteration generates new sample points on the Pareto bound-

ary based on previous suggestions from the system designer.

The advantage of this approach is that the preference of

the system designer can be modified as the shape of Pareto

boundary (i.e., the different alternatives) is learned, thus giv-

ing a kind of psychological convergence to the final solution.

All of these methods involve one or multiple scalarizations of the

MOP into SOPs of the form (1.40). Section 2 will therefore be devoted

to solving SOP for any choice of f(·). Section 3 derives structure on the

optimal transmit strategies and parameterizes the Pareto boundary.

Based on the knowledge and experience from these sections, we will

return to the aforementioned four methods in Section 3.5. We will then

shed light on how these methods can be formulated and implemented

efficiently for practical resource allocation.

Remark 1.3 (Shortcomings of Weighted Arithmetic Mean).

It has become a common practice to optimize the weighted arithmetic

mean (e.g., the weighted sum information rate) in the area of commu-

nications. This could make sense when R is convex, which holds for

the ideal capacity region but not necessarily in other scenarios. Even if

all possible weights are considered, the weighted arithmetic mean only

finds Pareto optimal points that coincide with the convex hull of R;

this is illustrated in Figure 1.16(a). The weights are often viewed as the

relative priority of different users, but the coupling is complicated and

can in general be misleading. First, the notion of priority makes sense

in a local area of the performance region, but the global interpretation

of the weighting is not easily characterized [216]. This is particularly

evident for nonconvex performance regions, because a small perturba-

tion in the weights can greatly affect the optimal operating point; see

Figure 1.16(b). Second, the physical setup makes it easier to simultane-

ously serve spatially separated users (rather than co-located users) and
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Fig. 1.16 Example of maximization of the weighted arithmetic mean w1g1 + w2g2 for a
nonconvex performance region. The weights w1,w2 define a line (or hyperplane of dimension
Kr − 1) that is moved away from the origin until it leaves the performance region; the final
intersection with the Pareto boundary gives the optimal operating point. (a) shows that
certain points of the Pareto boundary can never be attained by maximizing a weighted
arithmetic mean; (b) shows that a small perturbation in the weights can move the optimal
solution from one side of the gap to the other side (i.e., from r3 to r4).

thus promotes unbalanced allocation of resources; see further examples

on inter-criteria correlation in [258]. Third, the linearity of f(·) implic-

itly assumes that degrading the performance of one user can be fully

compensated by improving for other users, which might not be rea-

sonable in practice [38]. In fact, the law of diminishing marginal utility

suggests that f(·) should be nonlinear since users become increasingly

satisfied with their current performance and less interested in further

improvements [223]. Nevertheless, maximizing the weighted arithmetic

mean guarantees Pareto optimality and has a simple geometric
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interpretation (see Figure 1.16), but the system designer should be

aware of the limitations and select the weights carefully.

Remark 1.4 (Game Theoretic Approaches). Game theory pro-

vides an alternative approach to MOPs where the users are seen as

players that compete for resources. The game can be formulated in a

variety of ways, but the Pareto boundary describes the efficient out-

comes for any cooperative game. This approach makes particular sense

for ad hoc networks in unlicensed bands and cognitive radio, where

there is no joint decision-making and users are indeed competing for

spectrum. We refer to [68, 140, 171, 230] and references therein for

further details.

1.7 Numerical Examples

In this section, we provide a numerical example that illustrates var-

ious concepts defined in this section. We consider a simple scenario

with Kr = 2 users, N = 3 transmit antennas, and global joint trans-

mission (as in Example 1.3). The channel vectors are generated as

hk ∼ CN (0,IN ) (i.e., uncorrelated Rayleigh fading) and we assume per-

antenna power constraints with ql = 10 (i.e., 10 dBm). The average

single-user SNR
E{ql‖hk‖2

2}
σ2

k

is qlN for User 1 and ql
N
4 for User 2, cre-

ating an asymmetry that will highlight properties of different system

utility functions.

Figure 1.17 shows the performance regions for a single random

channel realization for different user performance functions. In Fig-

ure 1.17(a), the additive inverse of the MSE is considered (i.e.,

gk(SINRk) = SINRk

1+SINRk
to make gk(0) = 0), but the figure axes show

MSEs to enhance viewing. The information rate gk(SINRk) = log2(1 +

SINRk) is the user performance function in Figure 1.17(b). In both

cases, the optimal operating points are shown for the five functions in

Example 1.11: arithmetic mean (sum utility), geometric mean (propor-

tional fairness), harmonic mean, max-min fairness, and distance to the

utopia point. The weighting factors are w1 = w2 = 1
2 .
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Fig. 1.17 Performance regions for a single channel realizations for different user performance
functions: (a) the inverse MSE; and (b) information rate. The Pareto boundary is indicated
along with the optimal operating points for different system utility functions.

It is clear that the optimal operating points for these system utility

functions are on the Pareto boundary (confirming Lemma 1.10), but at

quite different places. As noted in Example 1.11, the arithmetic mean

only cares about the aggregate system utility and ignores which user
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who gets the performance, while max-min fairness makes sure that

all users get exactly the same performance. The geometric mean and

harmonic mean are in between these extremes, taking both aggregate

system utility and user fairness into account. Searching for the point

with the smallest Euclidean distance to the utopia point is similar to

maximizing the arithmetic mean. By changing the weighting factors in

Example 1.11, the optimal point for a certain type of system utility

function can be moved around on the Pareto boundary; in fact, the

Pareto boundaries in Figure 1.17 were generated by solving weighted

max-min fairness problems over a fine grid of weighting factors.

1.8 Summary and Outline

Coordinated multi-cell multi-antenna communication provides an

opportunity to increase the system-wide spectral efficiency, as

compared to traditional multi-cell setups built on strict interference

avoidance. There are many similarities between the single-cell and

multi-cell downlink, which can be utilized to bring insights from one

case to the other. However, there are also important differences that

need to be modeled and managed properly. In this tutorial, we defined a

general system model based on dynamic cooperation clusters and arbi-

trary linear power constraints. The main idea behind such clusters is

that each base station coordinates interference to exactly those users

whom it causes non-negligible interference, while only sending data

to a subset of them. As exemplified in this section, this framework

can jointly describe many important multi-cell scenarios, including the

Wyner model, interference channel, coordinated beamforming, global

joint transmission, cognitive radio, and spectrum sharing.

The user performance depends on functions of the SINRs (e.g., infor-

mation rate, MSE, or error probability), which in turn depends on the

selection of signal correlation matrices. Each signal correlation matrix

will generally affect all users, which can be illustrated by channel gain

regions. These regions were proved to be convex and compact, and the

upper boundaries in different directions represent maximization of the

received signal power at different users. The joint selection of signal cor-

relation matrices is called resource allocation and can be formulated as
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a multi-objective optimization problem. There is not a single solution

to such a problem, but many possible tradeoffs between maximizing

performance for individual users and maximizing the aggregate utility

of the whole system. This tradeoff is illustrated by the performance

region R, which was proved to be compact and normal. The Pareto

boundary of R contains all resource allocations that can be regarded

optimal. Furthermore, it was shown that all Pareto optimal points can

be achieved using single-stream beamforming and optimality conditions

for using full transmit power was derived.

To solve the multi-objective resource allocation problem it is nec-

essary to conclude which Pareto optimal points that are preferable for

the system. There are different categories of methods and most of them

include the selection of a system utility function that assigns a value to

each point in the performance region indicating the subjective prefer-

ence of the system designer. This function can, for example, be the sum

utility or max-min fairness. This scalarizes the multi-objective problem

to a single-objective problem with a single solution.

1.8.1 Outline

Section 2 shows how to solve any single-objective optimization problem.

It becomes clear that some problem formulations enable practically

efficient algorithms while others can only be optimally solved for offline

benchmarking. Section 3 reduces the search-space by parameterizing

the optimal transmit strategies and thereby characterizing the Pareto

boundary. Section 3 also provides guidelines for formulating and solving

multi-objective resource allocation problem in computationally efficient

manners.

Finally, Section 4 generalizes the system model to include practi-

cal nonidealities, such as CSI uncertainty, hardware impairments, and

limited backhaul signaling. It will be shown which results on optimal

resource allocation in Sections 2 and 3 that can be easily generalized,

and which become intractable. The design of dynamic cooperation

clusters and multi-cell scheduling is also discussed. Furthermore. we

describe extensions to multi-cast transmission, multi-carrier systems,

multi-antenna users, cognitive radio, and physical layer security.
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Optimal Single-Objective Resource Allocation

The purpose of this section is to provide a systematic framework for

solving single-objective resource allocation problems, under the general

multi-cell system model defined in Section 1. Recall that this optimiza-

tion problem was formulated in (1.35) as

maximize
v1,...,vKr

f (g1(SINR1), . . . ,gKr(SINRKr))

subject to SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

|hH
k CkDivi|2

∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

(2.1)

The user performance functions gk(·) are continuous and strictly mono-

tonically increasing, while the system utility function f(·) is Lipschitz

continuous and monotonically increasing.

In the process of finding the globally optimal solution to (2.1),

Section 2.1 provides some basic results from optimization theory,

including classification of optimization problems and Lagrange mul-

tiplier theory. Next, Section 2.2 presents some important special cases

172
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when (2.1) is convex and can be solved efficiently. Section 2.3 describes

two systematic algorithms for solving any problem of the form in (2.1)

with guaranteed convergence to the global optimum. These itera-

tive algorithms originate from the monotonic optimization literature

in [218, 274, 275] and utilize the special cases in Section 2.2 to achieve

efficient subproblems. Finally, Section 2.4 illustrates the large dif-

ferences in computational complexity for solving different instances

of (2.1). Matlab code for some of the algorithms developed in this

section is available for download in [19].

2.1 Introduction to Single-Objective Optimization Theory

This section reviews some basic terminology and results in optimization

theory, and exemplify their impact on the resource allocation problem

in (2.1). These results are utilized throughout of this tutorial.

Consider a single-objective optimization problem (SOP) that can be

expressed as

minimize
x

f0(x)

subject to x ∈ X ,
(2.2)

where x ∈ Rn is called the optimization variable and belongs to the

closed feasible set X . The feasible set is a subset of some box [a,b] ⊆ Rn

that we assume to be compact. The function f0 : Rn → R is the cost

function and is assumed to be continuously differentiable over [a,b].

A feasible vector x∗ ∈ X is called an optimal solution to (2.2) if it

provides the smallest value (called the optimal value), f0(x
∗), on the

cost function among all x ∈ X . If the feasible set is empty (i.e., X = ∅),

the optimal value is conventionally set to +∞.

To enable analysis and numerical computations, it is often more

convenient to write the SOP on standard form as

minimize
x

f0(x)

subject to fm(x) ≤ 0 m = 1, . . . ,M,
(2.3)

where the M functions fm : Rn → R are the constraint functions. Any

constrained SOP can be rewritten on standard form [37] (but the
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dimension of x might change) and (2.3) is equivalent to (2.2) if we set

X =
{
x ∈ Rn: fm(x) ≤ 0 m = 1, . . . ,M

}
. (2.4)

Remark 2.1(Maximization). The SOP on standard form considers

minimization of a cost function f0, but this is equivalent to maximiza-

tion of the additive inverse −f0 under identical constraints.

Example 2.1 (Resource Allocation on Standard Form). The

resource allocation problem in (2.1) can be expressed as

minimize
g

− f(g)

subject to g ∈ R
(2.5)

where the optimization variable g = [g1(SINR1) . . . gKr(SINRKr)]
T rep-

resents the user performance, −f(g) is the cost function, and the per-

formance region R equals the feasible set. This formulation shows that

resource allocation means searching R for the vector that optimizes

system utility.

To achieve a formulation on standard form, denote the concatena-

tion of all beamforming vectors as v = [vT
1 . . . vT

Kr
]T ∈ CNKr and let

x =
[

ℜ(v)
ℑ(v)

]
be the optimization variable. The cost function is f0(x) =

−f (g1(SINR1), . . . ,gKr(SINRKr)) and observe that SINRk is a function

of x. The constraints are given by fl(x) = xH
[

ℜ(Ql) −ℑ(Ql)
ℑ(Ql) ℜ(Ql)

]
x − ql for

l = 1, . . . ,L, where Ql = diag(Ql1, . . . ,QlKr
).

2.1.1 Classification and Computational Complexity

The standard form in (2.3) provides a compact way of representing any

SOP, but additional information is required to analyze the problem and

devise suitable numerical algorithms. Fortunately, it is not necessary

to build the analysis from scratch for any set of cost function and

constraint functions, but there are some important classes of problems

where certain numerical algorithms can be applied to solve any instance

of the class [10, 12, 37, 274]. Some important classes are now defined.
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Definition 2.1. A SOP on standard form is called a

• linear problem if f0, . . . ,fM are linear/affine functions.1 The

feasible set X becomes a convex polytope in Rn.
• convex problem if f0, . . . ,fM are convex functions.2 The fea-

sible set X becomes a convex set in Rn.
• quasi-convex problem if f0, . . . ,fM are quasi-convex func-

tions.3 The feasible set X becomes a convex set in Rn.
• monotonic problem if f0, . . . ,fM are monotonic functions (any

combination of increasing and decreasing functions). The fea-

sible set X becomes a mutually normal set.4

These four classes represent successively more general conditions:

every linear problem is also convex, every convex problem is also

quasi-convex, and every quasi-convex problem is also monotonic.5 This

relationship is illustrated in Figure 2.1. Practical optimization problems

could be difficult to classify in this way and reformulations are some-

times necessary to reveal a hidden underlying structure. The authors

of [196] note that there is no systematic way of identifying and extract-

ing an underlying structure, but it is rather an art that includes making

good changes of variables and relaxations. Examples of such reformu-

lations are found in [11, 29, 167, 168, 296].

Most optimization problems have no closed-form solutions, but can

still be solved numerically (to any accuracy ε > 0 on the optimal value).

1 A function fm : Rn → R is called affine on [a,b] if for any x1,x2 ∈ [a,b] and t ∈ [0,1],
fm(tx1 + (1 − t)x2) = tfm(x1) + (1 − t)fm(x2).

2 A function fm : Rn → R is called convex on [a,b] if for any x1,x2 ∈ [a,b] and t ∈ [0,1],
fm(tx1 + (1 − t)x2) ≤ tfm(x1) + (1 − t)fm(x2).

3 A function fm : Rn → R is called quasi-convex on [a,b] if for any x1,x2 ∈ [a,b] and t ∈
[0,1], fm(tx1 + (1 − t)x2) ≤ max(fm(x1),fm(x2)).

4 A set S is mutually normal on [a,b] if it can be written as S = T1 ∩ ([a,b]\T2) for two
normal sets T1,T2 on [a,b]. The relative complement [a,b]\T2 is called a conormal set.

5 Quasi-convex functions are not necessarily monotonic, thus it is not trivial to see that
any quasi-convex problem is also a monotonic problem. However, a quasi-convex function
can be written as the difference of two monotonically increasing functions [275], which is
rather straightforward to rewrite as a monotonic problem on standard form; see [274].
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Fig. 2.1 Classification of single-objective optimization problems in Definition 2.1. Linear,
convex, quasi-convex, and monotonic problems have successively more general conditions
on the functions f0, . . . ,fM .

Classification of a problem enables the use of numerical algorithms

designed for this class. For example, linear problems can be solved very

efficiently by the simplex method [136]. This method has an average-

case computational complexity that only grows polynomially with the

problem size (e.g., the number of variables n and number of con-

straints M), but the worst-case complexity is exponential. Interior-

point methods can be applied to both linear and convex problems with

a polynomial worst-case complexity (at least under mild conditions such

as self-concordance [37]). General-purpose implementations of interior-

point methods are available in SeDuMi [256] and SDPT3 [271]. The use

of these implementations can be simplified by the high-level model-

ing languages CVX [95] and Yalmip [161]. These implementations are

particularly good at solving convex problems with second-order cone

constraints [160] and semi-definite constraints, whereof the former is

particularly important in this section.

Example 2.2 (Second-Order Cone Constraint). A second-order

cone constraint is given by

fm(x) = ‖Amx + bm‖2 + cT
mx + dm (2.6)

and is convex for any positive integer nm and parameters Am ∈ Rnm×n,

bm ∈ Rnm , cm ∈ Rn, and dm ∈ R.



2.1 Introduction to Single-Objective Optimization Theory 177

The power constraints for the resource allocation problem in (2.1)

can be written as second-order cones

fl(x) =

∥∥∥∥∥

[ℜ(Ql) −ℑ(Ql)

ℑ(Ql) ℜ(Ql)

]1/2

x

∥∥∥∥∥
2

− √
ql (2.7)

for the optimization variable x =
[

ℜ(v)
ℑ(v)

]
(see Example 2.1).

It is important to differentiate between globally optimal points x∗

(minimizing the cost in X ) and locally optimal points that provide the

lowest cost among the feasible points in their immediate surroundings.6

As noted by Rockafellar in [213], there is a great watershed between

convex problems and nonconvex problems; every locally optimal solu-

tion to a convex problem is also globally optimal, while this is not the

case for general nonconvex problems [37].7 Therefore, the entire feasible

set X basically needs to be searched when solving nonconvex problems,

which corresponds to a complexity that grows exponentially with the

problem size. Practical algorithms for nonconvex problems are typi-

cally designed to only search for locally optimal points, which might

be achieved with manageable complexity.

In terms of complexity, quasi-convex problems actually belong to

category of convex problems, because these can be solved by a limited

sequence of convex subproblems [37, Subsection 4.2.5]. General mono-

tonic problems have however exponential worst-case complexity, but we

can avoid searching the entire feasible set by utilizing the monotonicity;

if f0 is monotonically decreasing and x̄ is found to be a feasible point,

then any x ≤ x̄ provides higher cost and can be immediately discarded.

The area of monotonic optimization is relatively new, although mono-

tonicity constraints (e.g., free disposability) have appeared in economi-

cal applications for a long time [192]. In the early 2000s, Tuy et al. pro-

posed two iterative algorithms that utilize monotonicity when solving

6 Formally, a point x̄ is called locally optimal if there exist ǫ > 0 such that f0(x̄) ≤ f0(x)
for all x ∈ X satisfying ‖x̄ − x‖2 < ǫ.

7 In addition, infeasibility of convex problems is easily detected (e.g., using the dual function
defined in Subsection 2.1.2), while infeasibility might be difficult to detect for general non-
convex problems [167]. The resource allocation problem in (2.1) fortunately has second-
order cone constraints and will (almost) always be feasible.
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monotonic problems: the polyblock outer approximation (PA) algo-

rithm in [218, 274] and the branch-reduce-and-bound (BRB) algorithm

in [275]. These algorithms have exponential worst-case complexity, but

provide a structured approach that (at least) can solve small problems.

This section will show that the multi-cell resource allocation prob-

lem in (2.1) is linear, convex, quasi-convex, or monotonic depending on

the scenario. As convex problems are easily implemented and solved

using general-purpose implementations of interior-point methods (as

mentioned earlier), for each scenario we either show how to reformu-

late (2.1) into a convex problem or give algorithms that solve it as a

sequence of convex problems. To this end, we first review some basic

results on duality, bounding of the optimal value, and necessary (and

sometimes sufficient) conditions on the optimal solution.

Remark 2.2 (Complex-Valued Optimization Variables). The

literature on optimization theory usually considers real-valued opti-

mization variables x, but most results can be readily extended to

complex-valued variables x ∈ Cn if the cost and constraint func-

tions are defined as fm : Cn → R for m = 0, . . . ,M . Observe that any

complex-valued scalar c can be described by the two real-valued

scalars ℜ(c),ℑ(c), thus problems with complex-valued variables can

be rewritten on standard form, for example using the rule xHAx =[
ℜ(x)
ℑ(x)

]H [ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

][
ℜ(x)
ℑ(x)

]
for Hermitian matrices A ∈ Cn×n. How-

ever, such reformulations are often unnecessary because the definitions

of linear, convex, and quasi-convex problems (see Definition 2.1) are

applicable also for complex-valued variables. The modeling languages

CVX and Yalmip also handle such variables.

2.1.2 Lagrange Multiplier Theory

Lagrange multiplier theory provides useful tools to analyze, bound, and

solve optimization problems on standard form. In particular, it gives

optimality conditions for identifying potential solutions to constrained

optimization problems. These conditions generalize a well-known result

in unconstrained optimization, namely that the global minimum x̄ of
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f(x) satisfies ∇f(x̄) = 0. This subsection reviews concepts and results

that are utilized in this tutorial, while further details and proofs are

available in [37, Chapter 5].

Definition 2.2 (Lagrangian). The Lagrangian function L : [a,b] ×
RM → R associated with (2.3) is

L(x,λ) = f0(x) +

M∑

m=1

λmfm(x). (2.8)

The Lagrange multiplier λm is associated with the mth constraint and

the vector λ = [λ1 . . . λM ]T is the Lagrange multiplier vector for (2.3).

The Lagrange dual function h : RM → R is the minimum value of

the Lagrangian function over x,

h(λ) = inf
x∈[a,b]

L(x,λ). (2.9)

The idea behind the Lagrangian function is to augment the cost

function f0(x) with the constraints, such that constraint violations are

penalized with an increased cost. Since the constraints are to be ful-

filled, the simplest approach would be to let the cost become infinite

when outside the feasible set. Such hard penalization stands in con-

trast to the soft penalization in L(x,λ), where a constraint violation is

weighted linearly by its corresponding Lagrange multiplier.

Observe that the dual function is the pointwise infimum of a family

of affine functions of λ, thus it is concave even if (2.3) is a noncon-

vex problem. On the other hand, it might be difficult to compute the

infimum, which is necessary to explicitly derive the dual function.

The dual function provides a bound on the optimal value.

Lemma 2.1. The dual function yields lower bounds on the optimal

value of (2.3). For any λ ≥ 0 we have

h(λ) ≤ f0(x
∗). (2.10)
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Proof. Based on [37, Subsection 5.1.3], suppose x̄ is a feasible vector

for (2.3) (i.e., fm(x̄) ≤ 0 ∀m) and observe that
∑M

m=1 λmfm(x) ≤ 0, for

any λ ≥ 0, since all terms are nonpositive. As a result,

h(λ) = inf
x∈[a,b]

L(x,λ) ≤ L(x̄,λ) ≤ f0(x̄) (2.11)

for all feasible points x̄ ∈ [a,b], including the optimal solutions.

Lemma 2.1 provides a lower bound on the optimal solution of (2.3)

that holds for any feasible choice of Lagrange multipliers, thus the

closest lower bound is obtained by maximizing the lower bound.

Definition 2.3 (Lagrange Dual Problem). The Lagrange dual

problem associated with (2.3) is

maximize
λ

h(λ)

subject to λ ≥ 0.
(2.12)

In this context, the original problem in (2.3) is called the primal prob-

lem. The optimal vector of the dual problem is denoted λ∗.

Interestingly, the Lagrange dual problem in (2.12) is always a convex

optimization problem, since the objective to be maximized is concave

and the constraint is convex. This is independent of whether the primal

problem in (2.3) is convex or not. On the other hand, the dual function

is not necessarily differentiable.

2.1.3 Optimality Conditions and Strong Duality

There are many important connections between the optimal solution

x∗ of the primal problem and the Lagrange multiplier vector λ. Partic-

ularly the Karush–Kuhn–Tucker conditions (KKT conditions) can be

used to identify solution candidates.

Definition 2.4 (KKT Conditions). Let x∗ be an optimal solution

to the primal problem (2.3). The KKT conditions say that there exist



2.1 Introduction to Single-Objective Optimization Theory 181

a unique Lagrange multiplier vector λ∗ such that

∇f0(x
∗) +

M∑

m=1

λ∗
m∇fm(x∗) = 0, (2.13)

fm(x∗) ≤ 0 m = 1, . . . ,M, (2.14)

λ∗
m ≥ 0 m = 1, . . . ,M, (2.15)

λ∗
mfm(x∗) = 0 m = 1, . . . ,M. (2.16)

These conditions are known as stationarity, primal feasibility, dual fea-

sibility, and complementary slackness, respectively.

These conditions are generally neither sufficient nor necessary for

the optimal solution. The extra conditions for becoming necessary are

known as constraint qualifications and typically require some kind of

linear independence among gradients of the active constraints; see [12].

The following simple condition is sufficient under convex constraints.

Lemma 2.2 (Slater’s Constraint Qualification). If all constraint

functions fm(x) are convex and it exists x ∈ [a,b] such that fm(x) < 0

for all nonaffine constraints, then the KKT conditions are necessary for

the corresponding optimization problem.

This lemma originates from [249] and we use the formulation in [12,

Chapter 3]. Only the constraints need to be convex to satisfy Slater’s

constraint qualification, thus we have the following result.

Example 2.3 (KKT Conditions in Resource Allocation). The

resource allocation problem in (2.1) has convex constraints (see Exam-

ple 2.2). Suppose all beamforming vectors are zero, vk = 0 ∀k, then

fl(0) < 0 for all power constraints with ql > 0. In addition, all con-

straints with ql = 0 can be reformulated as affine equality constraints

Q
1/2
lk vk = 0. Therefore, the power constraints satisfy Slater’s constraint

qualification and the KKT conditions are necessary for all tentative

solutions to (2.1).
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The KKT conditions are broadly related to the property of strong

duality, as will be shown below. Observe that the optimal value of the

dual problem in (2.12) is always smaller than or equal to the value of

the primal problem in (2.3), thus

h(λ∗) ≤ f0(x
∗). (2.17)

Equality would mean that the best bound obtained from the Lagrange

dual function is tight, but equality is generally not achieved.

Definition 2.5 (Strong Duality). The difference f0(x
∗) − h(λ∗) is

the optimal duality gap and is always nonnegative. The case when the

optimal duality gap is zero is called strong duality.

The dual problem provides the optimal value of the primal problem

under strong duality, giving an alternative way of solving the primal

problem. Strong duality also makes the KKT conditions necessary.

Lemma 2.3(KKT Conditions under Strong Duality). If strong

duality holds, then the KKT conditions are necessary for the optimal

solution of the corresponding optimization problem.

Proof. Suppose that strong duality holds, let x∗ be a primal optimal

solution, and let λ∗ be a dual optimal solution. This means that

f0(x
∗) = h(λ∗) = inf

x∈[a,b]

(
f0(x) +

M∑

m=1

λ∗
mfm(x)

)

≤ f0(x
∗) +

M∑

m=1

λ∗
mfm(x∗) ≤ f0(x

∗).

(2.18)

The two inequalities must hold with equality, thus it follows that x∗

minimizes L(x,λ∗) and the gradient is zero at x∗:

∇f0(x
∗) +

M∑

m=1

λ∗
m∇fm(x∗) = 0. (2.19)
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In addition, we have
∑M

m=1 λ∗
mfm(x∗) = 0 and since λm ≥ 0 it follows

that

λ∗
mfm(x∗) = 0 m = 1, . . . ,M. (2.20)

The combination of primal feasibility of x∗, dual feasibility of λ∗, (2.19),

and (2.20) is exactly the KKT conditions.

For convex problems, KKT conditions and strong duality are par-

ticularly important as these often are both sufficient and necessary.

Lemma 2.4(KKT Conditions for Convex Problems). If the cost

function is convex and Slater’s constraint qualification is satisfied, then

strong duality holds and the KKT conditions are both necessary and

sufficient for the optimal solution.

This lemma provides a simple way to prove strong duality for convex

problems before actually solving the problem — this is why problems

in this category can be solved relatively efficiently. Strong duality can

also be shown to hold for certain nonconvex problems, but it generally

requires numerical computation of the optimal duality gap.

Remark 2.3 (Saddle Point Interpretation). Strong duality can

be interpreted as the existence of a saddle point in the Lagrangian

function, meaning that

sup
λ�0

inf
x∈[a,b]

L(x,λ) = inf
x∈[a,b]

sup
λ�0

L(x,λ). (2.21)

This equivalence holds under certain properties on L(x,λ), for example,

if L is convex in x and lower semi-continuous for every λ � 0 and L
is also concave in λ and upper semi-continuous for every x ∈ [a,b]; see

[70, Theorem 1] for some general conditions.

2.2 Convex Optimization for Resource Allocation

In this section, we investigate under which conditions the single-

objective resource allocation problem in (2.1) is linear, convex, or
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quasi-convex. Recall that these classes of problems can be solved effi-

ciently (e.g., using interior-point methods [256, 271]).

The problem (2.1) has convex constraints (see Example 2.2).

Therefore, the classification strongly depends on the cost function

−f (g1(SINR1), . . . ,gKr(SINRKr)), which unfortunately is a compli-

cated function that seems nonconvex; f(·) depends on the SINRs which

in turn are nonconvex functions of the beamforming vectors v1, . . . ,vKr .

To pinpoint the main cause of nonconvexity, we represent the SINRs

by auxiliary optimization variables γk such that γk = SINRk. We then

rewrite (2.1) as

minimize
vk,γk ∀k

− f (g1(γ1), . . . ,gKr(γKr))

subject to |hH
k CkDkvk|2 ≥ γk

(
σ2

k +
∑

i�=k

|hH
k CkDivi|2

)
∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

(2.22)

The second row of (2.22) represents the auxiliary SINR constraints

γk ≤ SINRk and the optimal solution always gives equality in these con-

straints. The main complication lies in the SINR constraints, because

−f (g1(γ1), . . . ,gKr(γKr)) is a convex function with respect to γ1, . . . ,γKr

for many f(·) and gk(·) of practical interest.

Example 2.4 (Some Convex and Concave Functions). A con-

tinuous twice differentiable function is convex (concave) if the second-

order derivative is nonnegative (nonpositive). For functions of several

variables, this extends to a positive (negative) semi-definite Hessian.

Some typical convex functions are x2, ex, and − log2(x).

Some typical concave functions are log2(x), −ex, and
√

x.

Linear functions, such as x and −x, are both convex and concave.

Example 2.5(Concavity of Performance Functions). The infor-

mation rate and the MSE are concave user performance functions (see

Examples 1.6 and 1.7), which is easily seen from the nonpositive second-

order derivatives. The BER for M -QAM with M ∈ {4,16,64,256}
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also gives concave performance functions [189] (see Example 1.8 for

M = 16). The same holds for the symbol error rate (SER) under arbi-

trary constellations, while the BER and pairwise error probability

(PEP) are only guaranteed to be concave at high SINR; see [163]. Sig-

moid functions can describe certain application-oriented utilities [145]

and are only concave if the SINR exceeds a certain threshold.

All system utility functions in Example 1.11 are concave functions

(e.g., arithmetic/geometric/harmonic mean).8 In fact, the so-called law

of diminishing marginal utility suggests that all system utility functions

are concave [223], because users generally become less interested in

further improvements as their performance increases. The composite

function f(g1(γ1), . . . ,gKr(γKr)) is concave with respect to γ1, . . . ,γKr

whenever both f(·) and gk(·) are concave for all k.

In other words, it is generally the SINR constraints that pre-

vent (2.22) from being a convex problem. These constraints are noncon-

vex because of the multiplication between γk (the SINR value at MSk)

and
∑

i�=k |hH
k CkDivi|2 (the inter-user interference caused to MSk).

Three approaches to resolve the non-convexity can be envisioned:

(1) Fix the inter-user interference caused to each user;

(2) Fix the SINR value at each user;

(3) Turn the multiplication into addition by change of variables.

None of these approaches can be applied successfully to any resource

allocation problem, but they will help identifying special cases

when (2.1) has a hidden convex structure and thus can be solved effi-

ciently. The division between convex and nonconvex resource allocation

problems is illustrated in Figure 2.2. The special cases with convexity

are interesting and useful on their own, but will also be used as sub-

problems when solving general nonconvex resource allocation problems

in Section 2.3.

8 To exploit the inherent concavity, it might be necessary to reformulate f(g) into an equiva-
lent form; the weighted geometric mean should have exponents greater than one, the max-

imization of the weighted harmonic mean is equivalent to maximizing f(g) = −
(∑

k
wk

gk

)
,

and the exponent 1/p can be dropped for the weighted compromise.
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Fig. 2.2 The division of single-objective resource allocation between convex and nonconvex
problems. Three types of convex problem formulations are described in this section, based
on fixing the inter-user interference, fixing the SINR at each user, or changing variables.

2.2.1 Zero-Forcing and Interference Constraints

This subsection will show that the resource allocation problem becomes

convex if the power of the inter-user interference is known a pri-

ori. An important special case is so-called zero-forcing beamforming9

[23, 46, 85, 115, 252, 297, 305], where the beamforming vectors are

selected to cause zero interference to nonintended users. This condition

greatly simplifies the beamforming design by reducing the search-space

(i.e., beamforming vectors should lie in the nullspace of the co-user

channels), but has also practical importance in cognitive radio (see

Section 4.8) and in high-SNR scenarios where inter-user interference

greatly dominates the noise term in the SINR expression.

Zero-forcing can be relaxed into interference-constrained beamform-

ing [26, 143, 215, 325] where the inter-user interference at MSk is not

nulled but should be below some threshold Γk ≥ 0. This relaxation is

9 Zero-forcing is also known as channel inversion because the goal is to make HtotVtot

a diagonal matrix, where Htot = [CH
1 h1 . . . CH

Kr
hKr

]H is the joint channel matrix and
Vtot = [D1v1 . . . DKr

vKr
] is the joint beamforming matrix. Under a total power con-

straint, the diagonalization is achieved by setting Vtot = H−1
tot. Under general power con-

straints and flexible power allocation, the channel inverse becomes a generalized inverse
[297] and lacks a simple closed-form expression.
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reasonable because nulling the interference is usually an overreaction;

CSI uncertainty makes it impossible in practice and it is unnecessary

to suppress the interference far below the background noise. The cor-

responding interference constraints are
∑

i�=k

|hH
k CkDivi|2 ≤ Γk ∀k (2.23)

⇔
∑

i�=k

vH
i (DH

i CH
k hkh

H
k CkDi)vi ≤ Γk ∀k.

Observe that this constraint has the same form as the power constraints

in (1.4) with Qli = DH
i CH

k hkh
H
k CkDi for i �= k, Qlk = 0N , and ql = Γk.

This subsection therefore considers the special case when there are

Kr interference constraints of the form in (2.23), in addition to the L

regular power constraints:

minimize
vk,γk ∀k

− f (g1(γ1), . . . ,gKr(γKr))

subject to |hH
k CkDkvk|2 ≥ γk

(
σ2

k +
∑

i�=k

|hH
k CkDivi|2

)
∀k,

∑

i�=k

vH
i (DH

i CH
k hkh

H
k CkDi)vi ≤ Γk ∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

(2.24)

For this problem, the SINR of MSk can be lower-bounded as

SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

|hH
k CkDivi|2

≥ |hH
k CkDkvk|2
σ2

k + Γk
(2.25)

by replacing the actual interference at MSk with the corresponding

interference constraint. Observe that all feasible solutions must sat-

isfy (2.25) with equality if Γk = 0, while this is not necessarily the case

when Γk > 0 (i.e., it might be optimal to cause less interference than

allowed). Using the lower bound in (2.25), the resource allocation prob-

lem in (2.24) can be solved as follows.
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Theorem 2.5. For fixed Γ1, . . . ,ΓKr ∈ R+, the optimization problem

minimize
vk,γk ∀k

− f (g1(γ1), . . . ,gKr(γKr))

subject to |hH
k CkDkvk|2 ≥ γk(σ

2
k + Γk) ∀k,

∑

i�=k

vH
i (DH

i CH
k hkh

H
k CkDi)vi ≤ Γk ∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l

(2.26)

is solved by considering the semi-definite relaxation with Sk = vkv
H
k :

minimize
Sk�0N ,γk ∀k

− f (g1(γ1), . . . ,gKr(γKr))

subject to tr(DH
k CH

k hkh
H
k CkDkSk) ≥ γk(σ

2
k + Γk) ∀k,

∑

i�=k

tr(DH
i CH

k hkh
H
k CkDiSi) ≤ Γk ∀k,

Kr∑

k=1

tr(QlkSk) ≤ ql ∀l.

(2.27)

The relaxed problem (2.27) is convex if f (g1(γ1), . . . ,gKr(γKr)) is con-

cave and it always has rank-one solutions that also solve (2.26).

Proof. Lemma 1.6 and Theorem 1.8 can be applied to see that the

relaxed problem always has rank-one solutions, as originally shown

in [26, 297]. If an optimization procedure still delivers a high-rank

solution S∗
k, one can find v∗

k by maximizing ℜ(hH
k CkDkvk) under

the interference constraints |hH
i CiDkvk|2 ≤ tr(DH

k CH
i hih

H
i CiDkS

∗
k)

∀i �= k and power constraints vH
k Qlkvk ≤ tr(QlkS

∗
k) ∀l.

This theorem solves (2.24) in polynomial time if the system utility

function is concave (which is often the case, see Example 2.5) and if all

interference constraints are active at the optimal solution. The latter

is always the case when Γk = 0 ∀k, but some interference constraints

can in general be inactive and thereby enable improvements. In such
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a case, Γk can be reduced for the inactive constraints and then (2.26)

is solved again. This iterative approach is not guaranteed to solve the

original problem in (2.24), but successively finds better approximations.

Another approach is to use the achieved solution as a starting-point

for a fairness-profile optimization described later in this section (see

Example 2.8). This will provide a weak Pareto optimal point, but not

necessarily the one solving the original problem.

Instead of having one interference constraint Γk per user that repre-

sents the aggregate inter-user interference that can be caused to MSk, it

is possible to have Kr − 1 interference constraints Γik, where each rep-

resents the interference that transmission to a particular co-user MSi

may cause to MSk for i �= k. This leads to interference constraints of the

form |hH
k CkDivi|2 ≤ Γik for all k,i with i �= k. This formulation gener-

ally provides lower performance, but might be useful as it decouples the

beamforming selection and thus enables simple parametrizations (see

Subsection 3.2.1) and distributed optimization (see Subsection 4.2.1).

Remark 2.4 (Nonzero Solutions). Zero-forcing constraints with

Γk = 0 require hH
k CkDivi = 0 for all i �= k, which either requires that

Divi is orthogonal to CH
k hk or that Divi = 0. Since the latter case

would give SINRi = 0, it is desirable to operate in the former case

where each beamforming vector is orthogonal to all co-user channels.

However, this is only possible if there are sufficient degrees-of-freedom

in the system; that is, if the set of co-user channels are not spanning the

whole space. It is difficult to give a general condition on the existence

of non-zero solutions, but Nj ≥ |Cj | ∀j is necessary under coordinated

beamforming (see Example 1.2) while N ≥ Kr is necessary under global

joint transmission (see Example 1.3). Interference-constrained beam-

forming with Γk > 0 does not exhibit such restrictions.

Remark 2.5 (Simplifying the General Problem). This subsec-

tion assumed that the interference constraints (2.23) were part of

the problem to be solved, meaning that our goal is to solve (2.24).

It is also possible to add interference constraints to the general prob-

lem (2.1) for the purpose of simplifying the problem, while striving
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for an optimal solution to the original non-interference-constrained

problem. This heuristic approach is further discussed in Section 3.4

and makes sense from a theoretical standpoint, because interference-

constrained beamforming provides the optimal solution to the gen-

eral problem (2.1) if the interference constraints happen to equal the

interference caused by the optimal solution to (2.1) [26, 215, 325].

This feature is utilized in [215] to solve general resource allocation

problems.

2.2.2 Fixed Quality-of-Service Requirements

While the previous subsection considered fixed inter-user interference,

we now consider the second approach for achieving convex problem for-

mulations: fix the SINR value of each user. This special case is partic-

ularly important since it highlights a fundamental connection between

beamforming optimization in the downlink and receive combining in a

related uplink scenario. Furthermore, Subsection 2.2.3 will show that

the fixed SINR values can be relaxed into searching for the optimal

solution along a one-dimensional curve in the performance region.

Consider the case when the system designer knows exactly which

performance each user should be allocated; the goal is to achieve

gk(SINRk) = r∗
k for some given parameters r∗

1 ≥ 0, . . . , r∗
Kr

≥ 0. The

resource allocation then consists of finding beamforming vectors that

achieve this operating point, which is known as having fixed quality-of-

service (QoS) requirements [11, 18, 59, 208, 209, 226, 296, 308]. This

can be represented by the system utility function

f(g1, . . . ,gKr) =

{
0, min{k:r∗

k
>0}

gk

r∗
k

≥ 1,

−∞, otherwise,
(2.28)

which is zero if the QoS requirements are fulfilled. If the QoS require-

ments are unattainable (due to power constraints and/or inter-user

interference), then the system utility is set to −∞ which is the con-

ventional way of saying that the feasible set is empty. Plugging (2.28)
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into (2.22) yields the following resource allocation problem

find v1 . . . ,vKr (2.29)

subject to |hH
k CkDkvk|2 ≥ g−1

k (r∗
k)
(
σ2

k +
∑

i�=k

|hH
k CkDivi|2

)
∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l,

where we utilized that the QoS requirements are infeasible exactly when

f(·) �= 0. Observe that there is no cost function in (2.29), meaning that

we are satisfied with finding any feasible solution to (2.29). This type

of problem is known as a feasibility problem and can also be written as

a minimization of a cost function that always equals zero. A preference

of solutions that use little power can be induced by replacing the upper

bound ql of each power constraint with βql and then minimize over β:

minimize
vk ∀k,β

β (2.30)

subject to |hH
k CkDkvk|2 ≥ g−1

k (r∗
k)
(
σ2

k +
∑

i�=k

|hH
k CkDivi|2

)
∀k,

Kr∑

k=1

vH
k Qlkvk ≤ βql ∀l.

This reformulation of (2.29) into a power minimization under QoS

requirements resembles how the problem was originally posed in [71,

208, 282]. The power minimization formulation might be more com-

putationally tractable than (2.29) since the feasible set is larger; we

accept β > 1 which means using more power than is actually available.

In other words, the optimal solution {v∗
k}, β∗ to (2.30) only satisfies

the original power constraints in (1.4) if β∗ ≤ 1. The QoS requirements

are infeasible if β∗ > 1. Infeasibility can be handled by either reducing

QoS constraints (e.g., by scaling down the power as v∗
k/

√
β∗) or by

removing the users that are hardest to serve [253].

The following theorem shows that both (2.29) and (2.30) can be

cast as convex optimization problems.
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Theorem 2.6. The optimization problems (2.29) and (2.30) become

convex problems if the QoS constraints |hH
k CkDkvk|2 ≥ g−1

k (r∗
k)(σ

2
k +∑

i�=k |hH
k CkDivi|2) are rewritten as

∥∥∥∥∥∥∥∥∥

hH
k CkD1v1

...

hH
k CkDKrvKr

σk

∥∥∥∥∥∥∥∥∥
≤
√

1 + g−1
k (r∗

k)

g−1
k (r∗

k)
ℜ(hH

k CkDkvk) ∀k,

ℑ(hH
k CkDkvk) = 0 ∀k,

(2.31)

where the first row contains second-order cone constraints and the sec-

ond row contains linear constraints.

Proof. Since the power constraints are convex (see Example 2.2) and

the cost functions are convex, only the QoS constraints need reformu-

lation. As in [11], we observe that the phase of vk can be selected in an

arbitrary way. This enables us to assume that hH
k CkDkvk > 0, which

makes the square root of |hH
k CkDkvk|2 well-defined. By reshuffling the

constraints and taking the square root, we achieve (2.31).

In other words, the resource allocation problem with QoS require-

ments can be solved with a computational complexity that only scales

polynomially with the number of antennas N , users Kr, and power

constraints L [10, Chapter 6]. The exact complexity depends on cur-

rent systems conditions and the choice of numerical algorithm (e.g.,

interior-point methods [256, 271]). In the special case of coordinated

beamforming with single-antenna transmitters (see Example 1.2), the

problem can even be reduced to a linear power allocation problem by

setting pk = ‖Dkvk‖2
2:

minimize
pk≥0∀k,β

β (2.32)

subject to ‖hH
k CkDk‖2

2pk ≥ g−1
k (r∗

k)
(
σ2

k +
∑

i�=k

‖hH
k CkDi‖2

2pi

)
∀k,

Kr∑

k=1

tr(DH
k QlkDk)pk ≤ βql ∀l.
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This fundamental type of power allocation problem was formulated

already in the 1960s by Bock and Ebstein [32]. Applications in the area

of cellular communications have also existed for many years; see for

example [52, 137, 190, 304, 314, 316].

Next, we derive the Lagrange dual problem to (2.29) which has a

conceptually important form.

Theorem 2.7. A Lagrange dual problem to (2.29) is10

maximize
λk ∀k, µl ∀l

Kr∑

k=1

λk −
L∑

l=1

µl (2.33)

subject to µl ≥ 0, λk ≥ 0 ∀k, l,

max
v̄k

λk

σ2
k

v̄H
k DH

k CH
k hkh

H
k CkDkv̄k

v̄H
k

(∑
l

µl

ql
Qlk +

∑
i�=k

λi

σ2
i

DH
k CH

i hihH
i CiDk

)
v̄k

= g−1
k (r∗

k) ∀k.

If the primal problem is feasible, then strong duality holds and thus

the optimal values coincide as
∑Kr

k=1 λk −∑L
l=1 µl = 0.

Proof. The cost function (2.28) is not continuous, but if the primal

problem is feasible then we operate in a range where strong dual-

ity follows from Slater’s constraint qualification (see Lemma 2.4). The

Lagrangian function associated with (2.29) is

L({vk},λ,µ)

= 0 +

L∑

l=1

µl

(
1

ql

Kr∑

k=1

vH
k Qlkvk − 1

)

+

Kr∑

k=1

λk


1 +

1

σ2
k

∑

i�=k

|hH
k CkDivi|2 − 1

σ2
kγk

|hH
k CkDkvk|2




10 This problem formulation includes terms of the form µl/ql which requires that ql > 0.
However, for every ql = 0 we can simply replace the corresponding Lagrange multiplier
µl with µ̃l = µlql in (2.33) to make the dual problem well-defined.



194 Optimal Single-Objective Resource Allocation

=

Kr∑

k=1

λk −
L∑

l=1

µl +

Kr∑

k=1

vH
k

(
L∑

l=1

µl

ql
Qlk

+
∑

i�=k

λi

σ2
i

DH
k CH

i hih
H
i CiDk − λk

σ2
kγk

DH
k CH

k hkh
H
k CkDk


vk.

(2.34)

This expression is achieved by first dividing the power constraints

by ql and the QoS constraints by σ2
kγk (where γk = g−1

k (r∗
k)), and then

apply Definition 2.2. The second equality follows from rewriting the

Lagrangian function in the same way as in [308, Proposition 1]. Mini-

mizing (2.34) with respect to {vk} gives a finite solution only if
(

L∑

l=1

µl

ql
Qlk +

∑

i�=k

λi

σ2
i

DH
k CH

i hih
H
i CiDk

− λk

σ2
kγk

DH
k CH

k hkh
H
k CkDk

)
� 0 ∀k

(2.35)

and the corresponding minimum is
∑Kr

k=1 λk −∑L
l=1 µl (achieved for

vk = 0N×1). Using [308, Lemma 1], the dual feasibility constraint (2.35)

is equivalent to

γk ≥ λk

σ2
k

hH
k CkDk




L∑

l=1

µl

ql
Qlk +

∑

i�=k

λi

σ2
i

DH
k CH

i hih
H
i CiDk




†

DH
k CH

k hk

= max
v̄k

λk

σ2
k

v̄H
k DH

k CH
k hkh

H
k CkDkv̄k

v̄H
k

(∑
l

µl

ql
Qlk +

∑
i�=k

λi

σ2
i

DH
k CH

i hihH
i CiDk

)
v̄k

, (2.36)

where the equality follows from introducing maximization over an

auxiliary variable v̄k ∈ CN×1. Its optimal value is given by (2.37) in

Corollary 2.8, because (2.36) is a generalized Rayleigh quotient. The

constraint (2.36) is active at the optimum of the dual problem for all

k (otherwise we can increase some λk and thereby increase the dual

function), thus we have the Lagrange dual problem in (2.33).

This theorem establishes what is known as uplink–downlink duality

[30, 226, 282, 283, 315]; the last line of (2.33) has the form of an uplink
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Fig. 2.3 Block diagram of multi-cell communications for: (a) the downlink; and (b) the
virtual uplink achieved by uplink–downlink duality.

SINR for (reciprocal) transmission from Kr single-antenna users to Kt

multi-antenna base stations. The uplink scenario that would give these

SINRs is illustrated in Figure 2.3. With the uplink interpretation, the

dual variable λk is the uplink power of the signal from MSk (scaled by

the downlink noise variance), v̄k is the receive combining vector used

for reception of this signal, and µl is an uplink noise variance (scaled

by the downlink power constraints).

Uplink–downlink duality implies that if a set of QoS requirements is

feasible in the downlink, then this set is also feasible in the uplink and

vice versa. Furthermore, there is an important relationship between the

primal and dual variables.

Corollary 2.8. The optimal beamforming vector v∗
k to (2.29) is equal

to the optimal dual variable

v̄∗
k =

(
L∑

l=1

µl

ql
Qlk +

Kr∑

i=1

λi

σ2
i

DH
k CH

i hih
H
i CiDk

)†

DH
k hk (2.37)

up to a scaling factor.



196 Optimal Single-Objective Resource Allocation

Proof. The stationarity KKT condition (2.13) becomes

0 =
∂L
∂vk

= 2

(
L∑

l=1

µl

ql
Qlk +

∑

i�=k

λi

σ2
i

DH
k CH

i hih
H
i CiDk

− λk

σ2
kγk

DH
k CH

k hkh
H
k CkDk

)
vk.

(2.38)

By defining the scalar dk = λk

σ2
k

(1+γk)
γk

hH
k CkDkvk, using that CkDk =

Dk, and multiplying by a Moore–Penrose pseudo-inverse, (2.38)

becomes

vk = dk

(
L∑

l=1

µl

ql
Qlk +

Kr∑

i=1

λi

σ2
i

DH
k CH

i hih
H
i CiDk

)†

DH
k hk (2.39)

and we identify v̄k from (2.37), which solves (2.36).

This corollary shows that the optimal beamforming direction in

the downlink is equivalent to the optimal receive combining in the

uplink — this is quite intuitive if interpreted as turning the head

toward the audience when speaking and pointing the ears in the same

direction when listening. The proof of this relationship was however an

important breakthrough as it is analytically simpler to select receive

combining vectors than transmit beamforming; the former only affects

the intended user while the latter affects all the users. Although the

directions are equivalent, the corresponding power allocations are gen-

erally different between the downlink and the dual uplink (but there is

a simple matrix transformation, see Subsection 3.2.3).

The duality is particularly strong in the case of a total power

constraint (i.e., L = 1, Qlk = IN ∀k); the dual uplink then represents

a problem formulation that is practically important for the uplink;

see [30, 226, 283]. The duality can in this case be utilized to design

iterative fixed-point algorithms that quickly find the optimal dual

variables and thereby solve both the downlink and uplink problems

[42, 59, 208, 226, 227, 296]. We refer to [227, 228] for further details

on such algorithms and the related topic of general interference func-

tions. Fixed-point algorithms are less useful in the general multi-cell
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case (although an outer optimization procedure can be applied to take

care of general power constraints [59, 308]). In fact, the dual prob-

lem in Theorem 2.7 is more of a virtual multi-cell uplink scenario

than a practically reasonable problem formulation; the uplink noise

in (2.33) is determined by the dual variables µl and the cost function,∑Kr

k=1 λk −∑L
l=1 µl, represents some kind of balance between the uplink

transmit power and the uplink noise power. Nevertheless, the multi-cell

uplink-downlink duality will be exploited in Section 3 to achieve strong

parametrizations of the optimal beamforming. It will also be an enabler

for truly distributed resource allocation in Section 4.

2.2.3 Quasi-Fixed Quality-of-Service Requirements

The previous subsection showed that resource allocation with fixed

QoS requirements leads to convex optimization problems. This impor-

tant result is utilized in this subsection to achieve efficient solutions to

a wider class of resource allocation problems where the QoS require-

ments are flexible but governed by a single parameter.11 To describe

this structure in general terms, we consider a continuous vector-valued

function r(τ) = [r1(τ) . . . rKr(τ)]T of the scalar parameter τ ∈ R+. This

function is assumed to be strictly monotonically increasing, thus when-

ever τ1 > τ2 ≥ 0 we have rk(τ1) ≥ rk(τ2) ∀k and there is at least

one strict inequality. Observe that r(τ) for τ ∈ [0, τupper] describes a

one-dimensional curve that connects the points r(0) and r(τupper) and

constantly moves away from the origin; see Figure 2.4. If the curve is

plotted against the performance region R, we have the following result.

Lemma 2.9. Consider the curve generated by a continuous strictly

monotonically increasing function r : R+ → R
Kr
+ . If r(0) ∈ R and

r(τupper) �∈ R for some τupper > 0, then the curve intersects the Pareto

11 This subsection considers optimization of the QoS under fixed power constraints, while
(2.30) in the previous subsection minimizes the transmit power under fixed QoS require-
ments. Note that these problems are each other’s inverses; if the optimal QoS achieved
in this subsection is used as QoS requirements in (2.30), then the two problems will have
the same optimal beamforming. However, the problem formulation in this subsection is
often preferable as it always gives a Pareto optimal point, while (2.30) requires that a
good operating point is known beforehand — which is generally not easy to achieve.
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Fig. 2.4 Illustration of a one-dimensional curve generated by the strictly increasing vector-
valued function r(τ) for τ ∈ [0, τupper]. If r(0) is inside a normal region and r(τupper) is
outside, then the curve intersects the Pareto boundary only once. For the non-normal region
(b) the curve leaves the region and then comes back again.

boundary of R exactly once. This happens at τ ∈ [τ∗
1 , τ∗

2 ] where τ∗
1 ≤ τ∗

2 .

There is always a unique intersection point τ∗
1 = τ∗

2 when the weak and

strong Pareto boundary coincides.

Proof. There will be at least one intersection with the weak Pareto

boundary ∂+R, due to the continuity of r(τ) and that R is compact

and normal. Suppose it exists τ∗
1 < τ∗

2 such that r(τ∗
1 ),r(τ∗

2 ) ∈ ∂+R
while r(τ3) �∈ ∂+R for some τ3 ∈ [τ∗

1 , τ∗
2 ]. The definition of weak Pareto

optimal points then implies that r(τ∗
1 ) cannot be Pareto optimal either,

which is a contradiction. Consequently, the intersection occurs for all

points in the interval [τ∗
1 , τ∗

2 ]. If the weak and strong Pareto boundary

coincides, then intersection point must be unique due to the definition

of strong Pareto optimal points.

This lemma proves that a strictly increasing curve that leaves the

performance region intersects the Pareto boundary exactly once. This

might seem trivial, but it requires that the region is normal (as proved

in Lemma 1.10). This property is illustrated in Figure 2.4, where (a) and

(c) are normal regions while (b) is nonnormal and thus some increasing

curves can cross the boundary multiple times. There is only one inter-

section point in most cases, but if the curve enters the boundary at a
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weak Pareto optimal point then it might follow the boundary until a

strong Pareto optimal point is found and then leave it.

Suppose we optimize over τ to find the outermost intersection point,

this can be formulated as an optimization problem.

Theorem 2.10. Consider the optimization problem

maximize
v1,...,vKr ,τ

τ

subject to rk(τ) = gk(SINRk) ∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l,

τ ∈ [0, τupper]

(2.40)

for a strictly increasing function r(τ). This problem can be solved by

line-search over the range T = [0, τupper]. For a given τ candidate ∈ T ,

the convex feasibility problem (2.29) is solved for r∗
k = rk(τ

candidate)∀k.

If the problem is feasible, all τ̃ ∈ T with τ̃ < τ candidate are removed

from T . Otherwise, all τ̃ ∈ T with τ̃ ≥ τ candidate are removed.

Initial feasibility of (2.40) is checked by (2.29) for r∗
k = rk(0). The

optimum is achieved at τupper if (2.29) is feasible for r∗
k = rk(τ

upper).

Proof. The convex feasibility problem (2.29) checks whether a point r∗

is inside R or not. As r(τ) is strictly increasing, (2.40) is infeasible

if r(0) �∈ R and is solved at τupper if r(τupper) ∈ R. In any other case,

Lemma 2.9 shows that r(τ) intersects ∂+R once and there is a unique

last intersection point r(τoptimal) for some τoptimal ∈ [0, τupper]. There-

fore, the range T can be divided into two parts: one part is inside of

R and one part is outside. The intersection can be found (to any accu-

racy δ) by a line-search that iteratively checks if a point r(τ candidate) is

inside R by solving (2.29).

Theorem 2.10 shows that optimization along a strictly increasing

curve r(τ) can be solved by line-search over the range of τ , where the

subproblems are convex feasibility problems. This means that (2.40) is

a quasi-convex problem [37]. The bisection method is an efficient line-

search procedure where each iteration consists of checking the feasibility
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Fig. 2.5 Illustration of the bisection method that searches the range T = [τ lower, τupper] to
find τoptimal. The feasibility at the midpoint τcandidate is checked in each iteration (i.e., is
τcandidate ≤ τoptimal?) and half the interval is removed based on the answer.

at the midpoint of the current range [37], thus the range is halved at

each iteration. The bisection method is illustrated in Figure 2.5 and

the approach is described in Algorithm 1. The number of iterations in

the bisection method scales only logarithmical with the desired width

δ of the final interval — precisely ⌈log2(τ
upper/δ)⌉ feasibility problems

will be solved. As this variable is bounded by a constant, the computa-

tional complexity is just a constant times the complexity of the convex

feasibility problem (2.29) solved in each iteration. In other words, the

worst-case computationally complexity is polynomial in the number of

antennas N , users Kr, and power constraints L [10, Chapter 6].

Theorem 2.10 shows how to solve a class of quasi-convex problems.

These are connected to a certain type of resource allocation problems.

Corollary 2.11. Consider a resource allocation problem of the

form (2.1) with f(g) = mink υk(gk), for some continuous and strictly

increasing functions υk : R+ → R+ that satisfy υk(0) = 0. This prob-

lem is solved by Theorem 2.10 for rk(τ) = υ−1
k (τ) and some τupper that

satisfies r(τupper) �∈ R.
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Algorithm 1: Optimization Along a Strictly Increasing Curve

Result: Solves optimization problem in (2.40).

Input: Lower bound τ lower and upper bound τupper on τ ;

Input: Line-search accuracy δ;

while τupper − τ lower > δ do1

Set τ candidate = τ lower+τupper

2 ;2

Set r∗
k = rk(τ

candidate) ∀k;3

if Problem (2.29) is feasible for these {r∗
k} then4

Set {vlower
k } as the solution to (2.29);5

Set τ lower = τ candidate;6

else7

Set τupper = τ candidate;8

Set τ lower
final = τ lower and τupper

final = τupper;9

Output: Final interval [τ lower
final , τupper

final ] for τ ;

Output: Best feasible solution {vlower
k };

Proof. Suppose the optimal value is f(g∗) = τoptimal, then there exists

an optimal solution with υk(gk) = τoptimal for all k. This is equivalent

to gk = υ−1
k (τoptimal), which is the last intersection point between r(τ)

and the weak Pareto boundary of R.

Resource allocation problems covered by Corollary 2.11 concentrate

on the worst-user performance, but can still take many different forms.

The following examples are illustrated in Figure 2.6.

Example 2.6(ǫ-Constraint Optimization). The ǫ-constraint opti-

mization represents maximizing the performance of MSk, while guar-

anteeing that gi ≥ ǫi for all i [38, 98, 123, 149, 278, 292, 293]. This

problem is solved by Theorem 2.10 using rk(τ) = τ + ǫk and ri(τ) = ǫi.

Example 2.7 (Max-Min Fairness). Max-min fairness optimization

is given by f(g) = mink gk [42, 226, 227, 270, 296]. This problem is
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Fig. 2.6 Illustration of the strictly increasing curves r(τ) that represents ǫ-constraint opti-
mization (Example 2.6), max-min fairness (Example 2.7), fairness-profile optimization
(Example 2.8), weighted Chebyshev compromise (Example 2.9), and generalized weighted
max-min optimization (Example 2.10). These problems are solved in polynomial time using
Theorem 2.10 and Corollary 2.11.

solved by Theorem 2.10 using r(τ) = [τ . . . τ ]T , which corresponds to

searching on a line in the direction [1 . . . 1]T from the origin.

Example 2.8 (Fairness-Profile Optimization (FPO)). Fairness-

profile optimization (FPO) is given by

f(g) =

{
min{k:wk>0}

gk−ak

wk
, mink gk − ak ≥ 0,

−∞, otherwise.
(2.41)

This is a generalization of max-min optimization in Example 2.7

where two fairness constraints12 have been added [17, 26, 126, 144,

185, 193, 325]:

12 The fairness constraints have important bargaining interpretations in cooperative
game-theoretic setups where users compete for resources [193]: The so-called Kalai–
Smorodinsky objective function can be formulated as (2.41) using w = u − a as the
weighing factors. The vector a is the disagreement point used if bargaining fails, while
w is the direction from a toward the utopia point u. Bargaining thus improves user
performance proportionally to the performance each user would achieve with TDMA.
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(1) Each user has a lowest acceptable performance level

gk(SINRk) ≥ ak for some ak ≥ 0;

(2) The aggregate performance above this level (i.e.,
∑

k(gk −
ak)) is divided such that each user gets a predefined fraction

wk ≥ 0.13

This problem is solved by Theorem 2.10 using rk(τ) = wkτ + ak, which

corresponds to searching on a line segment from a = [a1 . . . aKr ]
T to

some infeasible point r(τupper) in the direction of w = [w1 . . .wKr ]
T .

Example 2.9 (Weighted Chebyshev Compromise). For a given

reference point r∗ ∈ Rn
+ \R, the weighted compromise problem f(g) =

−(
∑

k(wk(r
∗
k − gk))

p)1/p finds the closest feasible point in the weighted

Lp-norm. This problem can be solved by Theorem 2.10 if we consider

the L∞-norm (also known as Chebyshev metric), which corresponds to

f(g) = −maxk wk(r
∗
k − gk) [278].

To find the appropriate curve r(τ), note that one solution is given

by wk(r
∗
k − gk) = a ∀k for some appropriate value of a. This can be

rewritten as gk = r∗
k − a

wk
, which reveals that we should search on a

line in the direction of winv = [ 1
w1

. . . 1
wKr

]T that intersects with r∗.
This line will generally not pass through the origin. The performance

gk of MSk is only positive when a ≤ wkr
∗
k, thus the operator [·]+ will

be used to ensure that negative performance entries are replaced by

zero. The strictly increasing curve can be expressed as r(τ) = [r∗ − (1 −
τ)cwinv]+ for τ ∈ [0,1], where c = maxk wkr

∗
k is the value of a where all

users achieve zero performance.

Example 2.10 (Generalized Weighted Max-Min Opti-

mization). Max-min optimization can be generalized as

f(g) = mink w̃k(gk), where w̃k(·) is a strictly increasing weighting

13 To see that the weighting factors equal the fraction of aggregate performance allocated
to each user, note that one of the optimal solutions to (2.41) is when (gk − ak)/wk is the
same for all active users.
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function. This function can describe, for example, a multiplicative

weighting w̃k(gk) = wkgk or a weighting exponent w̃k(gk) = gwk

k ,

for some fixed wk > 0. This is equivalent to Corollary 2.11 with

υk(·) = w̃k(·) and is solved by searching along rk(τ) = w̃−1
k (τ), which

in general is not a line.

Corollary 2.11 requires an initial upper bound τupper satisfying

r(τupper) �∈ R. If not given in advance, τupper can be selected as follows:

• τupper = mink υk(uk) for utopia point u = [u1 . . . uKr ]
T .

• τupper = mink υk

(
gk

(
κk‖DH

k
hk‖2

2

σ2
k

))
, where κk is a bound on

the maximum transmit power and can be calculated as the

smallest positive eigenvalue of
DH

k
QlkDk

qltr(Dk) among all l.

• τupper = mink limρ→∞ υk(gk(ρ)), which is only useful if

gk(ρ) → c < ∞ as ρ → ∞.

The first alternative is based on the utopia point and thus provides

the tightest search range, but at the expense of solving Kr single-user

problems (see Lemma 1.3). The second alternative ignores inter-user

interference and assumes that the highest power available in some spa-

tial direction can be used in any direction. The third alternative is

the simplest because it ignores both inter-user interference and power

constraints.

Remark 2.6 (Non-Uniqueness). Although the quasi-convexity of

max-min optimization has been known in the communication commu-

nity for at least a decade [270, 303], it is not always embraced in the

literature; for example, the property is not exploited when solving such

problems in [133, 250], leading to unnecessary high computational

complexity. The reason might be that the nondifferentiable min-

operator makes the problem look nonsmooth. In fact, if Algorithm 1

finds a weak Pareto optimal point, then it also exists strong Pareto

optimal points that give the same optimal system utility but where a

(strict) subset of users achieve higher performance [172]. It is easy to
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refine the solution to one of these strong Pareto optimal points (e.g.,

by ǫ-constraint optimization done sequentially for all users), but at the

expense of increasing the complexity with approximately a factor Kr.

However, it can be very difficult to find the lexicographic14 optimal

solution [222]. Algorithm 1 can be applied to other system models,

but the subproblems might not be convex in these cases (for example,

see multi-cast transmission in Section 4.4).

2.2.4 Change of Variables

The third approach to achieve convex problem formulations (as out-

lined in Section 2.2) is to make a change of variables. The idea is to

turn the multiplication between γk and
∑

i�=k |hH
k CkDivi|2 in the SINR

constraints into an addition by using logarithms. This must be done

in a clever way to make each term convex, although the logarithm is a

concave function. This is typically only possible when a single antenna

is transmitting to each user (see also Remark 2.8).

In this subsection, we consider the special case of coordinated

beamforming with single-antenna transmitters (see Example 1.2), thus

hH
k CkDi and Dkvk have at most one nonzero element. We can there-

fore define pk = ‖Dkvk‖2
2 and turn (2.22) into

minimize
pk≥0,γk ∀k

− f (g1(γ1), . . . ,gKr(γKr)) (2.42)

subject to ‖hH
k CkDk‖2

2pk ≥ γk

(
σ2

k +
∑

i�=k

‖hH
k CkDi‖2

2pi

)
∀k,

Kr∑

k=1

tr(DH
k QlkDk)pk ≤ ql ∀l.

Similar to [29, 168], we now make a change of variables: pk → p̃k,γk →
γ̃k with pk = ep̃k and γk = g−1

k (eγ̃k). This corresponds to measuring

14 The lexicographic solution jointly maximizes the worst-user performance, second-worst-
user performance, and so on.
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transmit power in log-scale and (2.42) becomes

minimize
p̃k,γ̃k ∀k

− f
(
eγ̃1 , . . . ,eγ̃Kr

)

subject to log

(
σ2

k

‖hH
k CkDk‖2

2

e−p̃k +
∑

i�=k

‖hH
k CkDi‖2

2

‖hH
k CkDk‖2

2

ep̃i−p̃k

)

+ log
(
g−1
k (eγ̃k)

)
≤ 0 ∀k,

Kr∑

k=1

tr(DH
k QlkDk)e

p̃k ≤ ql ∀l.

(2.43)

Observe that we also have taken the logarithm of both sides in the

SINR constraints and gathered all the terms.

Theorem 2.12. The transformed optimization problem in (2.43) is

convex if both −f(eγ̃1 , . . . ,eγ̃Kr ) and log(g−1
k (eγ̃k)) ∀k are convex with

respect to γ̃1, . . . , γ̃Kr .

Proof. The problem is convex if every term is convex. Under the stipu-

lated conditions, it remains to check that log(cke
−p̃k +

∑
i�=k dke

p̃i−p̃k)

is convex for any ck,dk ≥ 0 and that the power constraints are con-

vex. The former can be checked by straightforward differentiation [168],

while the latter follows since the exponential function is convex.

The conditions in Theorem 2.12 are not satisfied by all system utility

and user performance functions, but for several of practical interest.

Corollary 2.13. The cost function −f(eγ̃1 , . . . ,eγ̃Kr ) is convex for the

weighted geometric mean and the weighted harmonic mean. Convexity

is also satisfied for the weighted compromise if only g ≥ r/p are of

interest (where r is the reference point). In addition, log(g−1
k (eγ̃k)) is

convex for the information rate and for the MSE.

Proof. A continuous and differentiable function is convex if the Hessian

is positive semi-definite. The weighted geometric mean can be writ-

ten as
∑

k wk log(gk), thus −f(eγ̃1 , . . . ,eγ̃Kr ) = −∑k γ̃k which is both
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a convex and concave function. The weighted harmonic mean can be

written as −∑k
wk

gk
, thus −f(eγ̃1 , . . . ,eγ̃Kr ) =

∑
k wke

−γ̃k , which is a

convex function.

The second-order derivative of
∑

k wp
k(rk − eγ̃k)p with respect to γ̃k

is pwp
ke

γ̃k(rk − eγ̃k)p−2(peγ̃k − rk), which is nonnegative if we restrict

the search-space to eγ̃k ≥ rk/p. The convexity of log(g−1
k (eγ̃k)) for the

information rate and the MSE follows from checking the second-order

derivatives.

Although (2.43) is convex in many scenarios with single-antenna

transmitters, the optimization problem might be difficult to implement

in a way that the high-level modeling languages CVX [95] and Yalmip

[161] will accept. On the other hand, single-antenna coordinated beam-

forming is a special case of limited practical interest — the convexity

results in this subsection mainly show that some optimization prob-

lems are significantly easier to solve in the single-antenna case, since

the transmitted signals have fixed spatial directivity and the beam-

forming design reduces to power allocation. This can be utilized in the

following way.

Remark 2.7 (Power Allocation for Heuristic Beamforming).

Suppose the beamforming vectors are decomposed as vk =
√

pkv̄k for

all k, where v̄k are the normalized beamforming directions and pk ≥ 0

are the corresponding power allocation coefficients. If the beamform-

ing directions are fixed, the remaining resource allocation problem can

be expressed as (2.42) (by replacing ‖hH
k CkDi‖2

2 with |hH
k CkDiv̄i|2

everywhere). This subproblem is convex in many cases, which indi-

cates that finding the optimal beamforming directions is the difficult

part in multi-antenna resource allocation. In other words, the computa-

tional complexity can be greatly reduced by selecting the beamforming

directions heuristically. Different beamforming parametrizations and

common heuristic approaches are described in Section 3.

Remark 2.8 (Interference Functions). Theorem 2.12 shows that

the variable substitution pk = ep̃k can extract hidden convexity in
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scenarios with single-antenna transmitters. This is no coincident,

but provably the only substitution that can be applied for all

problems where f (g1(SINR1), . . . ,gKr(SINRKr)) can be written as∑
k ωkg̃k(SINRk) for some weighting factors ωk ≥ 0 and some functions

g̃k for which g̃k(e
p̃k) is concave [29]. The weighted geometric and har-

monic means of information rates can be expressed in this way, while

the arithmetic mean cannot. This result can be generalized beyond

the SINR expression
‖hH

k
CkDk‖2

2pk

σ2
k
+

∑
i�=k ‖hH

k
CkDi‖2

2pi
used in this subsection; [29]

extends the convexification to SINRs based on so-called log-convex

interference functions [31]. These alternative SINR expressions can,

for example, describe worst-case interference or uplink transmission

to multi-antenna receivers. We refer to [227, 228] for further details on

general interference functions.

2.2.5 Summary of Convexity Classification

We conclude the section on convexity by summarizing which resource

allocation problems are linear, convex, or quasi-convex (and which are

not). Under the assumption that the user performance functions are

concave (which is often satisfied, see Example 2.5), Table 2.1 shows the

classification for maximizing the weighted arithmetic mean, weighted

geometric mean, weighted harmonic mean, weighted max-min fairness,

weighted compromise, or having fixed QoS requirements. Three dif-

ferent system scenarios are considered: the general case, zero-forcing

constraints, and single-antenna coordinated beamforming.

Table 2.1. Summary of classification for resource allocation problems.

System scenarios

General Zero-forcing Single-antenna

Arithmetic mean NP-hard Convex NP-hard
Geometric mean NP-hard Convex Convex
Harmonic mean NP-hard Convex Convex
Max-Min fairness Quasi-convex Quasi-convex Quasi-convex
Compromise NP-hard Convex Convex/NP-hard
Fixed QoS Convex Convex Linear
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There are several optimization scenarios in Table 2.1 that have not

been proved to be linear, convex, or quasi-convex in this tutorial. These

scenarios are however analyzed in [157, 168] and the authors show that

these problems are NP-hard. A main characteristic of NP-hard prob-

lems is that there are no known algorithms that solve them in polyno-

mial time, and it is widely believed that there exist no such algorithms.

The weighted arithmetic mean is NP-hard for any number of transmit

antennas, while the weighted geometric and harmonic means are NP-

hard for single-cell and interference channels with Nj > 1. We will not

dig deeper into the notion and proofs of NP-hardness herein, but sim-

ply label these problems as NP-hard in Table 2.1. A recent survey

on the NP-hardness of these resource allocation problems and related

problems is available in [104].

From Table 2.1 it is clear that only resource allocation problems that

maximize the weighted max-min fairness or have fixed QoS require-

ments are always solvable in polynomial time. Furthermore, zero-

forcing constraints lead to convex problems for all of the considered

system utility functions. Looking at single-antenna coordinated beam-

forming, it is clear that optimization of the arithmetic mean is the

most difficult problem as it is the only one that cannot be solved in

polynomial time.

Remark 2.9 (Freedom is Problematic). Roughly speaking,

resource allocation problems are only convex when the cost function

and/or power constraints greatly limit the degrees-of-freedom for select-

ing beamforming vectors. The zero-forcing and single-antenna cases

remove much of the freedom of choice in the spatial dimension. Simi-

larly, fixed QoS requirements and max-min fairness strictly specify the

amount and/or fraction of resources that each user should be allocated.

The arithmetic mean with per-transmitter power constraints represents

the other extreme: the utility function leaves all fairness decisions to

the optimization process and the transmit power can be allocated freely

over each antenna array. Consequently, this is the most difficult prob-

lem to solve.
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Nonconvex resource allocation problems are not without structure;

all resource allocation problems are monotonic and this property can

be utilized to solve the problems in a structured way, as shown in the

next section.

2.3 Monotonic Optimization for Resource Allocation

In this section, we will solve the multi-cell resource allocation prob-

lem in (2.1) for any system utility function f(·) and user performance

functions gk(·). As these are increasing functions (and the power con-

straints are convex), (2.1) is always a monotonic optimization problem.

It will be useful to express (2.1) as a search in the performance

region,

maximize
g

f(g)

subject to g ∈ R,
(2.44)

instead of using standard form. We emphasize that even if we select

f(·) as a concave function and R happens to be a convex set, (2.44)

is generally not considered a convex problem. The reason is that R is

not defined by a finite set of convex inequality constraints, as required

for convex problems on standard form. Instead, checking if r ∈ R
Kr
+

belongs to R is a convex feasibility problem with QoS requirements,

which can be solved as in Subsection 2.2.2.

As compared to arbitrary nonconvex problems, monotonic prob-

lems have the important property that the optimum lies on the Pareto

boundary of R (see Lemma 1.10). This property should certainly be

utilized when devising a numerical algorithm for solving the problem.

The naive approach would be to generate a large set of Pareto opti-

mal points, preferably by some approach that finds Pareto optimal

points with polynomial computational complexity (e.g., the fairness-

profile optimization problem in Example 2.8 can be used, if the weights

{wk} are varied over a fine grid). However, there are more intelligent

and systematic algorithms than this naive approach. These algorithms

concentrate on searching parts of the Pareto boundary that give large

values on f(·).
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This section describes two general algorithms for solving mono-

tonic problems15: the polyblock outer approximation (PA) algorithm

from [218, 274] and the branch-reduce-and-bound (BRB) algorithm

from [275]. Both algorithms are designed to iteratively improve a lower

bound fmin and an upper bound fmax on the optimal value of (2.44).

Convergence to the global optimum will be guaranteed in the sense

that

fmax − fmin < ε (2.45)

is achieved in finitely many iterations, for any accuracy ε > 0. The algo-

rithms also find an ε-optimal solution g∗
ε , which is a feasible point with

fmin = f(g∗
ε). In general, the number of iterations scales exponentially

with the number of users Kr, which is an inescapable consequence of

solving a problem that generally is NP-hard (see Subsection 2.2.5).

Remark 2.10 (Importance of Lipschitz Continuity). The sys-

tem utility function is assumed to be Lipschitz continuous (see Defini-

tion 1.13), which provides a limit on how fast the function varies. If the

function is also differentiable, [277, Theorem 4] shows that the brute

force approach16 has a worst-case complexity of cKr(
Lf

ε )Kr , where Lf is

the Lipschitz constant and cKr is a constant that depends on the num-

ber of users. This provides an upper bound on the run time for any

sensible algorithm — the PA and BRB algorithms have much faster

convergence [26].

Lipschitz continuity is a sufficient condition for guaranteeing an

ε-optimal solution in a finite number of iterations, but other assump-

tions that involve bounded derivatives are also possible; see [277]. How-

ever, if we do not impose any restrictions on f(·) then we generally

cannot even find an ε-optimal solution in finite time [39].

15 This tutorial describes adaptations of the PA and BRB algorithms that utilize specific
properties of the resource allocation problem in (2.1) and (2.44). We refer to [218, 274, 275]
for the generic algorithms that solve any monotonic problem.

16 This corresponds to placing a fine grid over [0,u] where the distance between adjacent
points are Lf /ε. The performance and feasibility of each grid point need to be checked.
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2.3.1 Lower and Upper Bounds in a Box

An essential step in the PA and BRB algorithms is that of bound-

ing the highest feasible performance in a box M = [a,b] ⊆ R
Kr
+ . This

means finding a lower bound fmin,M and an upper bound fmax,M on

the optimal solution to

maximize
g

f(g)

subject to g ∈ R ∩ M.
(2.46)

By utilizing that f(·) is increasing, the trivial bounds are

f trivial
min,M =

{
f(a), R ∩ M �= ∅,

−∞, otherwise,
f trivial
max,M =

{
f(b), R ∩ M �= ∅,

−∞, otherwise.

(2.47)

These bounds represent the performance in the lower and upper corners

of the box, but only if the box has a nonempty overlap with the perfor-

mance region — this is equivalent to a ∈ R, which is easily checked by

solving the feasibility problem (2.29) with a as the QoS requirements.

As will become clear later, tighter bounds than (2.47) are necessary in

thePAalgorithmandwill improve the convergence of theBRBalgorithm.

Any Pareto optimal point g′ ∈ ∂+R ∩ M might give a reasonable lower

bound, while an upper bound can be achieved by projecting g′ onto the

different outer sides of the box. This bounding procedure is formalized as

follows and illustrated in Figure 2.7.

Lemma 2.14. Consider a box M = [a,b] ⊆ R
Kr
+ with M ∩ R �= ∅ and

a strictly increasing curve r(τ) satisfying r(0) = a and r(τupper) = b for

some given τupper > 0. The feasible performance in M can be lower and

upper bounded as

fmin,M = f(n)

fmax,M = max
k

f(b − [b − m]kek︸ ︷︷ ︸
=zk

), (2.48)

where ek denotes the kth column of IKr , n = r(τ lower
final ) and m =

r(τupper
final ) with [τ lower

final , τupper
final ] being the final interval when solving (2.40)

using Algorithm 1 (for some given line-search accuracy δ > 0).
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Fig. 2.7 Illustration of the bounding procedure in Lemma 2.14. The line-search between a

and b results in a feasible point n and an infeasible point m. The points zk give upper
bounds and are computed from m.

Proof. The curve-search procedure in Algorithm 1 provides a final

interval [τ lower
final , τupper

final ], where the lower bound gives a feasible point

n ∈ R. Every feasible point, including n, gives a lower bound on the

optimal solution. There are no feasible points g ∈ M with g > m as

R is normal. The extreme points in M where all elements but one are

larger than in m are zk = b − [b − m]kek, for k = 1, . . . ,Kr, and can

potentially be feasible. Thus, maxk f(zk) provides an upper bound on

the feasible performance in M.

This lemma bounds the performance by searching on an increas-

ing curve that connects the lower and upper corners of the box. Tra-

ditionally, this curve is a simple line r(τ) = a + τ b−a
‖b−a‖1

with τ ∈
[0,‖b − a‖1], which corresponds to the FPO problem in Example 2.8.17

This line-search approach was suggested in [218, 274, 275] and utilized

for multi-cell resource allocation with single-antenna interference chan-

nels in [206], coordinated MISO beamforming in [153, 276], and general

multi-cell MISO systems in [26]. Other types of curves r(τ) can also be

used to capture certain properties of f(·) — one should always try to

utilize any structure that exists in the problem.

17 The line can be defined using other normalizations than ‖b − a‖1, but the L1-norm is
suitable in our applications because the aggregate performance of an operating point n

is given by ‖n‖1.
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Lemma 2.14 can be applied whenever the feasibility problem (2.29)

can be solved efficiently; Section 4 shows that this is possible under

more general system conditions than assumed in Section 1.

Remark 2.11 (Other Bounding Procedures). Bounding the per-

formance in a box is the most important and difficult step in mono-

tonic optimization. Therefore, it is of profound importance to exploit

any additional structure that might exist in the problem formulation.

Instead of making a single curve-search in M ∩ R (as in Lemma 2.14),

[123, 292, 293] suggest solving the ǫ-constraint optimization problem

(see Example 2.6) for each user with ǫk = ak for the others. This

approach might enable tighter bounds than Lemma 2.14, but gener-

ally has higher computational complexity (due to the Kr optimization

procedures at each iteration).

It is also possible to make a change of variables and thereby con-

sider the intersection of a box M with some other Kr-dimensional

region that is normal. In the two-user scenario, a region based on a

beamforming parametrization is used in [118], which enables very effi-

cient line-search (see also Example 3.1). If the system utility and user

performance functions are concave, then a region based on interference

constraints is taken in [215], which enables bounding operations based

on interference-constrained beamforming (see Subsection 2.2.1).

In the case of weighted sum information rate optimization, the cost

function represents the difference of two convex functions [272]. This

property is utilized in [3, 133, 301] for single-antenna transmitters and

simple power constraints. The region can then be based on power allo-

cation coefficients and the bounding procedure consists of a sequence

of approximate convex problems, which has much faster convergence

than the general multi-antenna case. This approach can also be applied

in the MISO case [67], but only under simple power constraints where

so-called SINR balancing can be efficiently solved using interference

functions [227, 228].

2.3.2 Polyblock Outer Approximation (PA) Algorithm

The globally optimal solution to (2.44) lies on the Pareto bound-

ary ∂+R of the performance region R (see Lemma 1.10). The PA
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algorithm searches for the solution by approximating the region and

iteratively refines the approximation. The algorithm is not applied

directly onto (2.44) but on the perturbed problem

maximize
g

f̃(g) = f([g − s]+ + s),

subject to g ∈ R
(2.49)

for some parameter vector s > 0. The operator [·]+ replaces nega-

tive elements with zero, thus [g − s]+ + s ≥ s is guaranteed. The per-

turbed problem is approximately equivalent to (2.44) in the sense that

f̃(g) − f(g) ≤ Lf‖s‖1 for every g ∈ R, where Lf is the Lipschitz con-

stant of the system utility function. Solving (2.49) instead of (2.44) will

therefore result in an error not exceeding Lf‖s‖1, which is manageable

if Lf‖s‖1 < ε. Furthermore, if the optimal solution g∗ to the original

problem satisfies g∗ ≥ s, then the perturbation will not impact the solu-

tion accuracy. The reason for the perturbation is to prevent numerical

convergence issues, for example, when searching for solutions close to

an axis [275, 276]. We have the following result.

Lemma 2.15. Suppose that gfeasible ∈ R and that gupper �∈ R upper

bounds the performance of the perturbed problem (2.49). If f̃(gupper) −
f(gfeasible) < ε, then gfeasible is an ǫ-optimal solution to the original

problem (2.44).

Proof. This lemma follows from the fact that f̃(g) ≥ f(g) for all g ∈ R
and that both problems have the same feasible set.

The PA algorithm solves (2.49) by approximating the feasible set R
from above using polyblocks.

Definition 2.6. A set P ⊆ Rn
+ is called a polyblock if it is the union

of a finite number of boxes [0,bm] with lower corners in the origin.

A polyblock P can be defined by a finite set of vertices V =

{b1, . . .b|V|}, which we write as P(V). The same polyblock can be

expressed using different numbers of vertices |V|, but we are only
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interested in the minimal set called the proper vertices. In the proper

representation, no vertex is dominated by another vertex (i.e., b ≥ b′

does not hold for any b �= b′ ∈ V).

As the system utility function is increasing, the maximum of f̃(g)

for g ∈ P(V) is achieved at a proper vertex. This is the basic idea

behind the PA algorithm; if R is approximated by a polyblock then

the strong Pareto boundary is approximated by the proper vertices of

this polyblock. This property is exploited as follows [218, 274]:

The PA algorithm constructs a nested sequence of polyblocks which

approximates R from above as

P(V1) ⊃ P(V2) ⊃ . . . ⊃ R such that max
b∈Vn

f̃(b)ցmax
g∈R

f̃(g), (2.50)

where xn ց x means that xn → x as n → ∞ and that xn ≥ xñ ≥ x for

all ñ ≥ n. This approximation procedure is illustrated in Figure 2.8.

To realize the algorithm, we need a way to construct a new polyblock

P(Vn+1) from the previous polyblock P(Vn) such that the convergence

in (2.50) is achieved. It makes sense to modify the vertex in Vn that

provides the current maximum of f̃(·) over the polyblock:

g(n) = arg max
b∈Vn

f̃(b). (2.51)

The following procedure is suggested in [274, Proposition 17–18].

Lemma 2.16. Consider the bounding procedure in Lemma 2.14 on

the box M(n) = [0,g(n)] using

r(τ) = τ
g(n)

‖g(n)‖1
τ ∈ [0,‖g(n)‖1]. (2.52)

For a given line-search accuracy δ > 0, Lemma 2.14 generates a feasible

point n(n) and a set of points {zk} that upper bounds the feasible

performance in M(n). Then, the set of vertices

Vn+1 = (Vn\{g(n)})
⋃

k: [g(n)]k>0

{z̃k}, (2.53)

where z̃k = zk − [s − zk]+, satisfies P(Vn) ⊃ P(Vn+1) ⊃ R.
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∂+R

Maximal

Sum Utility

(a) Initialization (b) Iteration 1

(c) Iteration 2 (d) Iteration 10

(e) Iteration 20 (f) Iteration 30

Fig. 2.8 Illustration of the Polyblock outer approximation (PA) algorithm. The sum infor-
mation rate is maximized by approximating the performance region (around the optimal
point) from above using a polyblock. The approximation is iteratively refined and parts
that cannot contain the optimal point are removed.
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If Vn only contains proper vertices, then Vn+1 has the same prop-

erty if improper vertices are removed using following the rule:

For every g ∈ Vn\{g(n)} such that g ≥ m while [g]k < [g(n)]k for

exactly one element k, then remove z̃k from Vn+1.

Proof. The update (2.53) constructs a new polyblock by removing some

(or all) of the overlap between P(Vn) and {g : g > m}. Since m is either

Pareto optimal or outside R, it follows that P(Vn+1) ⊃ R. Observe that

f̃(z̃k) = f̃(zk), thus using z̃k as vertex instead of zk will not remove any

optimal solution to the perturbed problem.

The deletion rule finds g ∈ Vn\{g(n)} such that g ≥ z̃k, thus z̃k is

necessarily improper. As Vn only contains proper vertices and z̃k is only

different from g(n) in the kth element, the rule also provides a sufficient

condition for improper vertices.

This way of refining the polyblock is illustrated in Figure 2.9. To

remove the shaded area from the polyblock, the number of vertices typ-

ically increases by each iteration (with at most Kr − 1). Although the

increase is linear, it is sometimes necessary to take actions to overcome

storage limitations; see [218, 274].

The algorithm can be initialized using the utopia point u (see

Lemma 1.3) as the only vertex, V1 = {u}, or in some other way

that guarantees P(V1) ⊃ R. The best feasible point gfeasible known

beforehand is also used for initialization. This could, for example, be

gfeasible = 0Kr×1 or something achieved from some suboptimal resource

allocation algorithm (see Section 4.2).

Fig. 2.9 The PA algorithm refines the polyblock in each iteration by removing the shaded
area/volume which is outside the performance region R. The refined polyblock is represented
by replacing the vertex g by the new vertices z̃1, z̃2.
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The bounds on the optimal value are refined in each iteration. At

iteration n, the current upper bound is fmax = maxb∈Vn
f̃(b). Each

vertex update using Lemma 2.16 includes a bounding procedure that

gives a new feasible point. The current lower bound is the maxi-

mal performance among all the feasible points found so far: fmin =

max0≤ℓ≤n f(n(ℓ)). We can expect faster convergence in the lower bound

(which is the best among n(0), . . . ,n(n)) than in the upper bound (which

is the worst among the vertices in Vn). Consequently, the algorithm

usually finds a feasible point close to the optimal solution much earlier

than we can formally declare that the point has this property.

The PA algorithm is summarized in Algorithm 2. This formulation

is an adaptation of the generic PA algorithm to multi-cell resource allo-

cation problems [218, 274]. It is basically a generalization of algorithms

for single-antenna interference channels in [206] and for multi-antenna

Algorithm 2: Polyblock Outer Approximation (PA) Algorithm

Result: Solves the monotonic optimization problem in (2.44).

Input: Feasible solution gfeasible on (2.44);

Input: Solution accuracy ε > 0 and line-search accuracy δ > 0;

Input: Initial vertex set V1 such that P(V1) ⊃ R;

Set n(0) = gfeasible, s = δ
Kr

1Kr , and n = 1;1

Set fmin = f(n(0)) and fmax = maxb∈V1 f̃(b);2

while fmax − fmin > ε do3

Set g(n) = argmaxb∈Vn
f̃(b);4

Compute Vn+1 according to Lemma 2.16 using5

M(n) = [0,g(n)]. Obtain resulting feasible point n(n);

if f(n(n)) > fmin then6

Set fmin = f(n(n));7

Set gfeasible = n(n);8

Set fmax = maxb∈Vn+1 f̃(b);9

Remove all b ∈ Vn+1 with f̃(b) ≤ fmin + ε;10

Set n = n + 1;11

Output: Final interval [fmin,fmax] on optimal value;

Output: Feasible point g∗
ε = gfeasible with fmin = f(g∗

ε);
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coordinated beamforming in [153, 276]. The convergence of the PA algo-

rithm to the global optimum is established by the following theorem.

Theorem 2.17. For any given accuracy ε > 0, the PA algorithm finds

an interval [fmin,fmax] for the optimal value of (2.1) that satisfies

fmax − fmin ≤ ε, in a finite number of iterations. It is sufficient to have

a line-search accuracy 0 < δ < ε
2Lf

and to set s = δ
Kr

1Kr , where Lf is

the Lipschitz constant of f(·) in [0,u].

Proof. The original proof in [274] assumed ideal line-search δ = 0,

but can be relaxed using the guidelines in [276]. Suppose for the

purpose of contradiction that the algorithm requires infinitely many

iterations, then it generates at least one infinite sequence of vertices

g(n1),g(n2), . . . such that g(nh+1) = g(nh) − [g(nh) − m(nh)]kh
ekh

, where

m(nh) is obtained from the bounding procedure and kh ∈ {1, . . . ,Kr}.

Clearly, g(n1) ≥ g(n2) ≥ . . . ≥ 0, thus the sequence converges to a limit

point. Consequently, for any ξ > 0 it exists hξ < ∞ such that ‖g(nh+1) −
g(nh)‖2 = [g(nh) − m(nh)]kh

< ξ for all h ≥ hξ.

This means that the difference between new and old vertices

approaches zero. It remains to show that also the difference between

f(n(nh)) at the current feasible point n(nh) and the current maximum

f̃(g(nh)) goes below ε > 0, if δ is selected properly. Note that

f̃(g(nh)) − f(n(nh))

≤ f(g(nh)) − f(n(nh)) + Lf‖s‖1

=
(
f(g(nh)) − f(m(nh))

)
+
(
f(m(nh)) − f(n(nh))

)
+ Lf‖s‖1

≤ Lfξ
Kr‖u‖1

δ
+ Lfδ + Lfδ,

(2.54)

where the inequalities follow from that f(·) is Lipschitz continuous,

that geometrically ‖g(nh) − m(nh)‖1 = ‖g(nh+1) − g(nh)‖1
‖g(nh)‖1

[g(nh)]kh

<

ξ ‖u‖1

mink[s]k
, that s = δ

Kr
1Kr , and that the line-search stops when ‖m(nh) −

n(nh)‖1 ≤ δ. If we have δ < ε
2Lf

, then 2Lfδ < ε and (2.54) becomes

f̃(g
(nhξ

)
) − f(n

(nhξ
)
) < ε (2.55)
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for some finite hξ and 0 < ξ ≤ (ε−2Lf δ)δ
Lf Kr‖u‖1

, which is a contradiction. This

implies fmax − fmin ≤ ε in finitely many iterations.

The line-search accuracy in Theorem 2.17 is sufficient, but not

necessary for convergence. Thus, a rougher accuracy can be used in

Algorithm 2, at least initially. Although the algorithm converges, the

worst-case convergence speed is generally exponential in the number of

users Kr. The number of antennas N and power constraints L will how-

ever have much smaller impact on the convergence scaling of the PA

algorithm, as it approximates the Kr-dimensional performance region.

The main computational complexity lies in the bounding procedure,18

which includes a quasi-convex line-search. In practice, it might be nec-

essary to stop the algorithm before it converges, but fortunately fmin

is usually closer to the true optimal value than fmax (as noted earlier).

Remark 2.12 (Variations). There are many variations on the PA

algorithm that might improve the convergence speed: (a) An improved

vertex update rule is suggested in [275, Proposition 4.2] to remove more

in each iteration; (b) the line-search accuracy δ can be a function of

the number of iterations and the vertex g(n) [118, 276]; (c) the original

problem can be perturbed in an adaptive manner to further avoid shal-

low cuts and jamming [39, 275]; (d) scheduling can be included in the

algorithm [39, 276]; and (e) the algorithm can be restarted from the

current best solution if the number of vertices grows too large [274].

2.3.3 Branch-Reduce-and-Bound (BRB) Algorithm

The PA algorithm constructs a series of polyblocks that covers and

converges to the performance region R. As the optimal solution lies on

the Pareto boundary, it is sufficient to construct a set of boxes that

closely approximates the Pareto boundary around the optimal point.

This is essentially what is done in the BRB algorithm of [275]; see

Figure 2.10.

18 This is generally the case when solving nonconvex optimization problems.
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Fig. 2.10 Illustration of the Branch-reduce-and-bound (BRB) algorithm. The sum informa-
tion rate is maximized by approximating the Pareto boundary of the performance region
(around the optimal point) using a set of disjoint boxes. The approximation is iteratively
refined and parts that cannot contain the optimal point are removed.
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The BRB algorithm maintains a set N with nonoverlapping boxes

that surely covers the parts of the performance region R where the

optimal solutions lie (the solution might be nonunique). Iteratively, we

split certain boxes and bounds the performance in these new boxes for

the purpose of improving a lower bound fmin and an upper bound fmax

on the optimal value of (2.44). To aid this process, a local feasible point

gM and a local upper bound β(M) are stored for each box M ∈ N .

Initially, N = {M0} for a box M0 = [0,b0] ⊆ R
Kr
+ , where b0 could

be the utopia point u or some other optimistic point that guarantees

R ⊆ M0. The initial upper bound is fmax = f(b0), while the lower

bound is initialized as fmin = f(gfeasible) for some known feasible point

gM0 = gfeasible (e.g., gfeasible = 0Kr×1 or a point achieved from some

suboptimal resource allocation algorithm; see Section 4.2).

Each iteration of the BRB algorithm consists of three steps.

(1) Branch: Divide a box Mmax ∈ N into two new boxes.

(2) Reduce: Remove parts of these new boxes that cannot con-

tain optimal solutions.

(3) Bound: Apply the bounding procedure in Lemma 2.14 to one

of the new boxes, to improve local and global bounds.

These steps are illustrated in Figure 2.11 and are described next.

Each iteration of the BRB algorithm modifies one of the boxes, which

Fig. 2.11 An iteration of the BRB algorithm: A box is selected and branched into two new
boxes. These are reduced based on the current bounds on the optimal value. Finally, line
search between the lower and upper corners of the outermost box is applied to improve the
bounds.
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for convergence reasons is

Mmax = argmax
M∈N

β(M), (2.56)

where Mmax = [amax,bmax] contains the current upper bound fmax

(recall from the PA algorithm that upper bounds converge more slowly).

Branch: First, Mmax is divided into two disjoint boxes M̃1,M̃2.

Mmax is bisected along its longest side (see Figure 2.11) which produces

M̃1 = [amax,bmax − dedim],

M̃2 = [amax + dedim,bmax],
(2.57)

where dim = argmaxk[bmax − amax]k, d = [amax + bmax]dim/2, and ek

is the kth column of the identity matrix IKr . The local feasible points

and upper bounds of M̃1,M̃2 can be selected as follows.

Lemma 2.18. The local optimal performance in the new boxes can

be lower bounded by the operating points

gM̃1
=

{
gMmax − [gMmax − (bmax − dedim)]+, gMmax ≥amax + dedim,

gMmax , otherwise,

gM̃2
= gMmax ,

(2.58)

and the local upper bounds can be selected as

β(M̃1) = min(β(Mmax),f(bmax − dedim)) ,

β(M̃2) = β(Mmax).
(2.59)

Proof. The feasible point gMmax is either in M̃1 or M̃2. In the latter

case, a feasible point in M̃1 is achieved by projecting the point onto

M̃1 as gMmax − [gMmax − bmax + dedim]+. The feasible performance

in both boxes is upper bounded by β(Mmax), but the upper corner of

M̃1 provides an alternative upper bound.

The local feasible point gM̃ℓ
given by this lemma might be domi-

nated by all points in M̃ℓ, which we return to in the bounding step.
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Reduce: Next, the new boxes M̃ℓ = [ãℓ, b̃ℓ] (for ℓ = 1,2) are

reduced by removing parts that cannot contain the optimal solution;

that is, parts that either give performance below the lower bound fmin

or above the (local) upper bound β(M̃ℓ). The following lemma from [26]

shows how to replace M̃ℓ with a (potentially) smaller box [ã′
ℓ, b̃

′
ℓ].

Lemma 2.19. If fmin > β(M̃ℓ), then M̃ℓ will not contain the optimal

solution and can be removed. Otherwise, all points g ∈ [ãℓ, b̃ℓ] satisfying

fmin ≤ f(g) ≤ β(M̃ℓ) are also contained in [ã′
ℓ, b̃

′
ℓ] ⊆ [ãℓ, b̃ℓ], where

ã′
ℓ = b̃ℓ −

Kr∑

k=1

νℓk[b̃ℓ − ãℓ]kek, (2.60)

b̃′
ℓ = ã′

ℓ +

Kr∑

k=1

µℓk[b̃ℓ − ã′
ℓ]kek, (2.61)

with νℓk and µℓk (for k = 1, . . . ,Kr) calculated as

νℓk = max
{

ν : 0 ≤ ν ≤ 1, f(b̃ℓ − ν[b̃ℓ − ãℓ]kek) ≥ fmin

}

µℓk = max
{

µ : 0 ≤ µ ≤ 1, f(ã′
ℓ + µ[b̃ℓ − ã′

ℓ]kek) ≤ β(M̃ℓ)
}

.
(2.62)

Proof. Consider the reduction of the box from [ãℓ, b̃ℓ] to [ã′
ℓ, b̃ℓ]. If the

boxes are identical, no solutions are lost and we are finished. Otherwise,

ãℓ ≤ ã′
ℓ with strict inequality in at least one element. For elements

with strict inequality we have νℓk < 1, thus it exists ν̃ with νℓk < ν̃ ≤ 1.

Every such ν̃ gives a point g ≤ b̃ℓ − ν̃[b̃ℓ − ãℓ]kek in M̃ℓ that by the

selection of νℓk in (2.62) gives f(g) < fmin. Therefore, the reduction

(from below) only removes points with function values strictly below

fmin. The reduction from above is proved analogously.

The reduction procedure is illustrated in Figure 2.11. Observe

that it is two-step procedure: first, the lower point ãℓ is updated to

ã′
ℓ using (2.60) and then ã′

ℓ is used to update the upper point b̃ℓ

using (2.61). The parameters νℓk,µℓk in (2.62) can be calculated using

low-complexity line-search (it only involves evaluation f(·) for differ-

ent parameter values, without caring about feasibility of the points).
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Closed-form expressions can be obtained in many cases of practical

interest.

Example 2.11 (Reduction for Weighted Arithmetic Mean).

For the weighted arithmetic mean f(g) =
∑Kr

k=1 wkgk, (2.62) is

solved by

νℓk = min

(∑Kr

i=1 wi[b̃ℓ]k − fmin

wk([b̃ℓ]k − [ãℓ]k)
,1

)
,

µℓk = min

(
β(M̃ℓ) −∑Kr

i=1 wi[ã
′
ℓ]k

wk([b̃ℓ]k − [ã′
ℓ]k)

,1

)
,

(2.63)

where the min-operator makes sure that νℓk,µℓk ≤ 1.

Example 2.12(Reduction for Weighted Geometric Mean). For

the weighted geometric mean f(g) =
∏Kr

k=1 gwk

k , (2.62) is solved by

νℓk = min




[b̃ℓ]k −
(

fmin∏
i�=k([b̃ℓ]i)

wi

) 1
wk

[b̃ℓ]k − [ãℓ]k
,1


 ,

µℓk = min




(
β(M̃ℓ)∏

i�=k([ã′
ℓ
]i)wi

) 1
wk − [ã′

ℓ]k

[b̃ℓ]k − [ã′
ℓ]k

,1


 ,

(2.64)

where the min-operator makes sure that νℓk,µℓk ≤ 1.

The reduced new boxes are stored in N , while Mmax is removed.

Bound: Each iteration ends by a search for better bounds. First, we

check if there are any feasible points in M̃ℓ = [ã′
ℓ, b̃

′
ℓ], or if M̃ℓ ∩ R = ∅.

Lemma 2.20. The intersection M̃ℓ ∩ R �= ∅ if gM̃ℓ
≥ ã′

ℓ. Otherwise,

the existence of feasible points in M̃ℓ can be checked by solving the

feasibility problem (2.29) with ã′
ℓ as the QoS requirements.
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Proof. The first condition follows from that R is normal, while the

second condition checks the feasibility explicitly.

If the lemma concludes M̃ℓ ∩ R = ∅, then M̃ℓ is deleted from N .

If M̃2 ∩ R �= ∅, the BRB algorithm applies the bounding procedure

in Lemma 2.14 using

r(τ) = ã′
2 + τ

(b̃′
2 − ã′

2)

‖b̃′
2 − ã′

2‖1

τ ∈ [0,‖b̃′
2 − ã′

2‖1] (2.65)

as the search curve and using some line-search accuracy δ. The nor-

malization ‖b̃′
2 − ã′

2‖1 ensures that the line-search accuracy is a global

measure, thus the bounding procedure becomes faster as the boxes get

smaller. The bounding procedure produces a feasible point n ∈ M̃2

and a local upper bound f
max,M̃2

. The point n replaces the local fea-

sible point if f(n) > f(gM̃ℓ
). Similarly, we set β(M̃2) = f

max,M̃2
if

f
max,M̃2

< β(M̃2).

Finally, the global lower bound is updated as fmin =

maxM∈N f(gM) and the global upper bound is updated as fmax =

maxM∈N β(M). The stopping criterion fmax − fmin < ε is checked at

the end of each iteration.

The BRB algorithm is summarized in Algorithm 3 and illustrated in

Figure 2.10. This formulation of the algorithm is a slight modification

of the algorithm in [26], where the generic BRB algorithm from [275] is

adapted for multi-cell resource allocation. Other adaptations are avail-

able in [123, 292, 293], where another bounding procedure is used. The

system model of [123] is less general than [26], while [292, 293] are

limited to single-antenna transmitters but can handle multi-cast trans-

missions (see Section 4.4). The convergence of the BRB algorithm to

the global optimum was established in [275] and the following theorem

originates from [26].

Theorem 2.21. For any given accuracy ε > 0, the BRB algorithm

finds an interval [fmin,fmax] for the optimal value of (2.1) that satis-

fies fmax − fmin ≤ ε, in a finite number of iterations. The line-search

accuracy δ > 0 can be selected arbitrarily.
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Algorithm 3: Branch-Reduce-and-Bound (BRB) Algorithm

Result: Solves the monotonic optimization problem in (2.44).

Input: Feasible solution gfeasible on (2.44);

Input: Solution accuracy ε > 0 and line-search accuracy δ > 0;

Input: Initial box M0 = [0,b0] such that R ⊆ M0;

Set N = {M0}, gM0 = gfeasible, and β(M0) = f(b);1

Set fmin = f(gM0) and fmax = β(M0);2

while fmax − fmin > ε do3

Set Mmax = argmaxM∈N β(M);4

for ℓ = 1,2 do5

Create M̃ℓ using (2.57) with gM̃ℓ
,β(M̃ℓ) in Lemma 2.18;6

Reduce M̃ℓ using Lemma 2.19;7

Check feasibility of M̃2 using Lemma 2.20;8

if infeasible then9

Set M̃ℓ = ∅;10

if M̃2 �= ∅ then11

Apply bounding procedure in Lemma 2.14 on12

M̃2 = [ã′
2, b̃

′
2] using r(τ) = ã′

2 + τ
(b̃′

2−ã′
2)

‖b̃′
2−ã′

2‖1
and

τ ∈ [0,‖b̃′
2 − ã′

2‖1];

Obtain feasible point n and upper bound f
max,M̃2

;13

if f(n) > f(gM̃2
) then14

Set gM̃2
= n;15

Set β(M̃2) = min(β(M̃2),fmax,M̃2
);16

Set N = (N \ Mmax) ∪ {M̃1,M̃2};17

Set fmin = maxM∈N f(gM);18

Set fmax = maxM∈N β(M);19

Output: Final interval [fmin,fmax] on optimal value;

Output: Feasible point g∗
ε = argmax

gM:M∈N
f(gM);
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Proof. The BRB algorithm can be treated as a standard branch-and-

bound algorithm where the reduction step (which does not remove the

solution) is part of the bounding step. Two sufficient conditions for

achieving an ε-approximate solution in a finite number of iterations

are stated in the appendix of [7]: (a) The bounding step truly calcu-

lates lower and upper bounds on the optimal value; and (b) The dif-

ference fmax − fmin converges (uniformly) to zero. The first condition

was proved in Lemma 2.14, and even the trivial bounds in (2.47) are

sufficient so any δ > 0 can be used. The second condition follows from

the exhaustiveness of bisection and the Lipschitz continuity of f(·).

Just as for the PA algorithm, the BRB algorithm converges to the

global optimum in the sense of finding an interval [fmin,fmax], with

fmax − fmin ≤ ε, in finitely many iterations (for any ε > 0). The impor-

tant difference is that the BRB algorithm puts no requirements on the

line-search accuracy δ to achieve convergence, thus δ can be selected

solely on the basis of convergence speed. This is essentially because the

BRB algorithm approximates the Pareto boundary from both below

and above, while the PA algorithm approximates the whole perfor-

mance region from above. Accordingly, the BRB algorithm has been

claimed to have faster convergence than the PA algorithm [26, 275], or

at least a better scaling with the number of users. On the other hand,

both algorithms have a worst-case complexity that increases exponen-

tially with the number of users Kr; thus, both algorithm are unsuitable

for real-time applications and only practically useful for solving prob-

lems with a small number of users. The practical convergence of the

two algorithms will be compared in the next section.

Remark 2.13 (Variations). The BRB algorithm can be modified

in different ways that might improve the convergence speed: (a) The

box Mmax can be branched into more than two boxes and the divi-

sion rule can be adapted to the problem formulation [215]; (b) the

line-search accuracy δ can be varied; and (c) the bounding procedure

can be redesigned to find other (better) feasible points in the box

[123, 292, 293].
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To summarize, multi-cell resource allocation is generally a mono-

tonic problem that can be solved to global optimality by the PA and

BRB algorithms. These algorithms utilize that the performance region

is normal and approximate the set of candidate solutions in an iter-

atively refined manner. The enabling factor of both algorithms is a

bounding procedure that is solved efficiently using a curve-search pro-

cedure of the type in Subsection 2.2.3. Both algorithms can therefore be

applied under whatever system conditions the curve-search is a quasi-

convex problem. Several generalizations are provided in Section 4.

2.4 Numerical Illustrations of Computational Complexity

We end this section by illustrating the computational complexity of

solving single-objective resource allocation problems. This section will

emphasize the large difference between the convex problems described

in Section 2.2 and the general monotonic problems solved in Section 2.3.

For computational simplicity, we consider a simple coordinated beam-

forming scenario with Kt = 2 base stations with N1 = N2 = 3 anten-

nas (see Example 1.2). Each base station serves two unique users

(i.e., Kr = 4), while coordinating interference to all users. The average

single-user SNR
E{qj‖hjk‖2

2}
σ2

k

is qjNj if user k ∈ Dj and qj
Nj

3 if k �∈ Dj ,

thus users are closer to their serving base station. Each base station has

its own total power constraint with qj = 10 (i.e., 10 dBm) and the infor-

mation rate gk(SINRk) = log2(1 + SINRk) is used as user performance

function.

The simulations in this tutorial are implemented using the modeling

languages CVX [95] and Yalmip [161], which in turn utilize the convex

optimization solvers SeDuMi [256] and SDPT3 [271]. Parts of the Matlab

code are available for download in [19].

2.4.1 Convergence Comparison

First, we compare and evaluate the convergence of the PA and BRB

algorithms when solving two monotonic optimization problems: max-

imizing the arithmetic and geometric means of the information rates.

These algorithms are rather different from each other and it is not
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meaningful to compare the number of outer iterations. However, both

algorithms are built upon solving a series of convex feasibility prob-

lems with QoS requirements (as in Subsection 2.2.2). We will therefore

count the average number of such feasibility evaluations that is neces-

sary to achieve certain accuracy on the optimal solution. The accuracy

is defined as the relative deviations of the lower and upper bound:
fmin−fopt

fopt
and

fmax−fopt

fopt
, respectively, where fopt is the optimal value.19

The arithmetic mean is maximized in Figure 2.12(a). The BRB

algorithm is used with the line-search accuracy δ = 0.5, while the PA

algorithm is considered for δ = 0.1 and δ = 0.5. Both algorithms quickly

find feasible solutions within a few percentages from the optimal value,

but many feasibility evaluations are required to achieve a tight upper

bound. This is a typical behavior when solving nonconvex problems (see

Subsection 2.3.2), thus the search for better upper bounding techniques

is an important topic for future research. The BRB algorithm has a

clearly faster convergence (particularly in the upper bound) and thus

requires fewer evaluations to achieve a certain ε-approximate solution.

Recall from Theorems 2.17 and 2.21 that the line-search accuracy δ

has a fundamental impact on convergence of the PA algorithm, while

the BRB algorithm converges for any δ. This is manifested in Fig-

ure 2.12(a) by an accuracy in the lower bound of the PA algorithm

that improves as δ is decreased. Unfortunately, the convergence of the

upper bound is improved by having a rougher line-search accuracy,

which means more outer iterations that make the volume of the poly-

block decrease faster. In other words, there is a tradeoff in the selection

of δ.

The geometric mean is maximized in Figure 2.12(b). The PA and

BRB algorithms are compared with the line-search accuracy δ = 0.5.

Interestingly, the convergence behavior is very different from what we

observed for the arithmetic mean; the PA algorithm has a clearly better

convergence in the upper bound, while the lower bounds behave very

similar. Observe that δ have been selected to (roughly) optimize the

convergence speed, thus the advantage of the PA algorithm is not the

19 The optimal value is approximately achieved in this simulation by running the algorithms
for a very long time.
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Fig. 2.12 Relative error of the lower and upper bounds on the optimal value as a function
of the number of feasibility evaluations. The PA and BRB algorithms are compared for
maximizing (a) the arithmetic mean and (b) the geometric mean of the information rates.

result of bad parameter selection. Instead, we believe that the slow

convergence for the arithmetic mean depends on the possibility that the

solution is very close to an axis (i.e., the scenario when the perturbed

problem formulation in (2.49) is required to avoid stalling in the PA

algorithm), which is seldom the case for the geometric mean (and other

system utility functions that guarantees a nonzero performance level for

all users).
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To summarize, the BRB algorithm is superior for the arithmetic

mean, while the PA algorithm might be the better choice for system

utilities that enforces distinctively nonzero performance for all users

(and thereby avoids the weaknesses of the PA algorithm).

2.4.2 Comparison of System Utility Functions

In addition to the arithmetic and geometric means, max-min fairness

is an important system utility function. Figure 2.13 shows the con-

vergence of the lower and upper bounds for max-min fairness, under

the same conditions as in Figure 2.12. The difference is really remark-

able; the relative deviation after 5000 feasibility evaluations is 0.01–

0.02 for the arithmetic and geometric means, while only 14 evaluations

are needed to surpass this accuracy under max-min fairness. Further-

more, the lower and upper bounds converge uniformly for max-min

fairness, which is not the case for general monotonic problems. The

convergence of the BRB and PA algorithms can certainly be improved

(see Remarks 2.12 and 2.13), but the polynomial complexity of max-

min fairness and exponential complexity of general monotonic prob-

lems imply that there is a fundamental and inescapable difference in

convergence.

Fig. 2.13 Relative error of the lower and upper bounds on the optimal max-min fairness as
a function of the number of feasibility evaluations.
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Fig. 2.14 Average relative error on optimal value of the geometric mean, arithmetic mean,
and max-min fairness, as a function of the number of feasibility evaluations (in log-scale).

The importance of formulating single-objective resource allocation

in a computationally efficient way is further emphasized in Figure 2.14.

This figure shows the average relative error on the optimal value,
fmax−fmin

fopt
, as a function of the number of feasibility evaluations (in log-

arithmic scale). We summarize the results from Figures 2.12 and 2.13

by showing the convergence of the best scheme (BRB for the arithmetic

mean and PA for the geometric mean). The arithmetic mean seems to

be somewhat easier to maximize than the geometric mean, at least for

most relative errors. However, both system utility functions have much

worse convergence than max-min fairness. This is particularly evident

in the slope of the curves, which indicate the difference between poly-

nomial and exponential complexity.

2.5 Summary

Convex optimization problems can be solved relatively efficiently; the

optimal solution is found in polynomial time. It is therefore desirable

to identify when single-objective resource allocation problems are

convex. In general, these problems are not convex but belong to the

wider category of monotonic problems that are more difficult to solve.

However, convexity arises when the problem formulation clearly limits
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the search-space for optimal solutions (see Section 2.2). This happens

when the QoS requirements are fixed or varied over an increasing curve

(e.g., for weighted max-min fairness), under zero-forcing constraints,

and under single-antenna coordinated beamforming. These special

cases are efficiently solved by interior-point methods (e.g., using the

implementations SeDuMi [256] and SDPT3 [271]) and are useful in

practical applications.

Except from these special cases, most resource allocation problems

of practical interest have been proved to be NP-hard [104]. However,

these problems can be solved to global optimality using algorithms

specifically developed for monotonic problems. The PA and BRB algo-

rithms have been described in Section 2.3. Both algorithms iteratively

approximate the performance region and improve bounds on the opti-

mal value. Each bounding procedure is solved efficiently by formulating

it as a resource allocation problem that belongs to one of the spe-

cial convex cases. Convergence to the global optimum is guaranteed

in a finite number of iterations, but the computational complexity is

unsuitable for real-time applications. The solutions are however useful

for offline benchmarking.



3

Structure of Optimal Resource Allocation

This section will devise efficient ways of handling the general multi-

objective resource allocation problem in (1.35):

maximize
v1,...,vKr

{g1(SINR1), . . . ,gKr(SINRKr)}

subject to SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

|hH
k CkDivi|2

∀k,

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l.

(3.1)

There are many reasons why (3.1) is difficult to solve. The most impor-

tant might be: (a) conflicting interests of users; (b) strong inter-user

coupling caused by interference; (c) performance region is generally

nonconvex; (d) a large set of feasible beamforming vectors v1, . . . ,vKr ;

and (e) the nonconvexity of most scalarizations of (3.1), as shown

in Section 2. These factors are all associated with having too many

degrees-of-freedom available to optimize a fuzzy performance objective.

To tackle these troubles, Section 3.1 measures the size of the

search-space for beamforming vectors, while Section 3.2 presents some

236
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state-of-the-art beamforming parametrizations that reduce the search-

space and provide valuable insight on the structure of optimal resource

allocation. The set of tentative solutions to (3.1), the Pareto boundary,

is parameterized in Section 3.3, based on either weighted max-min fair-

ness or beamforming parametrizations. Both approaches have inherent

benefits and drawbacks. The beamforming parameterizations are then

utilized in Section 3.4 to explain when and why heuristic approaches

based on maximum ratio transmission (MRT), zero-forcing beamform-

ing (ZFBF), and signal-to-leakage-and-noise ratio (SLNR) maximiza-

tion are close-to-optimal. The section is concluded in Section 3.5 by

returning to the four general methods for solving (3.1) that were out-

lined in Section 1.6. By combining the beamforming parametrizations

(from this section) and the experience on which single-objective prob-

lems that are efficiently solvable (from Section 2), we provide general

guidelines for solving (3.1) in practice.

Matlab codes for some of the examples that are given in this section

are available for download in [19].

3.1 Limiting the Search-Space

From the problem formulation in (3.1), it seems that the search-space

for optimal resource allocation consists of all feasible combinations of

beamforming vectors v1, . . . ,vKr . As each vector is N -dimensional, this

corresponds to KrN complex-valued parameters. This is much less than

selecting Kr full N × N signal correlation matrices of arbitrary rank,

thus showing the importance of utilizing the sufficiency of single-stream

beamforming (proved in Section 1.5). The search-space can however be

further reduced by utilizing the structure of the dynamic cooperation

clusters. Observe that the actual beamforming is given by Dkvk and

therefore only
∑Kr

k=1 rank(Dk) complex-valued parameters are needed

(and the rest can be set to zero).1

The beamforming vectors are also fundamentally connected with

the channel vectors, as shown in [23, 119] under different conditions.

1 The nonzero elements in vk correspond to antennas at base stations that serve MSk.
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Lemma 3.1. Under the per-transmitter power constraints in (1.10), it

is sufficient to consider beamforming vectors vk = [vT
1k . . . vT

Ktk
]T with

vjk ∈ span
(
DH

jk[C
H
j1hj1 . . . CH

jKr
hjKr ]︸ ︷︷ ︸

=Fjk

)
∀j,k. (3.2)

In particular, vjk = 0Nj×1 for all j,k such that k �∈ Dj . The operator

span(·) denotes the column space of a matrix.

Proof. The vector vjk only appears in the SINR expressions as an inner

product with the channels DH
jkC

H
jihji for all i, thus any power allocated

outside span(Fjk) is wasted from a performance perspective. Under

per-transmitter power constraints, power allocated outside span(Fjk)

is also wasted from a power usage perspective. For k �∈ Dj , we have

Djk = 0Nj
and span(Fjk) = ∅, therefore vjk is zero.

This lemma states that every component vjk of the beamforming

vector vk can be written as a linear combination of the channels that the

signal passes through: vjk =
∑rank(Fjk)

m=1 ψjkmυjkm for some complex-

valued coordinates ψjkm and basis vectors υjkm of the column space

of Fjk. This is very natural, since signal power transmitted in other

directions is not received at neither the intended user nor the co-users.

Using Lemma 3.1, the beamforming vectors now depend on∑Kt

j=1

∑Kr

k=1 rank(Fjk) complex-valued parameters. This is strictly less

than
∑Kr

k=1 rank(Dk) whenever |Cj | < Nj for any of the base stations.2

The basis vectors υjkm can be selected arbitrarily in span(Fjk), but

some intuition can be achieved using projection matrices.

Definition 3.1 (Orthogonal Projection). The orthogonal projec-

tion matrix ΠX onto the column space of X is defined as ΠX =

X(XHX)†XH . The orthogonal projection matrix onto the orthogonal

complement of the column space of X is denoted Π⊥
X = I − ΠX.

2 In fact, rank(Fjk) ≤ |Cj | for k ∈ Dj with equality under very mild conditions on the
stochastic generation of the channel vectors.
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The basis vectors can be taken as the intended channel DH
jkC

H
jkhjk

and the projection of it onto the orthogonal complement of the channel

of co-user i, given by Π⊥
DH

jk
CH

jihji
DH

jkC
H
jkhjk. The latter is a beamform-

ing direction that will cause zero interference to co-user i �= k [23, 119].

This choice of basis vectors emphasizes that beamforming is a balance

between selfishness (maximizing signal power) and altruism (minimiz-

ing the interference generated at co-users), which has important impli-

cations when a game theory perspective is applied to multi-cell systems

[117, 140, 148]. This structure is particularly strong and intuitive in the

two-user case, as shown by the following example.

Example 3.1. For the two-user MISO interference channel (i.e., Kt =

Kr = 2 and Nj ≥ 2) with per-transmitter constraints of qj = 1, a sim-

ple and intuitive parametrization of all Pareto optimal beamforming

vectors is provided in [117, 180]. Assuming that BSj transmits to MSj

for j = 1,2, the beamforming vector for MS1 is

v1(λ1) =
√

λ1
Πh12h11

‖Πh12h11‖
+
√

1 − λ1
Π⊥

h12
h11

‖Π⊥
h12

h11‖
, (3.3)

where hjk is the channel from BSj to MSk. The projection matrices are

defined in Definition 3.1 and the parametrization of v2(λ2) is analogous.

The range of the parameters λ1 and λ2 are between zero and λ
(MRT)
k =

‖Πhki
hkk‖

‖hkk‖ for i �= k (i.e., λk ∈ [0,λ
(MRT)
k ]).

More intuition is achieved by rephrasing (3.3) in terms of maximum

ratio transmission (MRT) and zero-forcing beamforming (ZFBF). We

refer to Section 3.4 for the general definitions, but these beamforming

directions are v̄
(MRT)
k = hkk

‖hkk‖ and v̄
(ZFBF)
k =

Π⊥
hki

hkk

‖Π⊥
hki

hkk‖ in the two-user

case (k is the intended user and i is the co-user). The parametrization

in (3.3) can be reparameterized as

v1(η1) =

√
η1v̄

(MRT)
1 +

√
1 − η1v̄

(ZFBF)
1

‖√
η1v̄

(MRT)
1 +

√
1 − η1v̄

(ZFBF)
1 ‖

, (3.4)
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while the parametrization of beamforming vector v2(η2) is analo-

gous. The range of the parameters η1 and η2 is between zero and

one (i.e., η1,η2 ∈ [0,1]). Beamforming is thus a balance between self-

ish MRT and altruistic ZFBF.

Based on the parametrization in (3.3), a closed-form expression

for the performance region R was derived independently in [149] and

[181, Theorem 2]. The achievable SINR values for both users can be

written as a function of the parameters λ1 and λ2: SINR1(λ1,λ2),

SINR2(λ1,λ2). The Pareto optimal points are given by some λ∗
1,λ

∗
2 that

satisfy the condition

∂SINR1(λ1,λ2)

∂λ1

∂SINR2(λ1,λ2)

∂λ2
=

∂SINR2(λ1,λ2)

∂λ1

∂SINR1(λ1,λ2)

∂λ2
.

(3.5)

For any λ2 in the feasible range, the corresponding λ1 that satisfies

this condition is obtained by solving (3.5) as an equation. The one-

dimensional weak Pareto boundary is thus described by a function p :

[0,λ
(MRT)
2 ] → [0,λ

(MRT)
1 ] that is obtained from (3.5). It is shown in [149,

181] that p is a solution to the cubic polynomial equation

aλ3
1 + bλ2

1 + cλ1 + d = 0 (3.6)

with

a = −(‖Πh12h11‖2 + ‖Π⊥
h12

h11‖2)(C − ‖h12‖2)2,

b = (C − ‖h12‖2)(2‖Π⊥
h12

h11‖2(C + σ2
1)

+ ‖Πh12h11‖2(2σ2
1 +C −‖h12‖2)),

c = −‖Π⊥
h12

h11‖2(C + σ2
1)

2 + σ2
1‖Πh12h11‖2(2‖h12‖2 − 2C − σ2

1),

d = σ4
1‖Πh12h11‖2,

and the constant C as a function of λ2 is given by

C(λ2) =

√
λ2‖Πh21h22‖2 +

√
(1 − λ2)‖Π⊥

h21
h22‖2

(√
‖Πh21

h22‖2

λ2
−
√

‖Π⊥
h21

h22‖2

1−λ2

)(
σ2
2

‖h21‖2 +λ
(MRT)
2 −λ2

) .

(3.7)
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There are closed-form root expressions for cubic polynomials [110] and

the root of interest in (3.6) lies in the interval [0,λ
(MRT)
1 ] and satisfies

sign

(
σ2

1

‖h12‖2
+ λ1 − Cλ1

)

= sign

(
σ2

1

‖h12‖2
+ λ1 + C(1 − λ1)

)
. (3.8)

For the two-user special case, all interesting operating points on the

Pareto boundary can be found by traversing the closed-form charac-

terization above. In particular, solving any scalarization of the MOP

in (3.1) reduces to a one-dimensional line search.

This example shows that there are cases when the number of param-

eters that characterizes the beamforming vectors can be reduced far

below what is stated in Lemma 3.1. The generality of this observa-

tion is further explored in the next section, where we derive necessary

properties of the optimal beamforming.

3.2 Efficient Beamforming Parametrizations

The previous section showed that the search-space for beamforming

vectors consists of at most
∑Kr

k=1 rank(Dk) complex-valued parameters,

thus the number of parameters depends strongly on the number of

transmit antennas N . In this section, we present three state-of-the-

art parameterizations that use the problem structure to substantially

reduce the search-space for optimal beamforming. In particular, the

parameters are positive real-valued (instead of complex-valued) and the

number does not increase with N . The parametrizations also provide

important structural insights that are utilized later in this tutorial to

achieve both optimal and suboptimal beamforming.

3.2.1 Parametrization Based on Interference-Temperature

The first parametrization is based on adding new constraints to (3.1)

that dictate how much interference power the transmission to MSk

is allowed to cause to MSi, for each i �= k. These interference tempera-

ture constraints have the form |hH
i CiDkvk|2 ≤ Γki for some parameters
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Γki ≥ 0 that are called interference-temperature limits. This termi-

nology originates from underlay cognitive radio [102], where the

interference-temperatures might be specified by a regulatory agency

(at least for secondary systems). This topic is further described in

Section 4.8.

In this subsection we allow for arbitrary selection of the parameters

Γki. In addition, we include the per-user power constraints in (1.5),

where each power constraint is decomposed as vH
k Qlkvk ≤ qlk ∀l,k

and the parameters qlk satisfy
∑Kr

k=1 qlk ≤ ql ∀l. The interference-

temperature and per-user power constraints can transform (3.1) into

maximize
v1,...,vKr

{g1(SINR1), . . . ,gKr(SINRKr)}

subject to SINRk =
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

Γik
∀k,

|hH
i CiDkvk|2 ≤ Γki ∀k,i, i �= k,

vH
k Qlkvk ≤ qlk ∀l,k,

(3.9)

where SINRk is the exact SINR when all interference-temperature con-

straints are active — it is otherwise a lower bound.

This amended multi-objective optimization problem allows for

decomposition into Kr independent single-objective problems [235,

325].

Theorem 3.2. The unique optimum of the multi-objective problem

in (3.9) is achieved by independently solving the Kr convex problems

maximize
vk

|hH
k CkDkvk|2

subject to |hH
i CiDkvk|2 ≤ Γki ∀i �= k,

vH
k Qlkvk ≤ qlk ∀l.

(3.10)

Furthermore, every strong Pareto optimal point g ∈ ∂R is achieved

by solving (3.9) in this manner for some nonnegative parameters

{qlk}L,Kr

l=1,k=1 and {Γki}Kr,Kr

k=1,i=1,i�=k.

Proof. The decomposition into single-user problems follows immedi-

ately, since each objective and constraint in (3.10) is only affected
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by one of the beamforming vectors. Note that maximizing gk(SINRk)

is equivalent to maximizing |hH
k CkDkvk|2 in this case. Further-

more, assume that v∗
1, . . . ,v

∗
Kr

achieves a certain strong Pareto opti-

mal point g. If we select the parameters as Γki = |hH
i CiDkv

∗
k|2 and

qlk = (v∗
k)

HQlkv
∗
k, then v∗

k must be a feasible and optimal solution

to (3.10) (otherwise we contradict Definition 1.10 of strong Pareto

optimality).

Theorem 3.2 provides a parametrical characterization of the Pareto

boundary of R and generalizes the prior work in [235, 325] that only

considered interference channels. The number of parameters is clarified

by the following corollary.

Corollary 3.3. The parametrization in Theorem 3.2 requires select-

ing Kr(Kr − 1) nonnegative3 interference-temperature limits and∑L
l=1(νl − 1) per-user power limits, where νl is the number of users

affected by the lth power constraint (i.e., those with Qlk �= 0N ).

Proof. Without loss of generality, we can set qlk = 0 whenever

Qlk = 0N and calculate one parameter as qli = ql −∑k �=i qlk for

each l.

If all power constraints affect all users (i.e., νl = Kr ∀l), then Corol-

lary 3.3 shows that we need to select (L + Kr)(Kr − 1) parameters in

total. The other extreme is when each power constraint only affects one

user (e.g., the interference channel [325] with νl = 1 ∀l), then we only

need to select Kr(Kr − 1) parameters.

For each parameter selection, the corresponding beamforming

vectors are calculated by solving Kr single-user problems. These

convex optimization problems will in general not have closed-form

solutions (but can be solved by interior-point methods), thus The-

orem 3.2 provides an indirect beamforming parametrization. A

3 There is an upper bound on how much interference power that can be generated at a given
user under the power constraints, but observe that the sets [0,∞) and [0, c] for 0 < c < ∞
are equal in terms of complexity (i.e., there are bijective functions between the sets).
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closed-form parametrization can however be achieved by replacing the

interference temperature constraints with an equal number of angles

that geometrically specify the location of the beamforming vectors;

we refer to [235] for details as it is hard to describe this approach

mathematically.

It should also be noted that Theorem 3.2 only provides necessary

conditions for achieving the Pareto boundary; it is unlikely to find exact

Pareto optimal points by random parameter selection. The strength of

the parametrization is that it decouples the multi-objective resource

allocation into independent and convex single-user problems, which

enables distributed algorithms where the parameters are iteratively

updated to move toward the Pareto boundary. This is further described

in Section 4.2 and in [325].

3.2.2 Parametrization Based on Channel Gain Regions

The components vjk of the optimal beamforming vector vk for user

k belong to subspaces only spanned by local CSI (i.e., channel vec-

tors from BSj to users k ∈ Cj) according to Lemma 3.1. The optimal

choices within these subspaces depend however on the decisions taken

by the other base stations. In other words, the main difficulty in multi-

cell resource allocation is not the lack of global CSI, but the need for

coordinated parameter selection and decision making.

A closed-form beamforming parametrization that simplifies coordi-

nation can be obtained directly from the channel gain regions (and the

approach taken in Lemma 1.7).

Theorem 3.4. Each Pareto optimal point is achieved by beamforming

vectors vk(λk,µk) =
√

pkv̄k with

v̄k = vmax

(
Kr∑

i=1

λkiekiD
H
k CH

i hih
H
i CiDk −

L∑

l=1

µlkQlk

)
, (3.11)

pk =

∑L
l=1 µlkqlk∑L

l=1 µlkv̄
H
k Qlkv̄k

, (3.12)
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where eki =

{
+1, k = i,

−1, k �= i,
and the operator vmax gives the dominating

unit-norm eigenvector.4 The parameters λk1, . . . ,λkKr
,µ1k, . . . ,µLk ≥ 0

are selected to satisfy
∑Kr

i=1 λki = 1.

Proof. It is shown in Lemma 1.5 that the beamforming vectors which

attain the Pareto boundary of the performance region also attain the

boundary of the channel gain regions Ωk in directions e1, . . . ,eKr . In

the proof of Lemma 1.7 it is shown that the boundary of Ωk is achieved

by a beamforming vector vk which solves

maximize
vk

Kr∑

i=1

λi|hH
i CiDkvk|2 subject to vH

k Qlkvk ≤ qlk ∀l. (3.13)

In order to achieve the boundary of the channel gain region Ωk in direc-

tion ek = [−1 . . . − 1 + 1 − 1 . . . − 1]T (with a plus one at element k),

the weights λ1, . . . ,λKr need to have the following signs

sign(λi) =

{
+1, i = k,

−1, otherwise.
(3.14)

The stationarity KKT condition (2.13) for (3.13) implies that v̄k is the

eigenvector corresponding to the largest eigenvalue (this eigenvalue is

zero) of
∑Kr

i=1 λkiekiD
H
k CH

i hih
H
i CiDk −∑L

l=1 µlkQlk, where µlk is the

Lagrange multiplier associated with the lth per-user power constraint.

Strong duality finally implies
∑L

l=1 µlkqlk = pk
∑Kr

i=1 λi|hH
i CiDkv̄k|2 =

pk
∑L

l=1 µlkv̄
H
k Qlkv̄k, from which (3.12) follows.

The advantage of the explicit parametrization in Theorem 3.4

is that the operational meaning of the weights at each transmitter

is clear. The larger the λki-weight, the more important the corre-

sponding MSi is. Either the positive impact on the signal power is

increased (if i = k) or the negative impact on the interference power

is reduced (if i �= k). In addition, the larger the µlk-weight, the more

4 The dominating eigenvector in Theorem 3.4 can be computed as v̄k = (
∑L

l=1 µlkQlk +∑Kr
i=1 λkiD

H
k CH

i hih
H
i CiDk)†Dkhk.
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the beamforming direction v̄k is shaped by the corresponding power

constraint. The disadvantage of the parametrization is that it has in

total Kr(L + Kr − 1) parameters to describe the Kr − 1 dimensional

Pareto boundary. The number of parameters reduces to Kr(Kr − 1)

when there is only a total power constraint per user [180], but it still

suggests that more efficient parametrizations with less parameters exist.

Remark 3.1 (Extensions). Another advantage of the parametriza-

tion in Theorem 3.4 is that it can be extended to scenarios in which

multiple users are interested in the same data; for example, a multi-

cast scenario in which the data stream i from BSj is intended for two

receivers MSk and MSk+1. The parametrization in (3.11) can then be

reused with eki = ek+1 i = +1 and all other eℓi = −1 for ℓ �= k,k + 1.

This scenario is further discussed in Section 4.4.

3.2.3 Parametrization Based on Uplink–Downlink Duality

A very compact beamforming parametrization can be achieved by

exploiting the uplink–downlink duality described in Subsection 2.2.2.

In particular, recall from Corollary 2.8 that the optimal beamforming

vectors v∗
k are equal (up to a scaling factor) to

v̄∗
k =

(
L∑

l=1

µl

ql
Qlk +

Kr∑

i=1

λi

σ2
i

DH
k CH

i hih
H
i CiDk

)†

DH
k CH

k hk, (3.15)

for any resource allocation problem with fixed QoS requirements.

Observe that the QoS constraints themselves are not present in (3.15),

but only implicitly represented by the optimal Lagrange multipliers

λk,µl. Corollary 2.8 therefore provides a necessary condition: every fea-

sible point in R can be achieved using beamforming directions of the

type (3.15) for some choice of Lagrange multipliers. The parametriza-

tion in this subsection utilizes this relation in the opposite direction: for

different choices of Lagrange multipliers, using beamforming directions

of the type (3.15) (along with optimal power allocation) can achieve

any point in R. The following theorem originates from [16].
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Theorem 3.5. Every feasible point g ∈ R is achieved by beamforming

vectors vk =
√

pkv̄k for all k, where

v̄k =
Ψ†

kD
H
k hk

‖Ψ†
kD

H
k hk‖

, (3.16)

[
p1 . . . pKr

]
=
[
γ1σ

2
1 . . . γKrσ

2
Kr

]
M†, (3.17)

Ψk =

(
L∑

l=1

µl

ql
Qlk +

Kr∑

i=1

λi

σ2
i

DH
k CH

i hih
H
i CiDk

)
, (3.18)

γk =
λk

σ2
k

hH
k Dk

(
Ψk − λk

σ2
k

DH
k CH

k hkh
H
k CkDk

)†
DH

k hk,

(3.19)

[M]ik =

{
|hH

i CiDiv̄i|2, i = k,

−γk|hH
k CkDiv̄i|2, i �= k,

(3.20)

for some nonnegative parameters {λk}Kr

k=1 and {µl}L
l=1. The Moore–

Penrose pseudo-inverse is denoted with (·)† and [M]ik is the ikth ele-

ment of M ∈ RKr×Kr .

Proof. The normalized direction v̄k = Ψ†
kD

H
k hk/‖Ψ†

kD
H
k hk‖ of vk is

given by Corollary 2.8. By exploiting the uplink–downlink duality, the

normalized receive combining vectors {v̄k}Kr

k=1 achieve the uplink SINRs

γk in (3.19), whose expression is achieved by multiplying (2.39) with

hH
k Dk from the left and then dividing by hH

k Dkv̄k.

To determine pk for k = 1, . . . ,Kr, observe that SINRk = γk is also

fulfilled in the downlink. Plugging vk =
√

pkv̄k into the expression for

SINRk gives the system of linear equations

pk|hH
k CkDkv̄k|2 = γk

(
σ2

k +
∑

i�=k

pi|hH
k CkDiv̄i|2

)
∀k (3.21)

that can be expressed and solved as in (3.17).



248 Structure of Optimal Resource Allocation

This theorem provides an explicit beamforming parametrization

that can achieve any point in the performance region by selecting

Kr + L nonnegative parameters. The number of parameters can be

reduced if we are only interested in the Pareto boundary.

Corollary 3.6. Every Pareto optimal point g ∈ ∂+R is achieved by

the parametrization in Theorem 3.5 for some nonnegative parameters

{λk}Kr

k=1 and {µl}L
l=1 satisfying

∑Kr

k=1 λk = 1 and
∑L

l=1 µl = 1.

The modified beamforming vectors ṽk = vk/
√

ς ∀k, with ς =

maxl(
∑

k
vH

k
Qlkvk

ql
), will always be feasible (i.e., satisfy all constraints).

Proof. The modified beamforming {ṽk} is feasible by construction and

only modifies suboptimal and infeasible strategies since Theorem 1.9

shows that at least one power constraint is satisfied with equality at

the optimum. Furthermore, we always have λk,µl > 0 for some k, l

as all nonzero SINR constraints and at least one power constraint

are active. We can thus rescale the Lagrange multipliers to satisfy∑Kr

k=1 λk +
∑L

l=1 µl = 2, which will not remove any solutions since all

expressions in Theorem 3.5 are unaffected by a common scaling of

all Lagrange multipliers. In addition, the dual function in (2.33) is∑Kr

k=1 λk −∑L
l=1 µl and strong duality implies that it is zero at the

optimum (as it is dual to a feasibility problem). The combination of

these two constraints implies
∑Kr

k=1 λk = 1 and
∑L

l=1 µl = 1.

This corollary strengthen the initial parametrization in Theorem 3.5

by showing that only Kr + L − 2 parameters between zero and one

need to be selected — the remaining two parameters are uniquely deter-

mined by the two sum constraints in Corollary 3.6. The number of

parameters only scales linearly with the number of users Kr and power

constraints L, thus it generally includes much fewer parameters than

those in the previous two subsections (where the number of parameters

generally scales as KrL + K2
r ). On the other hand, the parametrization

does not exhibit the same distributed property as the previous ones —

all parameters essentially affect the beamforming to all users.

The parametrization only provides a necessary condition for Pareto

optimality, but there exist special cases when it is also sufficient. An
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example is single-cell transmission with a total power constraint [39],

or any multi-cell scenario with only one power constraint.

Corollary 3.7. Suppose there is only one power constraint (i.e.,

L = 1), then every parameter selection that satisfies the sum constraints

in Corollary 3.6 will use full power and achieve a Pareto optimal point.

Proof. For any given set of parameters, the transmit strategy in The-

orem 3.5 solves (2.33) for g−1
k (r∗

k) = γk, which is the dual problem to

problem (2.29). If L = 1, it is also the dual problem to (with µ1 = 1)

minimize
vk ∀k

Kr∑

k=1

1

q1
vH

k Q1kvk − µ1 (3.22)

subject to
1

σ2
kγk

|hH
k CkDkvk|2 ≥

(
1 +

∑

i�=k

1

σ2
k

|hH
k CkDivi|2

)
∀k.

Therefore,
∑Kr

k=1 λk − µ1 = 0 implies
∑Kr

k=1vH
k Qlkvk = ql due to strong

duality. In other words, Theorem 3.5 always produces an operating

point γ = [γ1 . . . γKr ]
T ∈ R that can only be attained using full power.

Furthermore, suppose for the purpose of contradiction that γ �∈
∂+R, thus there exists r ∈ R with r > γ. Based on the feasible beam-

forming vectors {ṽk} that attain r, we can find ς < 1 such that {√
ςṽk}

also yields strictly better performance than γ. This transmit strat-

egy would achieve a strictly smaller value in (3.22) than the transmit

strategy in Theorem 3.5, which is a contradiction. Consequently, every

parameter selection gives a point on the weak Pareto boundary.

As the parameters equal the Lagrange multipliers for resource allo-

cation with fixed QoS requirements, they have the same interpretation:

λk is the (normalized) transmit power from MSk in the dual uplink and

µl is the (normalized) uplink noise variance. Intuitively, this means that

a relative increase in λk should improve for MSk and degrade for the

other users, while a relative increase in µl should degrade for all users.

As the parameter µl is associated with the lth power constraint, the

KKT conditions imply that it should be zero for all inactive constraints.

The intuition is confirmed by the following corollary.
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Corollary 3.8. The parameters in Theorem 3.5 have the following

impact on the performance of MSk:

∂

∂λi
gk(SINRk)

{
≥ 0, k = i,

≤ 0, k �= i,

∂

∂µl
gk(SINRk) ≤ 0 ∀l.

(3.23)

Proof. The corollary follows from differentiating the expression for

SINRk in (3.19), in conjunction with the monotonicity of gk(·).

To summarize, Theorem 3.5 provides a very compact beamforming

parametrization: only Kr + L − 2 parameters are required to explic-

itly characterize beamforming vectors that can attain any point on

the Pareto boundary. The characterization does generally not provide

a sufficient condition for Pareto optimality, but numerical evaluation

has shown very good performance under heuristic parameter selec-

tion [18] — there is a strong connection to the heuristic SLNR maximiz-

ing beamforming described in Subsection 3.4.3. The parametrization

also shows that the optimal beamforming directions are achieved by

taking the channel direction DH
k hk and rotating it using a matrix Ψk

whose terms determine to which extent power constraints and inter-

user interference are taken into account.

3.3 Necessary and Sufficient Pareto Boundary

Parametrization

Recall that the Pareto boundary represents all optimal solutions

to (3.1). The beamforming parameterizations in the previous section

provides necessary conditions for Pareto optimality, but not sufficient

conditions (except for L = 1, see Corollary 3.7). This means that each

Pareto optimal point is achieved by some set of parameters, but each

set of parameters will not give a Pareto optimal point. A necessary

and sufficient characterization of the Pareto boundary can however be

achieved as follows, based on the line of work in [16, 126, 185, 325].
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Theorem 3.9. Each point on the weak Pareto boundary of R is

achieved by solving a weighted max-min fairness problem (e.g., an FPO

problem with ak = 0 ∀k, see Example 2.8) for some unique weighting

vector w = [w1 . . . wKr ]
T ∈ R

Kr
+ with

∑Kr

k=1 wk = 1. Furthermore, every

such weighting vector gives a point on the weak Pareto boundary.

Proof. The first part follows from Lemma 1.10, where fairness-profile

optimization was used to constructively prove that every weak Pareto

optimal point is achieved by some system utility function. The unique-

ness follows from that R is normal. The second part is trivial since

the weighted max-min fairness problem is a scalarization of the multi-

objective optimization problem in (3.1).

This characterization has Kr parameters between zero and one,

but we only need to select Kr − 1 parameters due to the unit sum

constraint. Therefore, Theorem 3.9 is more powerful than the beam-

forming parameterizations in Section 3.2, both in terms of guarantee-

ing a Pareto optimal point for any parameter selection and by having

fewer parameters. The drawback is that a fairness-profile optimization

problem needs to be solved for every parameter selection, which is a

quasi-convex problem and has polynomial computational complexity

to reach an accuracy of δ > 0 (see Subsection 2.2.3). On the contrary,

the beamforming parametrizations in Section 3.2 are based on closed-

form expressions that enables immediate calculation of the beamform-

ing vectors and user performance achieved by any parameter selection.

In other words, there are two main approaches to generate/

approximate the Pareto boundary of R (e.g., for visualization):

(1) Calculate sample points on the Pareto boundary by applying

Theorem 3.9 on a fine grid of weighting vectors w;

(2) Calculate sample points of the whole performance region

using any of the beamforming parametrizations in Section 3.2

over a fine grid of parameters. Then generate the Pareto

boundary by taking the convex hull of these points.
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We can typically afford many more sample points with the second

approach than with the first approach, because the point generation

is based on closed-form expressions. In fact, the accuracy of the sec-

ond approach is essentially limited by the storage capability and the

computational complexity of the convex hull operation, and not by

the computation of feasible points. The beamforming parametrization

in Subsection 3.2.3 is recommended when using the second approach,

because it has the smallest number of parameters and thus less redun-

dancy in the search-space.

To complete the picture, note that there are special cases when the

Pareto boundary can be characterized in a necessary and sufficient man-

ner without the need for numerically solving an optimization problem

for each point. Example 3.1 showed that this is possible for the two-user

interference channel with per-transmitter power constraints [149, 181]

and Corollary 3.7 showed it for L = 1.

3.3.1 Numerical Illustrations

Next, we visualize the two approaches for generating the Pareto bound-

ary of R. We consider a simple scenario with Kt base stations and per-

transmitter power constraints with ql = 10 (i.e., 10 dBm). Each base

station has one user in its vicinity, but all Kr = Kt users are served by

global joint transmission (see Example 1.3). The channels are gener-

ated as uncorrelated Rayleigh fading and the average single-user SNR
E{ql‖hjk‖2

2}
σ2

k

is qlNj for the user close to BSj and ql
Nj

3 for other users.

The information rate gk(SINRk) = log2(1 + SINRk) is considered.

Figure 3.1 considers the case with Kt = Kr = 2 and shows two

independent channel realizations. The solid curve shows the (approx-

imate) Pareto boundary generated by FPO using Theorem 3.9 with

1001 equally spaced weighting vectors. The shaded area shows the

sample points generated by the beamforming parametrization in Sub-

section 3.2.3 when the Kr + L − 2 = 2 parameters were varied in

steps of 0.01. The optimal points with different system utility func-

tions are also indicated. These points are close together for the con-

vex region in Figure 3.1(a) and spread out for the nonconvex region

in Figure 3.1(b). Observe that the sample points generated by the
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Fig. 3.1 Performance regions for two different channel realizations under global joint
transmission with two antennas per base station. The Pareto boundaries are approximated
in two ways: (1) Solving FPO problems over a grid of weighting vectors; and (2) Generating
sample points using a beamforming parametrization.
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beamforming parametrization are concentrated in the area where these

system utility functions are located, but the convex hull of the points

will closely approximate the shape of the whole region. We will return

to this example in Section 4 to visualize the effect of different system

model generalizations.

Figure 3.2 considers the case with Kt = Kr = 3 and shows two

independent channel realizations. (a) and (c) show the (approximate)

Pareto boundary generated by FPO using Theorem 3.9 and a fine grid

of weighting vectors. (b) and (d) show the convex hull of the sam-

ple points generated by the beamforming parametrization in Subsec-

tion 3.2.3 when the Kr + L − 2 = 4 parameters were varied in steps of

0.03. On the one hand, the grid achieved by the first approach is some-

what easier to interpret and also provides a more accurate visualization

0

2

4

6

8

0
2

4
6

8

0

2

4

6

8

10

log2(1+SINR2)

lo
g

2
(1

+
S

IN
R

3
)

log2(1+SINR1)

(a) Channel Realization 1, Approach 1

0

2

4

6

8

0
2

4
6

8

0

2

4

6

8

10

log2(1+SINR2)

lo
g

2
(1

+
S

IN
R

3
)

8

9

10

11

12

13

14

15

16

17

18

log2(1+SINR1)

(b) Channel Realization 1, Approach 2

0

2

4

6

8

0
2

4
6

8

0

2

4

6

8

10

log2(1+SINR2)

lo
g

2
(1

+
S

IN
R

3
)

log2(1+SINR1)

(c) Channel Realization 2, Approach 1
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Fig. 3.2 Performance regions for two different channel realizations under global joint trans-
mission with three antennas per base station. The Pareto boundaries are approximated in
two ways: (1) Solving FPO problems over a grid of weighting vectors; and (2) Generating
sample points using a beamforming parametrization. The color bar shows the sum utility.
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when the performance region is nonconvex, which is the case for the

second channel realization. On the other hand, the second approach

requires much less computational efforts (and roughly half the running

time was spent on generating the convex hull).

3.4 Heuristic Coordinated Beamforming

This section will discuss heuristic approaches for solving (3.1), for the

purpose of achieving practical low-complexity algorithms. To bring

some perspective, we begin with describing a related problem:

A classic scenario in signal processing is the detection of a scalar

data symbol sk which is observed under channel distortion, additive

interference, and white noise [281]. If multiple channel observations are

available for a certain data symbol (e.g., from multiple base station

antennas in the multi-cell uplink), this scenario can be modeled as

y =

Kr∑

k=1

hksk + n, (3.24)

where hk is the channel for symbol sk, E{sk} = 0, E{|sk|2} = 1, and

E{nnH} = σ2I. The symbol sk can be estimated from the vector-valued

observation y as ŝk = v̄Hy using a linear receive combining filter v̄.

Three classic (coherent) receive combining techniques are:

(1) Maximum ratio combining (or matched filtering): Weighs and

aligns the observations as v̄ = 1
‖hk‖2

2+σ2 hk to maximize the

ratio between received signal power and noise power.

(2) Zero-forcing filtering : Removes interference by projecting the

observations as v̄ =
(∑Kr

i=1hih
H
i

)†
hk, which is the orthogo-

nal complement of the interfering signals. This maximizes the

ratio between received signal power and interference power.

(3) Wiener filtering (or linear MMSE filtering): The MSE-

minimizing v̄ = (
∑Kr

i=1hih
H
i + σ2I)−1hk that balances

between maximizing signal power and suppressing

interference.

For fixed and known channel and noise characteristics, the prop-

erties of these combining techniques are relatively easy to analyze.

This holds even in large and complex systems, because the filtering
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is an internal signal processing procedure at the receiver and thus

independent of the processing at other receivers. The Wiener filter is

derived as the one maximizing the SINR (and minimizing the MSE)

in the filtered signal. This is equivalent to maximum ratio combining

in noise-limited scenarios (i.e., when the noise is very strong compared

with the interference) and equivalent to zero-forcing in interference-

limited scenarios (i.e., when the interference is very strong).

This section explores the relationship between the aforementioned

linear receive combining techniques and the linear beamforming vec-

tors in the downlink resource allocation problem (3.1). Beamforming

is basically a linear transmit filtering, but it is more difficult to

optimize than receive filtering. The main reason is that the beam-

forming affects the channel characteristics (directivity and gain) of

the intended and interfering signals, while these are fixed under

receive combining. Nevertheless, there are important connections estab-

lished by the uplink–downlink duality in [30, 226, 282, 283, 315]; see

Subsection 2.2.2. The counterparts to the three classic receive combin-

ing techniques are maximum ratio transmission (MRT), zero-forcing

beamforming (ZFBF), and signal-to-leakage-and-noise ratio maximiz-

ing (SLNR-MAX) beamforming (also known as transmit Wiener fil-

ter [115]). These are described in the remainder of this section and

the beamforming parametrization in Subsection 3.2.3 is used to prove

under which conditions these heuristic strategies are actually optimal.

For clarity, we mainly consider a multi-cell scenario where the power

constraints and cooperation clusters enable derivation of closed-form

expressions: coordinated beamforming with per-transmitter power con-

straints (see Example 1.2 and (1.10)). The multi-objective resource

allocation problem in (3.1) then becomes

maximize
{v̄jkk}Kr

k=1,{pjkk}Kr
k=1

{g1(SINR1), . . . ,gKr(SINRKr)}

subject to pjkk ≥ 0, ‖v̄jkk‖2 = 1 ∀k,

SINRk =
|√pjkkh

H
jkkCjkkv̄jkk|2

σ2
k +
∑
i�=k

|√pjiih
H
jik

Cjikv̄jii|2
∀k,

∑

k∈Dj

pjkk ≤ qj ∀j,

(3.25)
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where jk is the index of the base station that serves MSk and the beam-

forming vectors are decomposed as vk = [0 . . . 0
√

pjkkv̄
T
jkk 0 . . . 0]T .

Here, v̄jkk ∈ CNjk
×1 is theunit-normbeamformingdirectionandpjkk ≥ 0

is the power allocated byBSjk
for transmission toMSk. Theorem3.5 gives

the following parametrization of the beamforming directions.

Corollary 3.10. In coordinated beamforming with per-transmitter

constraints, each feasible point g ∈ R is achieved by beamforming direc-

tions v̄jkk = Ψ−1
jkkhjkk/‖Ψ−1

jkkhjkk‖2, where

Ψjkk =

(
µjk

qjk

INjk
+

Kr∑

i=1

λi

σ2
i

CH
jkihjkih

H
jkiCjki

)
∀k, (3.26)

for some parameters {λk}Kr

k=1 and {µj}Kt

j=1 between zero and one.

This corollary will be useful when analyzing the optimality of heuris-

tic beamforming strategies.

3.4.1 Maximum Ratio Transmission (MRT)

The beamforming concept of maximum ratio transmission was intro-

duced in [159] to maximize the SNR
pjkk

σ2
k

|hH
jkkv̄jkk|2 at MSk in multi-

antenna transmission. Variations on this concept have appeared even

earlier; see [115] for an overview.

Definition 3.2 (Maximum Ratio Transmission). The beamform-

ing directions

v̄
(MRT)
jkk =

hjkk

‖hjkk‖2
∀k (3.27)

are called maximum ratio transmission (MRT).

MRT is the counterpart of maximum ratio combining in receive

processing; in fact, the latter name is sometimes used to describe both

techniques, although it may cause confusion. MRT can be viewed as a

matched filter where the gain of each entry in v̄
(MRT)
jkk equals the relative

strength of the corresponding channel coefficient in hjkk and the phase
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makes the signal contribution from each channel coefficient add up

constructively. The inner product |hH
jkkv̄

(MRT)
jkk | is therefore maximized,

which protects the useful signal against channel fading. The direction

of the MRT vector is illustrated in Figure 3.3, while Figure 3.4 shows

Fig. 3.3 Illustration of the beamforming directions with maximum ratio transmission
(MRT), zero-forcing beamforming (ZFBF), and signal-to-leakage-and-noise ratio maximiz-
ing (SLNR-MAX) beamforming. MRT follows the channel of the intended user, ZFBF is
orthogonal to the channel of nonintended users, and SLNR-MAX balances between these
extremes (and moves between them depending on the SNR).

Fig. 3.4 Illustration of the channel gain region Ω1 of the signal intended for User 1.
The boundary points represent different beamforming directions. In particular, the upper
boundary in direction e1 = [+1 − 1]T contains maximum ratio transmission (MRT), zero-
forcing beamforming (ZFBF), and signal-to-leakage-and-noise ratio maximizing (SLNR-
MAX) beamforming. MRT maximizes the channel gain of User 1, ZFBF causes zero inter-
ference to User 2, and SLNR-MAX balances between these extremes (and moves between
them depending on the SNR).
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that MRT equals the boundary point in the channel gain region that

maximizes the gain of the intended user.

Analytic expressions for the average performance with MRT can

be derived, for example, for point-to-point systems [63, 178, 317]. By

observing that v̄
(MRT)
jkk is the dominating eigenvector of hjkkh

H
jkk, MRT

can easily be extended to scenarios where this outer product is not

known perfectly at the transmitter; the average SNR can be maximized

by using the dominating eigenvector of E{hjkkh
H
jkk} instead [214].

We have the following result regarding the optimality of MRT.

Corollary 3.11. In coordinated beamforming with per-transmitter

constraints, each feasible point g ∈ R is asymptotically achieved by

v̄
(MRT)
jkk as

qjk

σ2
i

→ 0 ∀k,i (for some feasible power allocation {pjkk}Kr

k=1).

Proof. The beamforming direction in Corollary 3.10 can be equally

expressed as v̄jkk = Ψ̃−1
jkkhjkk/‖Ψ̃−1

jkkhjkk‖2, where Ψ̃jkk = (µjk
INjk

+
∑Kr

i=1
qjk

λi

σ2
i

CH
jkihjkih

H
jkiCjki) → µjk

INjk
as

qjk

σ2
i

→ 0 (since 0 ≤ λi ≤
1 ∀k). This is a scaled identity matrix and will not affect the beam-

forming direction, thus v̄jkk → hjkk

‖hjkk‖2
= v̄

(MRT)
jkk .

The corollary shows that MRT provides the optimal beamforming

directions for (3.25) in the low-SNR regime, irrespectively of which

point in the performance region that we are interested in (or which

single-objective problem that we want to solve). The exact operating

point is determined by the power allocation, which is further discussed

in Subsection 3.4.4. Furthermore, MRT achieves the corner points of the

Pareto boundary, [0 . . .0 uk 0 . . .0]T , where the system only transmits to

MSk and uses full power pjkk = qjk
(this holds in any SNR regime).

3.4.2 Zero-Forcing Beamforming (ZFBF)

Zero-forcing refers to signal processing that completely eliminates inter-

ference. This can be achieved at the transmitter-side by selecting

beamforming vectors that are orthogonal to the channels of nonin-

tended users. This idea has been used in wireless communications for

at least two decades, under alternative names such as pre-decorrelation,
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pre-equalization, channel inversion, and interference nulling. Some early

works are [151, 186, 285] and many more references are available

in [115]. A theoretical motivation is that zero-forcing simultaneously

minimizes the MSE between the received signal and the transmitted

symbol sk,

MSEk = E

{∣∣∣∣∣

Kr∑

i=1

√
pjiih

H
jik

Cjikv̄jiisi + nk

︸ ︷︷ ︸
=yk (received signal at MSk)

−sk

∣∣∣∣∣

2}
≥ E{|nk|2}, (3.28)

in the ideal case without any transmit power constraints. Zero-forcing

is only applied for the active users, which are defined as follows.

Definition 3.3 (Active Users). The set S ⊆ {1, . . . ,Kr} is called a

scheduling set if pjkk = 0 for all users k �∈ S. Users with indices in S are

active, while all other users are inactive.

The definition of zero-forcing beamforming is based on [23, 203].

Definition 3.4 (Zero-Forcing Beamforming). The beamforming

directions

v̄
(ZFBF)
jkk =

[
hjkk HH

S,k

]([hH
jkk

HS,k

][
hjkk HH

S,k

])−1



1

0
...




∥∥∥∥∥∥∥

[
hjkk HH

S,k

]([hH
jkk

HS,k

][
hjkk HH

S,k

])−1



1

0
...




∥∥∥∥∥∥∥
2

∀k ∈ S

(3.29)

are called zero-forcing beamforming (ZFBF) toward the users in the

scheduling set S. The matrix HS,k ∈ C(|S∩Cjk
|−1)×N of user k ∈ S con-

tains the channels hH
jkiCjki for co-users i ∈ S ∩ Cjk

\ {k} that BSjk
coor-

dinates interference toward. ZFBF can be equivalently defined as

v̄
(ZFBF)
jkk =

Π⊥
HH

S,k

hjkk

‖Π⊥
HH

S,k

hjkk‖2

=

(
INjk

− HH
S,k(HS,kH

H
S,k)

−1HS,k

)
hjkk∥∥(INjk

− HH
S,k(HS,kH

H
S,k)

−1HS,k

)
hjkk

∥∥
2

.

(3.30)
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ZFBF is the counterpart of zero-forcing filtering in receive pro-

cessing. To cancel all inter-user interference, the beamforming direc-

tions v̄
(ZFBF)
jkk are achieved by projecting the channel vector hjkk of the

intended user onto the orthogonal complement Π⊥
HH

S,k

of the subspace

spanned by rows of HS,k (the channels of the nonintended users); see

Figure 3.3. The orthogonal complement is only nonempty if the nonin-

tended users are fewer than Njk
, which is the dimension of the beam-

forming vector. This explains the need to consider the scheduling set S
in Definition 3.4; interference need only to be canceled for active users.

The existence of ZFBF can be guaranteed as follows.

Lemma 3.12. ZFBF exists if the channel vectors hjkk of the users k ∈
S ∩ Cj are linearly independent for all base stations j. This is typically

satisfied whenever |S ∩ Cj | ≤ Nj ∀j.

Proof. This follows directly from the fact that linear independence

means that no channel vector lies in the span of the other channel

vectors.

As noted in the lemma, this condition is satisfied whenever the base

station is not coordinating interference to more (active) users than its

number of transmit antennas. In this case, one can argue that channel

vectors generated independently from (perhaps unknown) stochastic

distributions with high-rank covariance matrices are nonzero and lin-

early independent with probability one.

ZFBF has a practically appealing structure as the interference

cancelation transforms the SINR of each user into an SNR; this is

illustrated in Figure 3.4 where ZFBF equals the boundary point in the

channel gain region that maximizes the channel gain while causing zero

interference to nonintended users. Recall from Subsection 2.2.1 that

even very difficult multi-cell resource allocation problems become solv-

able under zero-forcing assumptions — although closed-form expres-

sions as the one in Definition 3.4 are difficult to obtain under arbitrary

power constraints [297]. If zero-forcing constraints are part of the orig-

inal problem formulation, then zero-forcing transmission is certainly
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optimal; however, the optimality of ZFBF can be shown under other

conditions.

Corollary 3.13. In coordinated beamforming with per-transmitter

constraints, consider any feasible point g ∈ R where only a subset S
of the users is active (i.e., gk > 0 for k ∈ S and gk = 0 for k �∈ S). If S
satisfies Lemma 3.12, then g is asymptotically achieved by v̄

(ZFBF)
jkk as

qj → ∞ ∀j (for some feasible power allocation {pjkk}Kr

k=1).

Proof. The beamforming direction in Corollary 3.10 can be

equally expressed as v̄jkk = Ψ̃−1
jkkhjkk/‖Ψ̃−1

jkkhjkk‖2 for Ψ̃jkk = (INjk
+

qjk
UΛUH), where UΛUH =

∑Kr

i=1
λi

µjk
σ2

i

CH
jkihjkih

H
jkiCjki denotes the

eigen decomposition. Let λ̃m be the mth largest eigenvalue and um be

the corresponding eigenvector, then observe that

v̄jkk =
(INjk

+ qjk
UΛUH)−1hjkk

‖(INjk
+ qjk

UΛUH)−1hjkk‖2

=

((
INjk

−
rank(Λ)∑

m=1
umuH

m

)
+

rank(Λ)∑
m=1

1
λ̃mqjk

+1
umuH

m

)
hjkk

∥∥∥∥∥

((
INjk

−
rank(Λ)∑

m=1
umuH

m

)
+

rank(Λ)∑
m=1

1
λ̃mqjk

+1
umuH

m

)
hjkk

∥∥∥∥∥
2

→

(
INjk

−
rank(Λ)∑

m=1
umuH

m

)
hjkk

∥∥∥∥∥

(
INjk

−
rank(Λ)∑

m=1
umuH

m

)
hjkk

∥∥∥∥∥
2

= v̄
(ZFBF)
jkk

(3.31)

as qj → ∞ ∀j while the noise power is fixed.5 This expression is well-

defined as rank(Λ) < Njk
whenever S satisfies Lemma 3.12.

5 This is not necessarily the case when the noise term includes uncoordinated interference
that is amplified when the transmit power is increased. We can still expect ZFBF to have an
approximately optimal structure in practice, but one should be careful when simulating
the performance in the high-SNR regime as large multi-cell systems are fundamentally
interference-limited; see [164].
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This means that ZFBF provides the optimal beamforming directions

for (3.25) in the high-SNR regime, if we limit ourselves to those parts

of the performance region where ZFBF actually exists. The asymp-

totic optimality is expected since ZFBF (with proper power allocation)

minimizes the MSE in (3.28) when the power constraints are ignored.

Moreover, the loss in signal power due to interference cancelation typ-

ically diminishes as the number of transmit antennas is increased (due

to the increased spatial beamforming resolution [220]).

As it is desirable to deploy multi-cell systems that operate in the

high-SNR regime (for spectral efficiency reasons), many researchers

have proposed ZFBF-based transmit strategies for practical use; see

[75, 97, 319] among others. Although perfect interference nulling

requires perfect CSI, ZFBF can be implemented under imperfect CSI

by avoiding inter-user interference along some of the strongest eigenvec-

tors of E{hjkkh
H
jkk} of each user k [23, 99]. If we consider estimated and

quantized CSI, this naive but simple approach is robust in the sense of

only giving a limited average performance loss6 in the high-SNR regime

[15, 44, 113].

3.4.3 Signal-to-Leakage-and-Noise Ratio Maximizing
(SLNR-MAX) Beamforming

The heuristic MRT and ZFBF in the previous two subsections follow

from straightforward extensions of the corresponding criteria for receive

combining: maximize SNR and minimize interference power, respec-

tively. These criteria decouple the selection of beamforming directions

by either ignoring or canceling interference. Wiener filtering balances

between signal power maximization and interference power minimiza-

tion, making it is less obvious how to define a transmission counterpart;

the transmit beamforming direction v̄jkk for MSk affects the SINRs of

all co-users i ∈ Cjk
\ {k}. A heuristic way to balance between signal

and interference is to maximize the signal-to-leakage-and-noise ratio

6 The CSI quality needs to increase with the SNR to bound the performance loss, but this
happens naturally when the uplink SNR increases linearly with the downlink SNR [44].
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(SLNR), which we define as

SLNRk =

1
σ2

k

|hH
jkkCjkkv̄jkk|2

1
ηjk

+
∑
i�=k

1
σ2

i

|hH
jkiCjkiv̄jkk|2

∀k (3.32)

for some parameters ηjk
≥ 0. This expression is slightly different from

the original definition in [221, 259], where the noise powers are han-

dled inconsistently.7 If the parameters {ηj}Kt

j=1 represent equal power

allocation from each base station, ηjk
=

qjk

|Djk
| , then SLNRk is the ratio

between the signal power at the intended user and the (normalized)

noise plus the total interference power that leaks to nonintended users.

Other values on ηjk
are also possible; see Remark 3.2. If {ηj}Kt

j=1 are

fixed, the following heuristic beamforming directions maximize (3.32).

Definition 3.5 (SLNR Maximizing Beamforming). The beam-

forming directions

v̄
(SLNR)
jkk =

(
1

ηjk

INjk
+

Kr∑
i=1

1
σ2

i

CH
jkihjkih

H
jkiCjki

)−1
hjkk

∥∥∥
(

1
ηjk

INjk
+

Kr∑
i=1

1
σ2

i

CH
jkihjkihH

jkiCjki

)−1
hjkk

∥∥∥
2

∀k(3.33)

are called signal-to-leakage-and-noise ratio maximizing (SLNR-MAX)

beamforming.

The expression in (3.33) resembles that of Wiener filtering, which

is natural since SLNRk is very similar to the uplink SINR of an multi-

antenna receiver. By recognizing (3.32) as a generalized Rayleigh quo-

tient, we have the following results.

Lemma 3.14. The beamforming direction v̄
(SLNR)
jkk maximizes SLNRk.

7 The SLNR criterion is only well-defined if it is invariant to noise normalizations, because
the SINRs are invariant in this respect. In [221, 259], SLNRk was defined with σ2

k
replacing

all σ2
i in the denominator of (3.32). This has the strange consequence that scaling the noise

power σ2
k

and all the channels hH
jk

of MSk by a common factor c > 1 will increase SLNRk

and decrease SLNRi for i �= k, although all SINRs are unaffected.
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Proof. As the beamforming direction v̄jkk satisfies ‖v̄jkk‖2 = 1, we can

rewrite (3.32) as
v̄H

jkk
aaH v̄jkk

v̄H
jkk

Bv̄jkk
, where a = CH

jkkhjkk and B = 1
ηjk

INjk
+

∑
i�=k

1
σ2

i

CH
jkihjkih

H
jkiCjki. The optimal direction can be found by mini-

mizing v̄H
jkkBv̄jkk subject to aH v̄jkk = 1 (where the unit-norm con-

straint has been dropped and the phase has been specified). This is

equivalent to minimizing v̄H
jkk(B + aaH)v̄jkk subject to v̄H

jkka = 1 (as

v̄H
jkkaa

H v̄jkk = 1). The stationarity KKT condition (2.13) implies that

v̄jkk = (B + aaH)−1a, which is just a scaled version of v̄
(SLNR)
jkk in (3.33)

since Cjkk = INjk
.

Lemma 3.14 motivates the terminology SLNR-MAX beamforming,

but there are many other names and alternative motivations for this

heuristic transmit direction.

Remark 3.2 (Many Terms for Essentially the Same Thing).

The principle of SLNR-MAX beamforming has been reinvented and

remotivated many times by different authors in the past two decades.

Some of the earliest works are [320] that suggests selecting the trans-

mit weighting vector “such that the quotient of the mean power of the

desired contribution to the undesired contributions is maximized,” [79]

that finds (3.33) by maximizing the harmonic mean of SINRs, and [88]

that minimizes the average interference power subject to a desired

received signal power constraint (as in the proof of Lemma 3.14).

By selecting the parameters {ηj}Kt

j=1 based on power constraints

and minimization of certain sum MSEs, (3.33) was derived as the con-

strained MMSE transmit filter in [285] and the transmit Wiener filter

in [115]. The parameter ηj can also be selected to achieve numerical

stability, robustness to channel uncertainty, and avoid performance sat-

uration in the large-system regime as in regularized channel inversion

(zero-forcing) [203, 287].

The SLNR terminology is coined in [221, 259] as an optimization cri-

terion that decouples the beamforming selection for interference chan-

nels and enables closed-form expressions. A similar motivation is used

in [142], where the equivalent signal-to-generating-interference-plus
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noise-ratio (SGINR) criterion is used. The authors of [142] also showed

that the approach maximizes the product of two SINRs, which max-

imizes a high-SINR approximation of the sum information rate. The

maximization of the SLNR/SGINR is a generalized eigenvalue problem,

leading to the name generalized eigenvalue-based beamformer in [253].

Recently, many motivations have appeared based on uplink–

downlink duality (see Subsection 2.2.2). The virtual-uplink MVDR

beamforming in [99] is derived by assuming equal power allocation in the

virtual uplink, while the similar virtual SINR maximizing beamforming

is considered in [310] and shown to obtain a Pareto optimal point for the

two-user MISO interference channel. Generalizations such as the layered

virtual SINR beamforming in [21, 311] and the centralized/distributed

virtual SINR beamforming in [23, 18] utilize the duality to achieve

heuristic solutions in more complicated multi-cell scenarios.

This remark shows that SLNR-MAX beamforming solves certain

optimization problems, enables decoupled optimization, and has the

beamforming structure suggested by uplink–downlink duality. These

are evidence explaining why the approach provides remarkably good

performance and can be derived in many different ways, although it is

generally a suboptimal transmit strategy. We have the following result

on the optimality in coordinated beamforming systems.

Corollary 3.15. In coordinated beamforming with per-transmitter

constraints, v̄
(SLNR)
jkk → v̄

(MRT)
jkk as

qjk

σ2
i

→ 0 ∀k,i. For a scheduling set S
such that ZFBF exists, v̄

(SLNR)
jkk → v̄

(ZFBF)
jkk as qj → ∞ ∀j (when only

users in S are active).

This corollary is proved by observing that SLNR-MAX beam-

forming is a special case of the beamforming parametrization in

Corollary 3.10 (with λk = 1 and µj =
qj

ηj
), which was used to prove

the asymptotic optimalities of MRT and ZFBF. This connection has

two important implications. First, SLNR-MAX beamforming has the

optimal beamforming structure. Second, it combines the benefit of

MRT at low SNR (when the interference terms in (3.33) are negligible)
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with the benefit of ZFBF at high SNR (when the interference terms

in (3.33) dominates over the identity matrix). The balancing between

these extremes is illustrated geometrically in Figure 3.3 and in terms

of channel gain regions in Figure 3.4. Furthermore, SLNR-MAX

always exists while ZFBF is only possible under certain conditions

(see Lemma 3.12). In other words, it is more versatile than MRT and

ZFBF and should always be used instead of these — except perhaps

for asymptotic performance analysis.

The definition of SLNR-MAX beamforming assumes perfect CSI,

but heuristic extensions are possible (see [21, 23]) by taking v̄
(SLNR)
jkk as

the dominating eigenvector of
(

1

ηjk

INjk
+

Kr∑

i=1

1

σ2
i

Ejki

)−1/2

Ejkk

(
1

ηjk

INjk
+

Kr∑

i=1

1

σ2
i

Ejki

)−1/2

,

(3.34)

where Ejki = E{CH
jkihjkih

H
jkiCjki} average over the CSI uncertainty.

3.4.4 Power Allocation

The preceding subsections defined MRT, ZFBF, and SLNR-MAX as

heuristic ways of selecting the beamforming directions {v̄jkk}Kr

k=1. When

these have been selected, the power allocation {pjkk}Kr

k=1 will ulti-

mately determine the operating point in the performance region that

is achieved by the heuristic transmit strategy. For given {v̄jkk}Kr

k=1, the

SINRs in (3.25) become

SINRk =
pjkkρkk

σ2
k +

∑
i�=k

pjiiρik
(3.35)

with fixed ρik = |hH
jik

Cjikv̄jii|2 for all k,i. This SINR expression has

the same structure as the SINRs with single-antenna transmitters; in

fact, single-stream beamforming effectively transforms all MISO chan-

nels into SISO channels (which hopefully have good properties). Conse-

quently, the power allocation can be optimized as in Subsection 2.2.4,

where single-objective optimization with single-antenna transmitters

was considered. Recall that most scalarizations of (3.25) lead to con-

vex problem formulations in this scenario, with the weighted arithmetic

mean as a notable exception.
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The power allocation can be solved explicitly under ZFBF, because

all the effective interfering channels are zero: ρik = 0 for i �= k. As shown

in Subsection 2.2.1 (for concave user performance functions), even the

weighted arithmetic mean gives convex problem formulations in this

special case. The solution is given by the following theorem.

Theorem 3.16. Suppose the user performance functions gk(·) are con-

cave functions with invertible derivatives. For a given BSj and coeffi-

cients ρkk > 0 ∀k ∈ Dj , the power allocation problem

maximize
pjk≥0 ∀k∈Dj

∑

k∈Dj

wkgk

(
pjk

ρkk

σ2
k

)

subject to
∑

k∈Dj

pjk ≤ qj

(3.36)

is solved by

pjk =

[
σ2

k

ρkk
g′−1
k

(
σ2

k

νjwkρkk

)]

+

∀k ∈ Dj , (3.37)

where d
dxgk(x) = g′

k(x), [·]+ replaces negative values with zero, and the

parameter νj ≥ 0 is selected to use full power.

Proof. The Lagrangian function of the convex problem in (3.36) is

L = −
∑

k∈Dj

wkgk

(
pjk

ρkk

σ2
k

)
+

1

νj

(
∑

k∈Dj

pjk − qj

)
, (3.38)

where 1
νj

is the Lagrange multiplier (for notational convenience).

The solution (3.37) is obtained from the stationarity KKT condition

in (2.13). Finally, Theorem 1.9 requires that νj is scaled to satisfy the

power constraint with equality.

The optimal power allocation under ZFBF depends on the first

derivative of the user performance function gk(·) and on the weight-

ing factors. To exemplify the structure, the power allocations for the
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information rate and MSE are based on

gk(x) = log2(1 + x) ⇒ g′−1
k (y) =

1

y loge(2)
− 1, (3.39)

gk(x) =
x

1 + x
⇒ g′−1

k (y) =
1√
y

− 1, (3.40)

respectively. The resulting power allocation in (3.37) becomes

pjkk =
[
νj̺k − σ2

k

ρkk

]
+

where





̺k = wk for information rate,8

̺k =
√

wkσ2
k

ρkk
for MSE.

Both power allocations result in so-called waterfilling solutions [37]

with the characteristics: (a) power is allocated according to some user-

dependent factor ̺k > 0; and (b) zero power might be allocated to users

with the weakest channels/weights. The water terminology originates

from viewing the power allocation as pouring water into a tank with an

uneven bottom. Each user is represented by a column of width ̺k and

height
σ2

k

ρkk̺k
. The water area above the column equals the power allo-

cated to this user, and water might not reach up to this level. The water-

level νj is selected to make the total water area equal the total transmit

power. The waterfilling interpretation is visualized in Figure 3.5.

The power is allocated proportionally to ̺k when νj is large (i.e., qj

is large), while zero power is allocated to MSk when νj ≤ σ2
k

ρkk̺k
. These

asymptotic properties have different consequences for the information

rate and MSE, since ̺k is different. In case of equal user weights (i.e.,

wk = 1
Kr

∀k), the information rate activates a user when the waterlevel

is νj ≥ Krσ2
k

ρkk
and performs uniform power allocation when νj is large.

The waterfilling when using the MSE activates MSk when νj ≥
√

Krσ2
k

ρkk

and allocates power proportional to
√

σ2
k

ρkk
when νj is large — the MSE

is therefore activating weak users earlier and asymptotically allocates

more power to these users (to even out the user conditions). The user

weights will however have a similar impact on both user performance

functions: increasing wk will increase the power allocated to MSk.

8 The constant factor loge(2) has been included in νj for notational convenience.
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Fig. 3.5 Illustration of the power allocation pjkk =
[
νj̺k − σ2

k

ρkk

]
+

for k = 1, . . . ,4. This

formula is called waterfilling as it can be interpreted as pouring water into a tank with
an uneven bottom. Each column represents a user: the width ̺k depends on the user

performance function and the area
σ2

k

ρkk
is inversely proportional to its SNR ρkk

σ2

k

. The water

area above the column equals the power allocated to this user, and the waterlevel νj makes
the total water area equal the total transmit power.

Under coordinated ZFBF beamforming with per-transmitter con-

straints, Theorem 3.16 solves the power allocation problem explicitly.

For other heuristic beamforming strategies such as SLNR-MAX and

MRT, the corresponding power allocation is solved optimally using the

techniques in Section 2. However, Theorem 3.16 can be used for heuris-

tic power allocation, by either pretending that ZFBF is used during

power allocation or by ignoring the inter-user interference [18]. We will

return to heuristic beamforming and power allocation in Section 4.2 in

the context of distributed resource allocation.

3.4.5 Numerical Comparison

To illustrate the behavior of different heuristic beamforming directions,

we consider a 4-user MISO interference channel with Nj = 4 antennas

per base station and global interference coordination. The channel vec-

tors hjk are generated as uncorrelated Rayleigh fading and the average

channel gains
E{‖hjk‖2

2}
σ2

k

equal Nj for the serving base station and
Nj

2

for all interfering base stations.
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Fig. 3.6 Average sum information rate (over channel realizations) with SLNR-MAX, MRT,
and ZFBF in a 4-user MISO interference channel, as a function of the transmit power.
MRT and ZFBF are good beamforming directions at low and high SNR, respectively, while
SLNR-MAX shows good performance in the entire SNR range.

The average achievable sum information rate is shown in Figure 3.6

as a function of the total transmit power (per base station). The optimal

transmit strategy is computed using the BRB algorithm in Section 2.3.

As expected from Corollaries 3.11, 3.13, and 3.15, MRT is good at

very low SNR and ZFBF is good at high SNR. However, SLNR-MAX

is a more versatile strategy as it combines the respective asymptotic

benefits of MRT and ZF and clearly outperforms them at intermediate

SNRs by being remarkably close to the optimal solution.

3.5 General Guidelines for Solving Multi-Objective

Resource Allocation Problems

The multi-objective resource allocation problem in (3.1) provides a

mathematical formulation for the conflicting interests of users. The

Pareto boundary ∂+R of the performance region R represents all ten-

tative solutions and ∂+R is a surface of dimension Kr − 1. To identify

and select a final operating point g∗ ∈ R, the system designer needs to
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formulate its subjective preference of different g ∈ R. This subjective

input might be invariant and known a priori, but it can also be refined

during the optimization procedure as partial knowledge on the shape

of R is obtained. This can be described as a psychological convergence

as it is hard (if not impossible) to exactly formulate the subjective

preference without knowing all the alternatives.

There is certainly a tradeoff between computational complexity and

the possibility for the system designer to iteratively refine its subjective

preference. However, it is even more important to formulate the prefer-

ence in a way that facilitates numerical optimization. Section 2 showed

that scalarizations of the MOP are generally NP-hard, but we identi-

fied some cases that lead to convex problem formulations and thus are

solvable in polynomial time; see Table 2.1. A pragmatic approach to

resource allocation would therefore be to select one of these cases and

then let the weighting factors be adapted to the subjective preference.

We will now bring these insights into practical use by providing

general guidelines for solving (3.1) efficiently. We will differentiate

between the four categories suggested in [38, 324]: no-preference meth-

ods, a priori methods, a posteriori methods, and interactive methods.

These categories represent different types of input from the system

designers.

3.5.1 No-Preference Methods

If the system designer has no subjective preference on the final solu-

tion and is satisfied with any Pareto optimal point, it makes sense

to optimize some single-objective problem that allocates resources

proportionally to the user conditions. The proportionality can be

achieved by selecting weighting factors based on the utopia point as

wk = uk∑Kr
i=1 ui

(see Lemma 1.3), which represents the fraction of the

aggregate performance that MSk achieves under TDMA. To achieve

a convex problem formulation, we recommend the system utility func-

tion f(g) = mink
gk−ak

wk
, which is called fairness-profile optimization (see

Subsection 2.2.3 and Example 2.8). This function gives the so-called

Kalai–Smorodinsky bargaining solution that provides a type of relative

fairness [193] — it is obtained in game theory by defining a set of axioms
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on what would be a reasonable bargaining solution. The start-point

a = [a1 . . . aKr ]
T can, for example, be the origin or be achieved from the

beamforming parametrization in Theorem 3.5 by using the weighting

factors as user priorities (i.e., λk = wk ∀k) and equal enforcement of all

power constraints (i.e., µl = 1
L ∀l).

3.5.2 A Priori Methods

If the system designer knows in advance which system utility func-

tion f(·) that should be optimized, then Table 2.1 in Section 2 shows

whether the corresponding resource allocation is a convex or monotonic

problem. If the problem is convex (or quasi-convex), it can be solved to

global optimality in polynomial time, thus the optimal beamforming

solution can be obtained and used in practice (at least if the coher-

ence time of the channels is sufficiently long). Some important convex

examples are:

• Quality-of-service requirements: If we want to achieve a point

r∗ = [r∗
1 . . . r∗

Kr
]T ∈ R, a feasible beamforming solution is

obtained by solving the convex feasibility problem in (2.29).

Details are given in Subsection 2.2.2.
• Weighted Chebyshev compromise: If we want to achieve a

point r∗ = [r∗
1 . . . r∗

Kr
]T �∈ R, then we can find an alternative

point g ∈ R that is as close to r∗ as possible. This problem

is quasi-convex if the L∞-norm (also known as Chebyshev

metric) is used: f(g) = −maxk wk(r
∗
k − gk). Details are given

in Example 2.9.
• Fairness-profile optimization: If we want to guarantee gk ≥

ak for each user and divide remaining resources so that

each user gets a predefined fraction wk > 0, then f(g) =

mink
gk−ak

wk
. This problem is quasi-convex and details are

given in Example 2.7.
• General zero-forcing beamforming: If the power constraints

dictate zero inter-user interference, then the resource allo-

cation problem is convex whenever the system utility and

user performance functions are concave. This can sometimes

be generalized to nonzero interference constraints, details are
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given in Subsection 2.2.1. Closed-form solutions are also pos-

sible in special cases; see Section 3.4.
• Single-antenna transmission: Many resource allocation prob-

lems are convex when only a single antenna transmits to each

user. Details are given in Subsection 2.2.4.

If the system designer is allowed to select the system utility func-

tion, we recommend a pragmatic approach: select one of the convex

examples above. Fairness-profile optimization, f(g) = mink
gk−ak

wk
, is a

good choice because (a) it can be solved in polynomial time and (b) any

Pareto optimal point can be achieved by some set of weighting factors

{wk}Kr

k=1. The weights are then used to balance between user fairness

and aggregate throughput — the former is represented by identical

weights for all users and the latter by giving larger weights to users

with strong channel conditions.

There are practical scenarios when the system designer is stuck with

a system utility function that gives a monotonic problem. For exam-

ple, we might want to optimize a utility function defined on the long-

term average user performances (instead of instantaneous values). This

can be achieved by stochastic network optimization [78, 244], which

essentially consists of a sequence of weighted sum performance opti-

mizations. The weights are updated between each time slot using vir-

tual queuing techniques. As the computational complexity of general

monotonic problems scales exponentially with the number of users,

some kind of approximation is necessary in practice. Either the sys-

tem utility function is approximated using one of the convex formula-

tions listed above, or we can search for an approximate solution. For

example, the beamforming directions can be approximated by plug-

ging heuristic parameter values into the beamforming parameteriza-

tions in Section 3.2. The remaining power allocation problem is convex

in many cases (see Remark 2.7), but can also be approximated using

Theorem 3.16. There are also iterative algorithms for finding locally

optimal points; see [104, 150, 201, 225, 243, 257, 280, 291, 293] and

Section 4.2. The performance of any approximate beamforming strat-

egy can be evaluated by solving the original problem using the PA or

BRB algorithms.
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3.5.3 A Posteriori Methods

As the performance region is multi-dimensional and not explicitly

known, it is difficult to foresee what would be a good outcome of

the resource allocation. As an example, suppose that users have

near-orthogonal channel directions and homogeneous channel condi-

tions, then we can expect good fairness even if the system utility func-

tion ignores fairness. On the other hand, it might be important to

emphasize fairness when the users have strongly heterogeneous channel

conditions. This illustrates the difficulty in selecting f(·) in advance.

If the system designer is unable to formalize its preference in

advance, we can compute a set of sample point that roughly describes

the shape of the performance region. These points are then analyzed

by the system designer and a suitable operating point is selected —

this is called an a posteriori method as the preference is defined after

the numerical procedures. A computationally efficient approach is to

generate sample points using the beamforming parametrization of the

Pareto boundary in Section 3.3.

3.5.4 Interactive Methods

The PA and BRB algorithms in Section 2.3 are designed to solve

any monotonic resource allocation problem in an iterative manner.

Although both algorithms assume that the system utility function is

fixed, it can actually be updated in every iteration based on the new

knowledge that has been obtained (e.g., the new feasible point n). The

system designer can thereby achieve psychological convergence since

both the choice of system utility function and the best feasible solution

converges. The enabling factor is that the algorithms approximate the

Pareto boundary (where all tentative solutions to the MOP are located)

and f(·) only determine which part of the approximation that should

be refined in the next iteration. It is however important not to remove

vertices in the PA algorithm (see Step 10 in Algorithm 2) and not to

reduce boxes in the BRB algorithm (see Step 7 in Algorithm 3), since

the removed parts might contain operating point of later interest.

Alternatively, the interactive method can be based on the beam-

forming parametrization of the Pareto boundary in Section 3.3.
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Initially, a set of sample points is generated by evaluating the perfor-

mance over a grid of parameter values. The system designer selects one

or a few promising points and then new sample points are generated by

varying the parameters around the values that generated the selected

points. This procedure is iterated until psychological convergence is

achieved.

Interactive methods are more computational expensive than the

three other methods and thus less suitable for practical applications.

3.6 Summary

Resource allocation is generally a multi-objective optimization problem

where the performance maximization of the Kr users constitutes the

Kr conflicting objectives. The N -dimensional beamforming vectors are

the optimization variables and should satisfy the L power constraints.

The search-space initially contains KrN complex-valued parameters,

but this can be greatly reduced by exploiting the structure of Pareto

optimal beamforming solutions. This section has presented some state-

of-the-art beamforming parametrizations only requiring Kr + L − 2 or

Kr(Kr − 1) numbers between zero and one — the number of param-

eters depends on whether they are selected centrally or distributively

(and on the distributiveness of the power constraints). The strength

of the parametrizations is easily observed by their tight connection

to many heuristic beamforming strategies that have been developed

through the years. They also provide a foundation for obtaining sample

points that illustrate the shape of the Pareto boundary, thus clarifying

the available options in the resource allocation.

There are certain main categories of methods that solve multi-

objective optimization problems. These represent different types of

involvement of the system designer when selecting an appropriate oper-

ating point on the Pareto boundary. If the system designer can for-

mulate its preferences as a system utility function, the corresponding

single-objective resource allocation problem can be solved as described

in Section 2. The problem can be solved to global optimality if it is con-

vex (or quasi-convex), while heuristic approximations (e.g., based on

beamforming parametrizations) are otherwise necessary for practical
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feasibility. A pragmatic approach would therefore be to always formu-

late the resource allocation within the category of convex problems.

Alternatively, a set of sample points in the performance region can

be generated as described in this section. The system designer can

then analyze these points and make an informed decision. Finally, the

monotonic optimization algorithms from Section 2 can be utilized in an

interactive manner, meaning that the system utility function is itera-

tively refined to achieve both psychological and numerical convergence

to the most suitable point on the Pareto boundary.



4

Extensions and Generalizations

The multi-cell system model analyzed in the previous sections was

based on three simplifying assumptions: perfect CSI, unlimited back-

haul capacity, and ideal transceiver hardware. These assumptions are

generalized in this section to more realistic conditions, and we will

show that many of the previous results are readily generalizable.

Furthermore, we describe how the system model can be extended to also

incorporate multi-cast transmission, multi-carrier systems, and multi-

antenna receivers. Finally, we discuss some recent work on the design

of dynamic cooperation clusters and show that the framework of this

tutorial is applicable in cognitive radio systems and for physical layer

security.

Although many of the generalizations and extensions in this section

are mutually feasible, the sections describe each of them independently.

The combinations of multiple generalizations can be viewed as interest-

ing topics for future research. Matlab code for some of the algorithms

developed in this section is available for download in [19].

278
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4.1 Robustness to Channel Uncertainty

The analysis in previous sections was based on the assumption that

the channel vectors hk are perfectly known at the base stations. This

simplified the presentation of optimization algorithms for resource allo-

cation, but it is clearly an ideal model as practical transmitters have to

operate under uncertain CSI. The uncertainty originates from a variety

of sources; for example, imperfect channel estimation, feedback quanti-

zation, inadequate channel reciprocity, and delays in CSI acquisition

on fading channels. It is common to have an additive error model

[9, 17, 26, 50, 239, 241, 242, 257, 286, 289, 328] with

hk = ĥk + ǫ̃k ∀k, (4.1)

where ĥk = [ĥT
1k . . . ĥT

Ktk
]T ∈ CN×1 is the nominal value of the CSI

available at the base stations and ǫ̃k ∈ CN×1 is the combined error

vector. This model can, for instance, be motivated by viewing channel

estimation as the main source of uncertainty [13, 22, 138]; see Exam-

ple 4.1 below. Observe that the nominal channel and the error should

both be set to zero for all hjk with k �∈ Cj , because CSI is not acquired

for these channels and their impact are included in the noise terms.

The purpose of this section is to present a framework for handling

CSI uncertainty in a robust manner, while enabling generalizations

of the results from previous sections. Robustness refers to ensuring

a certain level of performance under the error model in (4.1). The

system cannot account for any error; the stochastic error vector ǫ̃k

could potentially cancel out the nominal vector as ǫ̃k = −ĥk or be very

large (the distribution is even unbounded for Rayleigh fading channels).

This is often handled by only considering a subset of error vectors,

the uncertainty set, that has high probability of containing the error

[9, 17, 26, 50, 239, 241, 242, 257, 286, 289, 328]. If the design of these sets

is explicitly included in the resource allocation (e.g., optimization with

acceptable outage probabilities), it seems that conservative approxi-

mations1 of each user’s performance are required to achieve tractable

problem formulations [50, 241, 289]. The alternative is to have fixed

uncertainty sets and maximizing the worst-case performance, which is

1 Conservative approximation means optimizing lower bounds on the user’s performance.
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mathematically more convenient as it can provide convex problem for-

mulations [17, 26, 242, 257]. Therefore, this section describes a set of

worst-case robustness approaches for multi-cell resource allocation.

Worst-case robustness is sometimes accused of giving conservative

performance results [80], because the worst case could have very low

probability in practice. However, this is not a fundamental weakness

of the approach but the result of using ill-structured uncertainty sets

and can be avoided by proper selection of them.2 Furthermore, one can

argue that we choose between solving a good problem formulation in a

conservative way and solving a conservative problem formulation in an

efficient way — the choice is thus a matter of taste.

For analytic convenience and motivated by channel estimation [26,

242, 257], we consider (compact) ellipsoidal channel uncertainty sets.

These sets can either be defined jointly for all base stations to a certain

user,

Uk(ĥk,Bk) =
{
hk : hk = ĥk + Bkǫk, ‖ǫk‖2 ≤ 1

}
∀k, (4.2)

or separately for the channel from each BSj to each user k ∈ Cj ,

Ujk(ĥjk,Bjk) =
{
hjk : hjk = ĥjk + Bjkǫjk, ‖ǫjk‖2 ≤ 1

}
∀j,k ∈ Cj .

(4.3)

Looking at the original additive model in (4.1), ǫ̃k = Bkǫk and ǫ̃jk =

Bjkǫjk, respectively. The matrices Bk � 0N and Bjk � 0Nj
define the

shapes of the ellipsoids, as illustrated in Figure 4.1. The uncertain CSI

at the transmitters is now characterized by {Uk}Kr

k=1 and {Ujk}Kt,Kr

j=1,k=1,

respectively, along with the corresponding nominal vectors and ellipsoid

shaping matrices.

To elaborate the difference between (4.2) and (4.3), we consider the

special case of Bk =
√

Ktdiag(B1k, . . . ,BKtk), where the block-diagonal

structure is motivated by separate estimation/quantization between

the transmitters. The uncertainty then have the same general shape,

2 In the probabilistic approach, the guaranteed performance is maximized under a given
outage probability. For an optimal transmit strategy, we can create a set U of all error
vectors that gives exactly the optimal guaranteed performance (or better). If U is used as
the uncertainty set in the worst-case approach, it will provide the same optimal transmit
strategy and will not be any more conservative.
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Fig. 4.1 Illustration of the ellipsoidal uncertainty set Uk(ĥk,Bk) in (4.2) and the unit sphere
{ǫk : ‖ǫk‖2 ≤ 1} that it is created from.

but (4.2) is more generous as the error in hjk can be increased by

decreasing the error in some other channel component hji with i �= k.

The uncertainty in (4.3) is independent between each channel compo-

nent hjk. In other words, Uk and Ujk represent two different ways of

cutting out uncertainty sets from the underlying CSI uncertainty and

the choice is a matter of uncertainty modeling.

The uncertainty sets can either be designed experimentally or by

modeling the underlying uncertainty sources. The latter approach is

illustrated by the following example.

Example 4.1 (Channel Estimation Uncertainty). If the channel

vectors are modeled as Rayleigh fading, hk ∼ CN (0,Rk), and estimated

using training signaling, then the error vector will be distributed as

ǫ̃k ∼ CN (0,Ek). The shape of the error covariance matrix Ek depends

on Rk and on the type of channel estimation (e.g., least-squares esti-

mation [13] or minimum mean square error estimation [22, 138]) and

will be block-diagonal as Ek = diag(E1k, . . . ,EKtk) if the channel from

each base station to each user is estimated separately.

The estimation error ǫ̃k belongs with probability p̃k to the ellipsoidal

set {ǫ̃k : 2ǫ̃H
k E−1

k ǫ̃k ≤ χ2
p̃k

(2N)}, where χ2
p̃k

(n) denotes the p̃k-percentile

of the chi-squared distribution with n degrees-of-freedom. If we limit

the robustness to error vectors in this set, the channel uncertainty is

given by (4.2) using Bk =
√

χ2
p̃k

(2N)/2E
1/2
k . To enforce higher or lower
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robustness to errors on channels from some base stations (e.g., channel

components that are expected to carry strong interference), we can

include additional weighting factors on the diagonal blocks of Bk.

Alternatively, the estimation error ǫ̃jk of the channel component hjk

belongs with probability p̃jk to the ellipsoidal set {ǫ̃jk : 2ǫ̃H
jkE

−1
jk ǫ̃jk ≤

χ2
p̃jk

(2Nj)}. Limiting the robustness to error vectors in this set corre-

sponds to (4.3) with Bjk =
√

χ2
p̃jk

(2Nj)/2E
1/2
jk .

4.1.1 Worst-Case Robustness under Joint Uncertainty

In this subsection, we show how to guarantee QoS requirements under

worst-case robustness to CSI uncertainty. This is both a subproblem

of various generalizations of max-min fairness (see Subsection 2.2.3)

and of the PA and BRB algorithms for solving arbitrary monotonic

problems (see Section 2.3), thus we provide a foundation for solving

any resource allocation problem under CSI uncertainty. The approach

builds on standard results in robust optimization and can be applied

to other problem formulations as well.

The sufficiency of using single-stream beamforming to obtain any

point in R was proved in Theorem 1.8 under perfect CSI. It is not

obvious whether this will also hold under worst-case robustness. We

therefore formulate the SOP with QoS requirements gk(SINRk) ≥ r∗
k

in (2.29) as

find S1 . . . ,SKr (4.4)

subject to
hH

k CkDkSkD
H
k CH

k hk

σ2
k + hH

k Ck(
∑
i�=k

DiSiDH
i )CH

k hk
≥ g−1

k (r∗
k) ∀hk ∈ Uk,∀k,

Kr∑

k=1

tr(QlkSk) ≤ ql ∀l

where the beamforming vectors have been replaced by signal correlation

matrices Sk. Joint ellipsoidal channel uncertainty sets are used in (4.4)

and consequently there are infinitely many SINR constraints — one for

each hk ∈ Uk. This makes the problem fundamentally different from

those considered in Section 2, but fortunately there is a way to obtain
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a finite number constraints. The following is known as the S-procedure

and is an important tool in robust optimization [35, Section 2.6.3].

Lemma 4.1 (S-Procedure). Let θm(ǫ) = ǫHZmǫ + zH
mǫ + ǫHzm +

z̃m, m = 1,2, be two quadratic functions in ǫ and let Zm be Hermi-

tian. Suppose it exists ǫ̂ such that θ1(ǫ̂) > 0, then the implication

θ1(ǫ) ≥ 0 ⇒ θ2(ǫ) ≥ 0 (4.5)

holds true if and only if it exists λ ≥ 0 such that
[
Z2 z2

zH
2 z̃2

]
− λ

[
Z1 z1

zH
1 z̃1

]
� 0. (4.6)

If θ1(ǫ) ≥ 0 describes the uncertainty set and θ2(ǫ) ≥ 0 is an SINR

constraint, then Lemma 4.1 provides a single condition (4.6) for proving

that the SINR constraint holds for every vector in the uncertainty set.

This observation is formalized in the following theorem.

Theorem 4.2. Let S1, . . . ,SKr be a transmit strategy and let γk ≥ 0

be given, then the robust SINR constraint

hH
k CkDkSkD

H
k CH

k hk

σ2
k + hH

k Ck(
∑
i�=k

DiSiDH
i )CH

k hk
≥ γk ∀hk ∈ Uk(ĥk,Bk) (4.7)

is fulfilled if and only if it exists λk ≥ 0 such that[
BH

k AkBk BH
k Akĥk

ĥH
k AkBk ĥH

k Akĥk − σ2
k

]
+

[
λkIN 0N×1

01×N −λk

]
� 0N+1, (4.8)

where Ak = 1
γk

CkDkSkD
H
k CH

k − ∑
i�=k

CkDiSiD
H
i CH

k .

Proof. The channel uncertainty and SINR constraints can be expressed

as θ1(ǫ) ≥ 0 and θ2(ǫ) ≥ 0, respectively, where

θ1(ǫ) = −ǫHINǫ + 1

θ2(ǫ) = ǫHBH
k AkBkǫ + ǫHBH

k Akĥk

+ ĥH
k AkBkǫ + ĥH

k Akĥk − σ2
k. (4.9)

The theorem then follows directly from Lemma 4.1.
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This theorem converts the infinite number of SINR constraints

in (4.4) into just one (linear) semi-definite constraint per user — at

the cost of adding Kr extra variables {λk}Kr

k=1 that indirectly repre-

sents the worst channel conditions in the uncertainty set; if we can

find λk ≥ 0 that satisfies the constraint (4.8), then SINRk ≥ γk for all

hk ∈ Uk. Having channel uncertainty naturally increases the compu-

tational complexity (due to the additional optimization variables), but

Theorem 4.2 shows that the robust problem in (4.4) is convex. The com-

plexity is thus still polynomial in the number of antennas N , users Kr,

and power constraints L [10, Chapter 6].

The transmit strategy S∗
1, . . . ,S

∗
Kr

that solves (4.4) might in general

have rank(S∗
k) > 1 for some users, which is not practically convenient

as the computational complexity of decoding such multi-stream beam-

forming is relatively high [89]. As single-stream beamforming is always

sufficient under perfect CSI, we can however expect it to also work well

when the uncertainty is small. Recent work in [51, 251, 239] proves that

single-stream beamforming is indeed sufficient for single-cell and coor-

dinated beamforming scenarios with per-transmitter power constraints

and some minor technical assumptions (e.g., a generous bound on the

amount of uncertainty or uniqueness of the solution). Therefore, we

expect single-stream beamforming to be sufficient also under channel

uncertainty.

These results are confirmed by the simulations leading to Figure 4.2.

This figure shows the performance regions for the same two-user global

joint transmission scenario and channel realizations as in Figure 4.2 of

Section 3.3. The Pareto boundaries are generated by combining The-

orems 3.9 and 4.2 under spherical uncertainty sets Uk(ĥk,Bk) with

Bk =
√

ξIN and different squared radius: ξ ∈ {0, 0.01, 0.05, 0.1}. All

Pareto optimal points were achieved using single-stream beamform-

ing. As expected, channel uncertainty reduces the size of the regions,

but it can also affect the shape since the system becomes specifically

sensitive to inter-user interference. This can be seen in Figure 4.2(b),

where a nonconvex region is transformed into a concave region when

the uncertainty is increased. This indicates that SDMA becomes less

attractive as the CSI uncertainty grows.
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Fig. 4.2 Performance regions for two different channel realizations (same as in Figure 3.1)
under global joint transmission and joint spherical uncertainty regions with different radius√

ξ. The operating points with different system utility functions are also indicated. Uncer-
tainty reduces the area of the region and can also affect the shape; the small non-convexities
in (a) become more visible and the clearly nonconvex region in (b) becomes increasingly
concave-like.
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To summarize, we can solve any robust multi-cell resource allocation

problem as described in this subsection and we can expect a single-

stream beamforming solution — which is a practically implementable

solution. If we anyway would achieve a high-rank solution (although

these have not been found in simulations), an approximate solution

can be achieved by, for example, taking the dominating eigenvector

of Sk as the beamforming direction v̄k or taking a realization from a

zero-mean Gaussian distribution with the high-rank Sk as correlation

matrix [166].

Remark 4.1 (MSE-Based Single-Stream Beamforming). This

subsection has considered selection of transmit strategies to achieve

robustness to channel uncertainty, but there are other system processes

affected by uncertainty. In particular, measuring user performance as

a function of the SINR implicitly assumes ideal receive processing.

To relax this assumption, we consider a system with single-stream

beamforming (for practical reasons). MSk processes the received sig-

nal yk = hH
k Ck

∑Kr

i=1Divisi + nk using an equalizing coefficient ζk. The

purpose is to achieve an estimate ŝk = ζkyk of the transmitted signal

sk that minimizes the mean square error MSEk = E{|ŝk − sk|2}.

By guaranteeing a certain MSEk under CSI uncertainty, we also

guarantee that SINRk ≥ 1
MSEk

− 1 [242], but equality can only be

ensured under perfect CSI. The single-cell works in [242, 286] and

multi-cell work in [26] measure the performance of MSk by a strictly

monotonically decreasing function g̃k : R+ → R of MSEk. We would like

to minimize the MSEs of all users and the counterpart to the multi-

objective optimization problem in (1.35) is

maximize
vk,ζk ∀k

{g̃1(γ̃1), . . . , g̃Kr(γ̃Kr)} (4.10)

subject to γ̃k ≥ min
hk∈Uk

‖ζkh
H
k CkVtot − eT

k ‖2
2 + |ζk|2σ2

k ∀k, (4.11)

Kr∑

k=1

vH
k Qlkvk ≤ ql ∀l, (4.12)

where γ̃k denotes MSEk and Vtot = [D1v1 . . . DKrvKr ] and ek denotes

the kth column of IKr . The corresponding robust performance region
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is compact and normal (see [26, Lemma 1]) and the robust MSE con-

straint (4.11) can be reformulated as




√
γ̃kζ̃k −λk ĥH

k CkV̄− ζ̃ke
T
k σk 0

V̄HCH
k ĥk − ζ̃kek

√
γ̃kζ̃kIKr 0 −V̄HCH

k Bk

σk 0
√

γ̃kζ̃k 0

0 −BH
k CkV̄ 0 λkIN


� 0N+Kr+2,

(4.13)

where λk ≥ 0 is an auxiliary variable and ζ̃k = ζ−1
k can be taken as pos-

itive (because any complex phase can be included in the beamforming

vector vk without affecting the feasibility of (4.13)). The reformula-

tion of (4.11) into (4.13) is based on an extension of the S-procedure

from [66, Proposition 2]. Observe that (4.13) is convex in ζ̃k,λk,vi ∀i

(see [26, 66, 242, 286] for details). Consequently, many of the convex-

ity results in Section 2 can be extended with only a minor increase

in computational complexity (i.e., semi-definite constraints as (4.13)

are more demanding than the second-order cone constraints under per-

fect CSI [10]). For example, [26] builds a resource allocation framework

where weighted max-min fairness is shown to be a quasi-convex prob-

lem also under worst-case robustness and the BRB algorithm is used

to solve any robust monotonic problem.

4.1.2 Worst-Case Robustness Under Separate Uncertainty

The scenario when the uncertainty in hk is modeled separately for each

channel component hjk, j = 1, . . . ,Kt, is more analytically involved.

The mutual uncertainty in hk can be viewed as the intersection of

(general-type) ellipsoids, which generally leads to problems which are

NP-hard [9]. The hardness can however be avoided if we limit the scope

to problems where the impact of each channel component can also be

separated. Coordinated beamforming is such an example, because the

transmitted signals over each channel component are independent. This

is also fulfilled when multiple base stations send multiple independent

signals to a given user [180, 239], but for simplicity this subsection

concentrates on coordinated beamforming.
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We let jk denote the index of the base station that serves MSk and

consider a signal correlation matrix Sjkk ∈ CNjk
×Njk of arbitrary rank.

The SOP with QoS requirements gk(SINRk) ≥ r∗
k in (2.29) becomes

find Sjkk � 0Njk
∀k (4.14)

subject to
hH

jkkCjkkSjkkC
H
jkkhjkk

σ2
k +

∑
i�=k

hH
jik

CjikSjiiC
H
jik

hjik
≥ g−1

k (r∗
k) ∀hjk ∈ Ujk,∀j,k,

Kr∑

k=1

tr(QljkkSjkk) ≤ ql ∀l

under coordinated beamforming with the separate ellipsoidal channel

uncertainty sets in (4.3). A main difference from the coordinated beam-

forming considered in Section 3.4 is that we now have general power

constraints, defined by Qljkk � 0Njk
. The S-procedure in Lemma 4.1

can be used to rewrite the infinitely many SINR constraints in (4.14)

as a finite number of constraints — once again at the expense of adding

auxiliary variables.

Theorem 4.3. Let Sj11, . . . ,SjKr Kr be a transmit strategy and let

γk ≥ 0 be given, then the robust SINR constraint

hH
jkkCjkkSjkkC

H
jkkhjkk

σ2
k +

∑
i�=k

hH
jik

CjikSjiiC
H
jik

hjik
≥ γk ∀hjk ∈ Ujk(ĥjk,Bjk),∀j (4.15)

is fulfilled if and only if it exists λjk ≥ 0∀j and ϑjk ≥ 0∀j �= jk such

that[
BH

jkAjkBjk BH
jkAjkĥjk

ĥH
jkAjkBjk ĥH

jkAjkĥjk − ajk

]
+

[
λjkINj

0Nj×1

01×Nj
−λjk

]
� 0Nj+1 (4.16)

for j = 1, . . . ,Kt, where

Ajk =





Cjk

( γk

1+γk
Sjk −∑i∈Dj

Sji

)
CH

jk, j = jk,

−Cjk

(∑
i∈Dj

Sji

)
CH

jk, j �= jk,
(4.17)

ajk =





σ2
k +

∑
m�=j ϑmk, j = jk,

−ϑjk, j �= jk.
(4.18)
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Furthermore, single-stream beamforming is sufficient when (a) each

BSj serves at most one user; or (b) each BSj has perfect CSI to the

users k ∈ Dj that it serves.

Proof. To separate the impact of the different uncertainty sets, we

introduce the auxiliary variables ϑjk to split the SINR constraint into

hH
jkkAjkkhjkk + σ2

k +
∑

m�=jk
ϑmk ≥ 0 and ϑmk + hH

mkAmkhmk ≥ 0 for

m �= jk. The reformulation (4.16) then follows by applying Lemma 4.1

on each inequality (similar to what was done in Theorem 4.2).

The statement on sufficiency of single-stream beamforming is proved

by analyzing the dual problem to (4.14) when the zero-valued cost func-

tion has been replaced with
∑Kr

k=1 tr(Sjkk). The modified cost function

will not affect the feasibility, but simplifies the analysis and explains

why we prove the sufficiency of single-stream beamforming and not also

necessity. The dual problem is

minimize
Υjk,ϑjk,λjk,µl ∀k,l

Kr∑

k=1

σ2
k[Υjk]Nj+1 Nj+1 −

L∑

l=1

µlql (4.19)

subject to Υjk � 0Nj+1, ϑjk ≥ 0, λjk ≥ 0, µl ≥ 0 ∀j,k, l,

tr

(
Υjk

[
INj

0Nj×1

01×Nj
−1

])
� 0Nj+1 ∀j,k,

Yk � 0Njk
+1 ∀k,

where B̃jk = CH
jk[Bjk h̄jk] and

Yk =

(
INj+1 +

L∑

l=1

µlQljkk +
∑

i�=k

B̃jkiΥjkiB̃jki − 1

γk
B̃jkkΥjkkB̃jkk

)
.

(4.20)

One of the complementary slackness conditions is tr(SjkkYk) = 0,

which implies that Sjkk should lie in the null space of Yk.

If we can show that rank(Yk) ≥ Njk
− 1, then it follows that

rank(Sjkk) ≤ 1 [239, 251]. Observe that the first part of Yk is pos-

itive definite while − 1
γk

B̃jkkΥjkkB̃jkk is negative semi-definite. We

have B̃jkk = [0Njk
CH

jkkh̄jkk] in case (a), which has rank one. The
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negative semi-definite part can then have at most be rank one and

rank(Yk) ≥ Njk
− 1 follows. To prove case (b), we invoke the comple-

mentary slackness condition to (4.16),

Υjkk

(
1

γk
B̃H

jkkSjkkB̃jkk +

[
λjkkINjk

0Njk
×1

01×Njk
−λjkk − ajkk

])
= 0Njk

+1,

(4.21)

where it must hold that λjkk > 0 (to make (4.16) positive semi-definite).

As the bracketed term have at least Njk
in rank, it follows that

rank(Υjkk) ≤ 1 and thus rank(Yk) ≥ Njk
− 1 from (4.20).

This theorem shows that (4.14) is a convex problem. It can therefore

be used as a subproblem to solve weighted max-min fairness in poly-

nomial time, for applying the PA and BRB algorithms on any robust

resource allocation problem, and to parameterize the Pareto bound-

ary of the robust performance region. The second part of Theorem 4.3

is a generalization of recent results in [239]. There is further evidence

in [239] indicating that single-stream beamforming might always be

optimal, just as for the case of perfect CSI.

The two special cases when single-stream beamforming is provably

optimal corresponds to the MISO interference channel and to coor-

dinated beamforming with perfect intra-cell CSI (which might be a

reasonable model as inter-cell CSI is harder to obtain [17]). In these

cases it is possible to optimize the beamforming vectors vjkk directly

(instead of optimizing Sjkk which basically has Njk
times more vari-

ables) and achieve convex problem formulations — which is generally

not the case even when the final solution is known to be rank one. The

following theorem bounds the worst-case performance in these cases,

similar to [182].

Theorem 4.4. The signal term at MSk under single-stream beam-

forming and the separate uncertainty sets in (4.3) satisfies

xkk(vjkk) ≥
([

|ĥH

jkkCjkkvjkk| − ‖BH
jkkCjkkvjkk‖2

]
+

)2
(4.22)

while the interference term from transmission to MSi, i �= k, satisfies

xik(vjii) ≤
(
|ĥH

jikCjikvjii| + ‖BjikCjikvjii‖2

)2
. (4.23)
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The resulting worst-case achievable SINR at MSk is

SINRk ≥

([
|ĥH

jkkCjkkvjkk| − ‖BH
jkkCjkkvjkk‖2

]
+

)2

σ2
k +

∑
i�=k

(
|ĥH

jikCjikvjii| + ‖BjikCjikvjii‖2

)2 . (4.24)

All inequalities hold with equality for the MISO interference channel.

Proof. The bounds in (4.22) and (4.23) are achieved by treating each

term in SINRk separately. The worst-case signal term satisfies
√

xkk(vjkk) = min
hjkk∈Ujkk(ĥjkk,Bjkk)

|hH
jkkCjkkvjkk|

= min
ǫjkk:‖ǫjkk‖2≤1

|ĥH

jkkCjkkvjkk + ǫH
jkkB

H
jkkCjkkvjkk|

≥ min
ǫjkk:‖ǫjkk‖2≤1

[
|ĥH

jkkCjkkvjkk| − |ǫH
jkkB

H
jkkCjkkvjkk|

]
+

=
(
|ĥH

jkkCjkkvjkk| − ‖BH
jkkCjkkvjkk‖2

)+
, (4.25)

where the inequality follows from the triangle inequality and equality

is achieved by ǫjkk = − BH
jkkCjkkvjkk

‖BH
jkkCjkkvjkk‖2

eı∠(ĥ
H

jkkCjkkvjkk). The worst-case

interference term is computed similarly as
√

xik(vjii) = max
hjik∈Ujik(ĥjik,Bjik)

|hH
jik

Cjikvjii|

= max
ǫjik:‖ǫjik‖2≤1

|ĥH

jikCjikvjii + ǫH
jik

BH
jik

Cjikvjii|

≤ max
ǫjik:‖ǫjik‖2≤1

|ĥH

jikCjikvjii| + |ǫH
jik

BH
jik

Cjikvjii|

= |ĥH

jikCjikvjii| + ‖BH
jik

Cjikvjii‖,

(4.26)

where the inequality follows again from the triangle inequality

and equality is achieved by ǫjik = +
BH

jikCjikvjii

‖BH
jikCjikvjii‖

eı∠(ĥ
H

jikCjikvji
). The

inequality for the SINR follows since SINRk =
xkk(vjkk)

σ2
k
+

∑
i�=k xik(vjii)

.

Finally, all bounds are simultaneously achievable if hjk only appears

once in SINRk for each j, which happens for the MISO interference

channel where each transmitter only sends one signal.
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This theorem obtains a lower bound on the worst-case SINR under

ellipsoidal channel uncertainty, and the bound is tight for interference

channels. The SINR expression in (4.24) is attractive since the signal

and interference terms both have the structure of second-order cones

(see Example 2.2), thus we can parameterize the Pareto boundary of

the robust performance region as follows.

Theorem 4.5. For a MISO interference channel with per-transmitter

constraints of qj , all Pareto optimal points on the corresponding robust

performance region are achieved by beamforming vectors vjkk(λk) for

λk ∈ [0,1]Kr−1 for k = 1, . . . ,Kr, which solves

vjkk(λk) = argmax
vjkk

ℜ(ĥ
H

jkkCjkkvjkk) − ‖BH
jkkCjkkvjkk‖

subject to ℑ
(
|ĥH

jkkCjkkvjkk

)
= 0, (4.27)

‖vjkk‖ ≤ qjk
,

|ĥH

jkiCjkivjkk| + ‖BjkiCjkivjkk‖2 ≤
√

λkiΓki ∀i �= k,

for fixed values of Γki. The elements in λk are denoted λki for all i �= k.

Proof. The proof works by contradiction and is analogue to the proof

detailed in [182, Theorem 1].

This parametrization can be seen as a robust counterpart to The-

orem 3.2 and the values Γki correspond to the interference tempera-

ture limits, which are applied in underlay and overlay cognitive radio

systems (see Section 4.8). Recall that second-order cone optimization

problems [160], such as (4.27), are efficiently solved by interior-point

methods (e.g., using SeDuMi [256]).

When the intra-cell channels are perfectly known (i.e., Bjkk =

0Njk
∀k), we can utilize the sufficiency of single-stream beamforming

to reduce the computational complexity in Theorem 4.3. The following

convex problem formulation was obtained in [17].
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Corollary 4.6. If Bjkk = 0Njk
∀k, the problem in (4.14) can be refor-

mulated into the convex feasibility problem

find Sjkk � 0Njk
∀k

subject to

Kr∑

k=1

vH
jkkQljkkvjkk ≤ ql ∀l (4.28)




ϑmk −λmk ĥH
mkVm 0

VH
mĥmk ϑmkI|Dm| VH

mBmk

0 BH
mkVm λmkINm


 � 0 m �= jk

√
1+

1

γk
hH

jkkCjkkvjkk ≥
√

‖hH
jkkCjkkVjk

‖2
2 +

∑

m�=jk

ϑ2
mk + σ2

k.

where Vj = [vjDj(1) . . . vjDj(|Dj |)] contains the beamforming vectors of

users served by BSj .

Proof. The proof is similar to that of Theorem 4.3 but utilizes an

extension of the S-procedure that handles beamforming vectors; see

[66, Proposition 2]. The intra-cell constraint can be formulated as a

second-order cone and further details are available in [17].

We conclude this section by illustrating that Theorem 4.3 and Corol-

lary 4.6 provide a way to solve any robust resource allocation prob-

lem under coordinated beamforming. We consider Kt = 2 base stations

with Nj = 4 antennas and two users per cell (i.e., Kr = 4). We gener-

ate the exact intra-cell channel as hjk ∼ CN (0,INj
) for k ∈ Dj and the

uncertain inter-cell channels as ĥji ∼ CN (0, 1
2INj

) for i �∈ Dj . Spherical

uncertainty sets are assumed with Bji =
√

ξINj
, where

√
ξ is the radius.

The optimal worst-case sum information rate is obtained using the BRB

algorithm and is shown in Figure 4.3. We also show the performance

of SLNR-MAX beamforming with heuristic power allocation based on

Theorem 3.16.3 The simulation shows that the heuristic strategy is

3 The worst-case performance of a heuristic transmit strategy is computed by solving one
optimization problem per user: Maximize γk subject to (4.16) for j = 1, . . . ,Kt. This is a
convex problem when the transmit strategy is fixed and only λjk ≥ 0 ∀j and ϑjk ≥ 0 ∀j �=
jk are considered to be optimization variables.
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Fig. 4.3 Average worst-case sum information rate as a function of the total transmit power
(per base station). The optimal beamforming is computed using the BRB algorithm. The
heuristic transmit strategy is robust to small inter-cell CSI errors, but becomes highly
suboptimal as the uncertainty grows.

relatively robust to small errors (e.g., ξ = 10−3) but becomes highly

suboptimal as the CSI uncertainty increases.

4.2 Distributed Resource Allocation

Several seemingly nonconvex resource allocation problems were refor-

mulated as convex problems in Section 2.2, thus showing that these

can be solved in polynomial time using numerical algorithms such as

interior-point methods [37]. The discussions stopped when the problems

were identified as convex, but it is important to also design the opti-

mization functionality of the system: where are the different pieces of

information available and where should the numerical computations

be performed? Ideally, the optimal resource allocation is computed

at a central control station with aggregate CSI knowledge from the

whole system, but this is practically infeasible in terms of computa-

tional complexity, backhaul signaling, delays, and scalability [21]. The

decomposability of a resource allocation problem is therefore an impor-

tant feasibility factor, in addition to the convexity [194]. Removing the

reliance on a central control station also provides resilience against

various hardware failures that can occur in the network.
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This section outlines two different approaches to decentralized

resource allocation, where the computational load is distributed over

the system and the exchange of CSI and control signals is limited. The

first approach solves convex optimization problems in a distributed

fashion using only local CSI, but requires iterative exchange of con-

trol variables. The second approach is truly distributed in the sense

that each base station selects its beamforming vectors in a nonitera-

tive manner without exchanging any information with the other base

stations. In both cases, the local CSI at BSj consists of the channel

vectors hjk from the own base station to all users k ∈ Cj . Observe

that these channel vectors can be estimated locally at BSj by utilizing

channel reciprocity in TDD systems. The distinction between the two

distributed approaches and global resource allocation is illustrated in

Figure 4.4.

There are certainly other distributed resource allocation

approaches; for example, [61, 62, 312] where the base stations make

distributed decisions based on different estimates of the global CSI.

Capacity results under different backhaul models are surveyed in [81].

Furthermore, [207] presents two iterative distributed algorithms where

the subproblem for MSk is only based on perfect knowledge of Ckhk.

4.2.1 Distributed Implementation of Convex Optimization

The very essence of resource allocation problems is the coupling

between the users, in terms of inter-user interference and power con-

straints. A tutorial on decomposition methods that relax the coupling is

provided in [194]. In our area, these methods can decompose the orig-

inal centralized optimization problem into a sequence of distributed

subproblems only requiring local CSI and not any user involvement.

The beamforming for each user is optimized separately and sequen-

tially. If multiple base stations serve a given user, then they appoint a

master base station (MBS). The MBS gathers the relevant CSI from

other base stations and takes care of all computations related to the

given user in the optimization.

To exemplify the decomposability, we will show how the resource

allocation with QoS requirements and the quasi-convex curve-search
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(a) Centralized Optimization and Resource Allocation

(b) Distributed Allocation with Control Signaling (Subsection 4.2.1)

(c) Truly Distributed Allocation (Subsection 4.2.2)

Fig. 4.4 Different implementations of resource allocation in multi-cell systems: (a) Global
CSI is gathered at a central station that allocates resources; (b) Base stations perform dis-
tributed resource allocation by iteratively exchanging control variables (but not CSI); and
(c) Base stations perform distributed resource allocation without exchanging any informa-
tion (but the problem formulation and local CSI is available).
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procedure in Section 2.2 can be solved to global optimality in a

distributed manner. The former problem is considered in [204, 257, 265]

under total power minimization, while the latter is considered in

[14, 239, 257].

As a first step, the feasibility problem with QoS requirements

in (2.29) (with SINRk ≥ γk ∀k) is rewritten as

find vk,Θik,Θ̃ik, qlk ∀k,i, l, i �= k

subject to
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

Θ̃2
ik

≥ γk ∀k,

|hH
k CkDivi|2 ≤ Θ2

ik, Θik ≤ Θ̃ik ∀k,i, i �= k,

vH
k Qlkvk ≤ qlk,

Kr∑

i=1

qli ≤ ql ∀l,k

(4.29)

by adding nonnegative auxiliary variables Θik,Θ̃ik, qlk. The squared

variable Θ2
ik is the actual interference generated at MSk by signals

intended for MSi, while Θ̃2
ik is its believed value in the beam-

forming optimization for MSk. The reason for defining these vari-

ables as the square roots of the interference is to enable the SINR

constraints to be expressed as second-order cones ℜ(hH
k CkDkvk) ≥

√
γk

√
σ2

k +
∑

i�=k Θ̃2
ik. Similarly, the power constraints are separated

into per-user constraints using the variables qlk.

Looking at (4.29), we observe that the transmission to different

users is only coupled by the so-called consistency constraints Θik ≤ Θ̃ik

and
∑Kr

i=1 qli ≤ ql. If the coupling variables Θik,Θ̃ik, qlk are fixed, the

beamforming optimization for the different users would decouple. The

classic decomposition methods basically pretend that these variables

are constants and update them iteratively [194, 204, 265].

We will take a dual decomposition approach where the coupling

is relaxed by forming a partial Lagrangian for the consistency con-

straints. If the Lagrange multipliers are denoted yik and zl for the

interference and power consistency constraints, respectively, (4.29) can
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be decomposed into Kr subproblems where the problem for MSk is

minimize
vk,{Θki}∀i,{Θ̃ik}∀i,{qlk}∀l

∑

i�=k

(
ykiΘki − yikΘ̃ik

)
+

L∑

l=1

zlqlk

subject to
|hH

k CkDkvk|2
σ2

k +
∑
i�=k

Θ̃2
ik

≥ γk ∀k,

vH
k Qlkvk ≤ qlk, qlk ≤ ql ∀l,

|hH
i CiDkvk|2 ≤ Θ2

ki i �= k

(4.30)

and a master dual problem

maximize
{yik}∀k,i,{zl}∀l

Kr∑

k=1

∑

i�=k

yik

(
Θ∗

ik − Θ̃∗
ik

)
+

L∑

l=1

zl

(
Kr∑

k=1

q∗
lk − ql

)
, (4.31)

where Θ∗
ik,Θ̃

∗
ik, q

∗
lk,v

∗
k are the subproblem solutions.

This decomposition enables an iterative procedure where the

subproblems in (4.30) are solved for constant values on the Lagrange

multipliers yki,yik ∀i �= k and zl ∀l. This is called dual decomposition

because the Lagrange multipliers are viewed as constants in the sub-

problems, and not the coupling variables themselves. The Lagrange

multipliers can be viewed as prices for causing interference and for

consuming transmit power, and these prices are iteratively adjusted

by the master problem (4.31) until convergence. The update procedure

requires backhaul signaling, but we will see that it can be implemented

by distributed message passing between the involved transmitters. In

other words, the heavy CSI signaling required to solve the resource allo-

cation problem centrally is replaced by iterative interference and power

control signaling. This confirms the observation in Section 3.2 that coor-

dinated decision making is the limiting factor in multi-cell resource

allocation, and not the localness of the CSI at the base stations.

The subproblems in (4.30) resembles the interference-constrained

beamforming in Subsection 2.2.1 (with interference limits Γik = Θ2
ik),

with the difference that also the power constraints are decoupled. The

problem (4.30) is convex and can be solved to global optimality using

standard techniques. The master problem has a more complicated
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structure and is typically solved by subgradient methods [194]. This

implies that the Lagrange multipliers in iteration n + 1 are achieved as

y
(n+1)
ik =

[
y

(n)
ik − ξ(Θ̃

(n)
ik − Θ

(n)
ik )
]
+
, (4.32)

z
(n+1)
l =

[
z
(n)
l − ξ

(
ql −

Kr∑

k=1

q
(n)
lk

)]
+
, (4.33)

where ξ > 0 is the step size. The update (4.32) requires exchange of Θ̃
(n)
ik

and Θ
(n)
ik (i.e., the Lagrange multipliers computed in the nth iteration)

between the master base stations of MSk and MSi.
4 The update (4.33)

requires exchange of q
(n)
lk between base stations that share the lth power

constraint. The backhaul signaling load is quantified in [265], where

several variations are discussed.

If the original problem (4.29) is feasible and the step size diminishes

with n, iterating between the master problem and subproblems will

eventually provide the globally optimal solution [194].5 The problem is

solved if all consistency constraints are satisfied as Θ
(n)
ik ≤ Θ̃

(n)
ik + ε and∑Kr

k=1 q
(n)
lk ≤ ql + ε, for some predefined accuracy ε > 0. The distributed

algorithm is summarized in Algorithm 4. The stopping criterion can

limit the number of iterations or detect if the original problem seems

infeasible, but some central entity might need to enforce it.

Algorithm 4 includes some optional steps where the beamforming

vectors are rescaled to satisfy all power constraints with equality and

the corresponding user performance is evaluated. This improves the

convergence by making the current beamforming vectors feasible, but

at the expense of exchanging all power allocation coefficients q
(n)
lk .

Since Algorithm 4 provides a distributed solution to resource alloca-

tion with fixed QoS requirements, it can also be used as a subproblem

in algorithms that successively increase the QoS requirements for the

purpose of obtaining a Pareto optimal point. We will exemplify how

the curve-search procedure in (2.40) of Subsection 2.2.3 can be solved

4 If a base station is responsible for multiple users, their subproblems can be solved jointly
and there is no need to introduce any coupling variables between these users.

5 This convergence to the optimal solution only holds for convex problems. If an algorithm
that solves a nonconvex problem is decomposed, we might not converge to the global
optimum (and not even converge to something at all).
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Algorithm 4: Distributed Optimization with QoS Requirements

Result: Distributed algorithm for solving (4.29).

Input: QoS requirements gk(SINRk) ≥ r∗
k for each user k;

Input: Step-size ξ > 0 (fixed or adaptive);

Input: Stopping criterion and accuracy ε > 0;

Input: Initialization of y
(1)
ik ,z

(1)
l (e.g., equal to zero);

Set n = 0 and γk = g−1
k (r∗

k) ∀k;1

while stopping criterion is not satisfied do2

Set n = n + 1;3

Solve subproblem (4.30) (using y
(n)
ik ,z

(n)
l ) at the master base4

station of each user k. Save current Θ
(n)
ik ,Θ̃

(n)
ik , q

(n)
lk ,v

(n)
k ;

Exchange relevant solution variables Θ
(n)
ik ,Θ̃

(n)
ik , q

(n)
lk between5

base stations coupled by consistency constraints;

(Optional:) Compute ς = max{l:ql>0}
∑Kr

k=1
q
(n)
lk

ql
;6

(Optional:) Set v
(n)
k = 1√

ς
v

(n)
k , Θ

(n)
ik = 1√

ς
Θ

(n)
ik , Θ̃

(n)
ik = 1√

ς
Θ̃

(n)
ik ,7

q
(n)
lk = 1√

ς
q
(n)
lk ;

Compute y
(n+1)
ik ,z

(n+1)
l at relevant places, using (4.32)-(4.33);8

Check if consistency constraints are satisfied (to accuracy ε);9

if ς ≤ 1 and all consistency constraints are satisfied then10

Problem (4.29) has been solved and the algorithm ends;11

(Optional:) Compute SINR
(n)
k =

|hH
k

CkDkv
(n)
k

|2

σ2
k
+

∑
i�=k(Θ

(n)
ik

)2
;

12

if (Optional:) gk(SINR
(n)
k ) ≥ γk for all k then13

Problem (4.29) has been solved and the algorithm ends;14

Output: Optimal beamforming vectors v
(n)
k ;

distributively using Algorithm 4. Recall that this problem finds the

best feasible point on a strictly increasing curve r(τ). The centralized

approach in Algorithm 1 solves the curve-search by bisection, but the

dual decomposition approach is relatively slow at declaring that an

operating point is infeasible. The distributed Algorithm 5 therefore

starts at the first point, r(τ lower), and moves step-by-step along the
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Algorithm 5: Distributed Curve-Search Procedure

Result: Distributed solution to optimization problem (2.40).

Input: Lower bound τ lower on τ that guarantees feasibility;

Input: Step size τ (step) > 0 of curve search;

Input: Step size ξ > 0 of subproblems;

Input: Subproblem accuracy ε > 0 and stopping criterion;

Set y
(1)
ik = 0, z

(1)
l = 0 ∀k,i, l i �= k;1

Set τ (0) = τ lower and m = 0;2

while stopping criterion is not satisfied do3

Set m = m + 1;4

Set τ (m) = τ (m−1) + τ (step) and r∗
k = rk(τ

(m)) ∀k;5

Run Algorithm 4 using {r∗
k,y

(m)
ik ,z

(m)
l , ξ,ε};6

if Algorithm 4 solves the problem then7

Store variables v
(m)
k ,y

(m+1)
ik ,z

(m+1)
l in solution;8

(Optional:) Compute SINRk as in Step 12 of Algorithm 4;9

(Optional:) Find minimal τ̃ with rk(τ̃) ≥ gk(SINRk) ∀k;10

(Optional:) Set τ (m) = τ̃ ;11

else12

Decrement m = m − 1 and stop the algorithm;13

Output: Operating point r(τ (m)) and beamforming v
(m)
k ;

curve using a step size of τ (step) > 0 (it can be either fixed or adaptive).

Thereby, the algorithm approaches the Pareto boundary by moving

inside of the performance region. Some stopping criterion is required

(e.g., on the number of iterations) and there is an optional part that can

improve the convergence, at the expense of some extra signaling. There

will typically be some central entity that oversees the algorithm and

informs the base stations when to update τ (m) and start a new iteration.

The convergence of Algorithm 5 is illustrated in Figure 4.5 for the

same two-user global joint transmission scenario and channel realiza-

tions as in Figure 4.2(a) of Section 3.3. We try to obtain the max-min

fairness point using τ (step) = 0.2 and ξ = 0.25√
n

, where n is the step

number in the subproblems. Only 2 iterations are required to achieve
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Fig. 4.5 Illustration of the convergence of the distributed resource allocation in Algorithm 5.
Max-min fairness is the system utility function and 98% of the optimal performance is
achieved after 6 iterations.

an operating point close to the Pareto boundary, but not exactly on

the line where the users achieve equal performance. This behavior is

due to distributed resource allocation that has not yet converged. 98%

of the optimal max-min fairness utility is achieved after 6 iterations,

showing the efficiency of the algorithms in this simple scenario.

To summarize, the dual decomposition approaches in Algorithms 4

and 5 should be seen as proofs-of-concept: convex and quasi-convex

resource allocation problems can be implemented in a distributed fash-

ion by exchanging control variables rather than CSI. The algorithms in

this subsection are not intended for practical implementation, but illus-

trates a decomposition concept that can also include robustness to CSI

uncertainty [257] and time-correlated fading that changes the channels

in between iterations [265]. The convergence can be improved using the

alternating direction method of multipliers; see [36] for a survey and

[239] for applications to robust multi-cell resource allocation.

Uplink–downlink duality provides an alternative decomposi-

tion approach where we update and exchange the parameters

in Theorem 3.5 in an iterative manner. For weighted max-min

optimization with a total power constraint, there are computation-
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ally efficient fixed-point algorithms [42, 208, 226, 228, 296] that are

also amenable to distributed implementation [42, 59, 208]. These algo-

rithms are less suitable under general multi-cell power constraints,

although such constraints can be handled exactly for single-antenna

transmitters [43], by iterative subgradient methods for multi-antenna

transmitters [59, 308], or by suboptimal approximation of the power

constraints [43, 108]. Furthermore, the beamforming parametrization

with interference-temperature constraints in Theorem 3.2 enables a

simple decentralized algorithm for moving an operating point toward

the Pareto boundary [325]. The final operating point greatly depends

on the starting point and on parameter values that roughly describe

the user priorities; therefore, the approach in [325] is suitable for refin-

ing the heuristic truly distributed strategies described in the next

subsection.

Remark 4.2 (Distributed Nonconvex Optimization). If the

resource allocation problem is nonconvex, both centralized and dis-

tributed solution algorithms are practically infeasible (although they

are theoretically implementable by combining the dual decomposition

approach in this subsection with the PA or BRB algorithms in Sec-

tion 2). The natural approach is to search for a locally optimal point

instead of a globally optimal point in the performance region. This

remark will exemplify some recent algorithms for multi-cell systems,

and we refer to [104] for a more thorough survey on centralized and

distributed resource allocation algorithms that find stationary points.

Nonconvex problems can be decomposed using interference-

prices [225] (similar to the dual decomposition approach above) and

the prices are iteratively updated to converge to a local optimum.

The distributed algorithm in [280] searches for beamforming vectors

that satisfy the KKT conditions. A convex conservative approxi-

mation of the weighted sum information rate is obtained in [257],

which enables distributed optimization of a lower bound on the

system utility. The multi-cell resource allocation is decomposed into

many single-cell problems in [291], thus enabling iterative use of

algorithms developed for low-complexity single-cell sum information

rate optimization. Uplink–downlink duality and the corresponding
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beamforming parametrization in Theorem 3.5 are considered in [201]

and an algorithm is proposed to iteratively adapt the parameters to

the system utility function.

There are many papers claiming that a large fraction of the

optimal system utility can be achieved by suboptimal low-complexity

optimization algorithms [18, 257, 291], but it is hard to verify for large

and complicated multi-cell systems.

4.2.2 Truly Distributed Resource Allocation

The previous subsection showed that convex resource allocation

problems can be solved to global optimality in a distributed fash-

ion. Several iterations and rounds of control signaling are generally

necessary to achieve the solution, which might not be desirable or

feasible in practice. By sacrificing the optimality assurance, noniter-

ative resource allocation algorithms that only utilize local CSI can be

obtained; for example, by imitating the structure of optimal beam-

forming [18, 21, 23, 88, 135, 142, 180, 311]. This subsection describes

a simple heuristic approach that can be seen as a pragmatic approach

to multi-cell coordination but also as a reasonable starting-point for

iterative algorithms. We call it a truly distributed approach since nei-

ther CSI nor other coordination variables (such as Θik,Θ̃ik, qlk in the

previous subsection) are exchanged between the base stations.

To bring some insights on the consequences of truly distributed

resource allocation, we consider an arbitrary scalarized resource allo-

cation problem

maximize
{vjk}Kt,Kr

j=1,k=1

f (g1(SINR1), . . . ,gKr(SINRKr))

subject to SINRk =

∣∣∣
Kt∑
j=1

hH
jkCjkDjkvjk

∣∣∣
2

σ2
k +

∑
i�=k

∣∣∣
Kt∑
j=1

hH
jkCjkDjivji

∣∣∣
2

∀k,

Kr∑

k=1

[
vH

1k . . . vH
Ktk

]
Qlk




v1k
...

vKtk


 ≤ ql ∀l,

(4.34)
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where the beamforming vectors are decomposed as vk = [vT
1k . . . vT

Ktk
]T

and vjk ∈ CNj is the contribution at MSk from BSj . An important ques-

tion is how to maximize SINRk in (4.34) in a distributed manner using

only local CSI. Starting with the numerator, coherent signal recep-

tion can be achieved, for instance, by synchronizing the joint trans-

missions such that hH
jkCjkDjkvjk is positive real-valued (or zero) for

each BSj . This requires phase-synchronization between the cooperat-

ing base stations (e.g., using GPS-locked reference clocks [124] or com-

mon reference signals [177]), but no further control signaling. Achieving

coherent interference cancelation (i.e., |∑Kt

j=1hH
jkCjkDjivji|2 is small

without enforcing that every term in the sum is small) is more dif-

ficult under local CSI, if not impossible in noniterative multi-cell sys-

tems [18, 91].6 Without coherent interference cancelation, there are few

reasons for joint transmission; it is more power efficient and reliable

to serve each user only by the base station with the strongest chan-

nel, although somewhat more unbalanced interference patterns might

arise if the user distribution is highly heterogeneous.7 Truly distributed

joint transmission is certainly possible (e.g., by minimizing each term

in |∑Kt

j=1hH
jkCjkDjivji|2 individually) and was pioneered in [23], but

recent work indicates that the performance gain over coordinated

beamforming is small [18]. It will not justify the increased backhaul sig-

naling required deliver the same data signals to multiple base stations.

To summarize, joint transmission requires iterative resource allocation

with some kind of information exchange between the base stations,

while only coordinated beamforming (where |∑Kt

j=1hH
jkCjkDjivji|2

only has one nonzero term) is reasonable in truly distributed systems.

Under coordinated beamforming with per-transmitter power con-

straints, the beamforming parametrization in Theorem 3.5 takes the

following form.

6 Coherent interference cancelation means that BSj selects vji to make hH
jk

CjkDjivji ≈
−∑

m�=j hH
mk

CmkDmivmi for all k �= i. The phase and magnitude of the aggregate inter-
ference from the other base stations participating in the joint transmission are required,
in addition to phase-synchronization. This is more involved than just aligning the use-
ful signals at an intended user. A similar problem arise in interference alignment, where
distributed implementations require iterations to find suitable interference subspaces [91].

7 This problem can be resolved in the dynamic clustering by increasing the range of weakly
loaded cells and decreasing the range of heavily loaded cells; see Section 4.7.
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Corollary 4.7. Suppose the sets Dj are disjoint between the base

stations and that BSj has a per-transmitter power constraint of qj .

Each Pareto optimal point is achieved by beamforming vectors vjk =√
pjkv̄jk for k ∈ Dj where

v̄jk =

(
µj

qj
INj

+
∑

i∈Cj\{k}
λi

σ2
i

hjih
H
ji

)†
hjk

∥∥∥∥
(

µj

qj
INj

+
∑

i∈Cj\{k}
λi

σ2
i

hjihH
ji

)†
hjk

∥∥∥∥
2

(4.35)

for some positive parameters {µj}Kr

j=1 and {λi}Kr

i=1 that satisfy∑Kt

j=1 µj =
∑Kr

i=1 λi = 1. Furthermore, pjk ≥ 0 denotes the power allo-

cation and is identically zero whenever k �∈ Dj .

This corollary parameterizes the optimal beamforming direction.

Recall from Section 3.4 that the heuristic MRT, ZFBF, and SLNR-

MAX strategies are related to this optimal structure. The parameter

selection should however be adapted to the problem at hand, meaning

that the structure of the system utility function f(·) and user perfor-

mance functions gk(·) should be taken into account. If these functions

are completely symmetric among the users, then this should be reflected

in a symmetry in the variables λi since these describe user priorities

(see Corollary 3.7). Additionally, any asymmetry in the performance

measures should lead to a corresponding asymmetry in {λi}Kr

i=1.

Assume that all user performance functions are the same (e.g., infor-

mation rates or MSEs) and any of the weighted system utility functions

in Example 1.11 is used. The weighting factors wk ≥ 0 are then the best

priority indicators available in the problem formulation. It makes sense

to select

λ
(heuristic)
k =

wk∑Kr

i=1 wi

∀k. (4.36)

Furthermore, the parameter µj describes the relative importance of

enforcing the power constraint at BSj . All base stations have total

power constraints, thus only the number of users served by BSj deter-

mines the relative importance of using much transmit power in this
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cell. It makes sense to select

µ
(heuristic)
j =

|Dj |∑Kt

m=1 |Dm|
∀j. (4.37)

This heuristic parameter selection equals SLNR-MAX when all weight-

ing factors are equal (i.e., wk = 1
Kr

) but is generally different due to the

user priority adaptation. It also resembles the DVSINR beamforming

in [18], but the parameters are slightly different. To distinguish this

method from previous work, we denote our distributed beamforming

scheme as weighted SLNR-MAX beamforming.

Observe that (4.36) and (4.37) are both characterized by the prob-

lem formulation and can be computed independently at each base sta-

tion. The beamforming direction (4.35) only depends on local CSI

(i.e., hji for i ∈ Cj), thus the transmitting base station can compute

v̄
(heuristic)
jk by itself using Corollary 4.7, (4.36), and (4.37).

The power allocation can in principle be computed as in Theo-

rem 3.5, but the allocation depends on a system of equations that

generally cannot be solved without exchanging information between

the base stations. In addition, our parameter selection only utilizes the

weighting factors and number of users per cell, and not the exact struc-

ture of the system utility and user performance functions. An alterna-

tive approach is to solve a heuristic power allocation problem

maximize
pjk≥0 ∀k∈Dj

f (g1(SINR1), . . . ,gKr(SINRKr))

subject to SINRk =





pjk|hH
jk

v̄
(heuristic)
jk

|2
σ2

k

, k ∈ Dj ,

0, k �∈ Dj ,
∑

k∈Dj

pjk ≤ qj

(4.38)

at BSj , where all inter-user interference has been ignored. This approx-

imation is intuitive in the high-SNR regime, since v̄
(heuristic)
jk will be

similar to ZFBF. It also makes sense in the low-SNR regime, because

then noise term dominates the inter-user interference. The use at inter-

mediate SNR can be motivated numerically [18]. The power allocation

problem in (4.38) can often be solved in closed form; see Theorem 3.16

for the waterfilling solution obtained for the weighted arithmetic mean.
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This subsection is concluded with a measurement-based comparison

of centralized and distributed resource allocation strategies [18, 111].

Example 4.2 (Measurement-Based Evaluation). We will com-

pare the performance of different resource allocation strategies, ranging

from the optimal centralized strategy to the truly distributed strat-

egy described in this subsection. To capture practical channel fading,

spatial correlation, and path loss effects, we utilize narrowband chan-

nel measurements conducted in Stockholm, Sweden, using two base

stations with four-element uniform linear arrays with 0.56λ antenna

spacing and one user device. The system bandwidth was 9.6 kHz at

a carrier frequency in the 1800 MHz band. The user had a uniform

circular array with four directional antennas, but we average the signal

over its antennas to create a single virtual omni-directional antenna.

Further measurement details and maps are available in [18, 111].

In this example, we utilize the channel measurements to create a

two-cell scenario where 8 users are randomly located along the mea-

sured routes.8 The system utility function is the weighted sum infor-

mation rate with

wk =
cw

E

{
log2

(
1 + Kt

Krσ2
k

maxj(qj‖hjk‖2
2)
)} ∀k. (4.39)

These weights balance aggregate utility and user fairness (and cw is

scaled to make
∑Kr

k=1 wk = 1). We assume a transmit power of 15 dBm

(per base station), 5 dBi antenna gain, −131 dBm noise power, and the

measured path losses (from the strongest base station) ranges between

−37 dB and −85 dB. We evaluate five resource allocation strategies:

(1) Optimal Resource Allocation: Calculated using the BRB

algorithm in Section 2.3.

(2) Optimal Resource Allocation with Incoherent Interference

Reception: Similar to the optimal strategy, but with the addi-

tional assumption that base stations cannot cancel out each

8 To create balance, two users are placed to have their strongest channel gains ‖hjk‖2
2 from

BS1 while two users have their strongest channel gains from BS2. The other users are
uniformly distributed along the measured routes; see [18].
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other’s interference through joint transmission. This is an

upper bound on truly distributed strategies and maximizes

the weighted sum utility with SINRk replaced by

SINR
(incoherent)
k =

∣∣Kt∑
j=1

√
pjkh

H
jkCjkDjkv̄jk

∣∣2

σ2
k +
∑
i�=k

Kt∑
j=1

∣∣√pjihH
jkCjkDjiv̄ji

∣∣2
∀k.

(3) Centralized WSLNR: Beamforming Parametrization in The-

orem 3.5 (using Corollary 3.6) with the heuristic parameter

values given in (4.36) and (4.37).

(4) Distributed WSLNR: Truly distributed coordinated beam-

forming strategy described in this subsection, with user selec-

tion based on the distributed ProSched scheme in [18].

(5) JT-DVSINR: Truly distributed joint transmission strategy

proposed in [23], with user selection based on the distributed

ProSched scheme in [18].

(6) Single-cell processing: Base stations acts as if there is only

one cell and out-of-cell interference is included in σ2
k.

The cumulative distribution functions (CDFs) of the weighted

arithmetic mean information rates (over user locations and channel

measurements) are shown in Figure 4.6(a). Centralized WSLNR is rel-

atively close to the optimal solution (on average), but improvements

can be made at the lower end. This heuristic noniterative strategy can

thus be viewed as a good starting-point for centralized resource alloca-

tion. Furthermore, we observe that the truly distributed WSLNR and

JT-DVSINR strategies are close together, thus confirming that joint

transmission is only useful if there is some kind of control signaling

between the base stations. There is a large gap between the centralized

and truly distributed strategies because coherent interference cancela-

tion enables transmission to 8 users, while only 4 users are efficiently

served in the case of incoherent interference reception. Observe that

rudimentary coordinated beamforming brings large improvements over

single-cell processing.
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Fig. 4.6 Results from the measurement-based evaluation of a two-cell system with 8 users.
The performance is evaluated over different random user locations and showed for different
resource allocation strategies. (a) CDF of the weighted sum information rate; and (b) Aver-
age weighted sum information rate as a function the phase standard deviation σφ, where

the actual channels are modeled as h
(effective)
jk

= hjkeıφjk with φjk ∼ N (0,σ2
φ
).

Figure 4.6(b) shows the average weighted arithmetic mean infor-

mation rates when we introduce synchronization errors between

the base stations; it is generally difficult to achieve perfect
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phase-synchronization between antennas distributed over a wide area

(e.g., due to clock drifts, carrier frequency offsets, and insufficient

cyclic prefixes [18, 262, 318, 322]). We assume a very simple but illus-

trative model where the antennas at each base station are perfectly

synchronized, but there is a phase mismatch between the base sta-

tions. The effective channels are h
(effective)
jk = hjke

ıφjk , where ı denotes

the imaginary number and φjk ∼ N (0,σ2
φ) are random phase devia-

tions. Note that σφ = 0 means perfect synchronization. The optimal

resource allocation and centralized WSLNR are very sensitive to syn-

chronization errors as they rely on coherent interference cancelation

where the interfering signals from different base stations should cancel

out perfectly. The other schemes are more-or-less unaffected by syn-

chronization errors, since they are not utilizing coherent interference

cancelation. The optimal strategy under incoherent interference recep-

tion provides a useful performance bound, and the truly distributed

schemes are remarkably close to it. We conclude that tight synchro-

nization is required to benefit from joint transmission, while the coor-

dinated beamforming provides a large and relatively robust gain over

single-cell processing.

4.3 Transceiver Impairments

The beamforming optimization in multi-antenna systems has tradi-

tionally been separated from the design of transceiver hardware; that

is, the hardware has been assumed to give rise to perfectly linear

input–output models such as (1.1) and (1.9). While these models

might also include multiplicative and additive distortions that are inde-

pendent of the data signals, physical hardware implementations of

radio frequency (RF) transceivers also suffer from impairments that

are signal-dependent; for example, due to nonlinear power amplifiers,

phase noise, and IQ-imbalance [103, 224].9 These impairments have a

9 These might be the most severe impairments in OFDM systems, but there is also carrier-
frequency offsets, sampling-rate offsets, quantization noise, etc. [103].
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minor impact on point-to-point systems with low-order modulations

that can be operated at low SNR (e.g., quadrature phase-shift keying

(QPSK) [76]). This perhaps explains why transceiver impairments have

received much less attention from the resource allocation community

than other nonidealities such as CSI uncertainty and limited backhaul

capacity. However, the degradations can be particularly severe in mod-

ern multi-cell systems using OFDM (which requires amplifiers with high

dynamic range; see Remark 4.4), high-order modulations (which require

high SINRs), low-cost equipment (which are relatively non-ideal), and

transmit-side interference mitigation (which needs accurate CSI and

channel models) [72, 94, 255].

Many of these impairments can be mitigated by proper modeling

of the associated distortions, followed by calibration and compensa-

tion algorithms [60, 224, 260]. This is related to the dirty RF paradigm

where the analog components are designed based on some suitable crite-

rion (e.g., high energy-efficiency or small chip area), while nonidealities

are compensated by digital signal processing techniques [5, 72]. These

techniques cannot remove the distortions completely, but the residual

distortions are well-modeled as additive Gaussian noise with a variance

that increases with the power of the transmitted signal. The Gaus-

sianity is explained by the aggregate residual of many impairments,

whereof some are Gaussian distributed and some behave as Gaussian

when summed up [60, 103, 254, 255].

This section will show that the performance of multi-cell systems

can be improved and better predicted if the existence of transceiver

impairments is taken into consideration in the resource allocation. The

analysis builds upon the generalized impairment model in [16, 24, 25,

224, 254, 319], which considers the combined influence of all impair-

ments rather than separately modeling the behavior of each hardware

component. This model has been utilized to study the performance of

point-to-point systems [25, 76, 254, 255], nonlinear single-cell trans-

mission [93], multi-cell ZFBF [319], and optimal coordinated beam-

forming [24]. We will show that this model enables generalizations

of most concepts in Sections 1 and 2 with retained computational

feasibility.
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4.3.1 Generalized Impairment Model

We consider a generalization of the multi-cell system model in (1.9)

where the received signal at MSk is

yk = hH
k Ck

(
Kr∑

i=1

Divisi + ξ(t)

)
+ nk + ξ

(r)
k , (4.40)

where visi is the transmitted signal to MSi under single-stream

beamforming. The new terms ξ(t) ∈ CN and ξ
(r)
k ∈ C ∀k are the

additive transmitter-distortion and receiver-distortion, respectively.

These distortions are modeled as zero-mean complex Gaussian and

are statistically independent of the data signals, but the covariance

matrices depend on the power of the transmitted and received signals,

respectively.

The transmitter-distortion ξ(t) describes the mismatch between the

aggregate data signal
∑Kr

i=1Divisi designed by the resource allocation

and what is actually transmitted by the RF hardware; see Figure 4.7.

The structure of the distortion depends on many things; for exam-

ple, the quality of the hardware, which compensation algorithms are

applied, the number of subcarriers, and whether adjacent transmit

antennas share components or essentially are decoupled. We assume

that the elements of ξ(t) are uncorrelated, which can be confirmed

by measurements on decoupled antenna branches [224, 254, 319].10 In

Fig. 4.7 Schematic illustration of the additive mismatch ξ(t) between the aggregate data
signal

∑Kr
i=1 Divisi and the signal actually created and emitted by the RF hardware. The

mismatch is due to transceiver impairments in the transmitter.

10 The transmitter-distortion is not uncorrelated in general, as proved in [184], but the
correlation is expected to be rather weak. Nevertheless, the results in this subsection can
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other words, ξ(t) ∼ CN (0,Ξ), where Ξ ∈ CN×N is a diagonal covariance

matrix.

The signal power allocated to the nth transmit antenna can be

computed as ‖TnVtot‖2
F , where Tn ∈ CN×N is zero except at the nth

diagonal element and Vtot = [D1v1 . . . DKrvKr ] includes all the signals.

The distortion at this antenna increases with ‖TnVtot‖2
F , thus

Ξ =




(
η1(‖T1Vtot‖F )

)2
. . . (

ηN (‖TNVtot‖F )
)2


 , (4.41)

where ηn(·) is a continuous and monotonically increasing function.11

Observe that this distortion function maps the transmit magnitude

to the distortion magnitude (both in unit
√

mW), and not the pow-

ers. This definition simplifies analysis and clarifies the connection to

error vector magnitude (EVM), which is a common quality measure

for RF transceivers [103, 224, 254]. The EVM is the ratio between

the average distortion magnitude and the average transmit magnitude,

defined as

EVM(t)
n =

√√√√ E
{∣∣[ξ(t)]n

∣∣2}

E
{∣∣[∑Kr

k=1Dkvksk

]
n

∣∣2} =
ηn (‖TnVtot‖F )

‖TnVtot‖F
, (4.42)

and is often reported as a percentage. Consequently, we can expect

ηn(·) to behave as ηn(x) = EVM
(t)
n x and increase at least linearly with

the transmit magnitude x = ‖TnVtot‖F . It can also increase faster than

linear if EVM
(t)
n becomes worse/larger when x is large (e.g., due to non-

linearities in the power amplifiers). The EVM requirements in 3GPP

Long Term Evolution (LTE) are 8%–17.5% at the transmitter, depend-

ing on the anticipated spectral efficiency [103, Section 14.3.4].

probably be extended also to correlated distortions, but yet there does not exist a general
impairment model that is feasible for mathematical analysis.

11 The transmitter-distortion in multi-carrier systems (see Section 4.5) generally depend
on the power allocated over all the Kc subcarriers. The direct impact of the transmit
strategy diminishes with increasing Kc and the distortion power mainly depend on the
average power used at each base station. In other words, Ξ may converge to a constant
matrix as Kc grows large.
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Since the actual transmitted signal under transceiver impairments

is
∑Kr

i=1Divisi + ξ(t) (i.e., includes the transmitter-distortion), it is the

average power of this signal that should be limited by the power con-

straints. Due to the statistical independence of each term, the power

constraints in (1.4) can be generalized as12

Kr∑

k=1

vH
k Qlkvk + tr(QlξΞ) ≤ ql l = 1, . . . ,L. (4.43)

The second term models the additional power consumed by the

impairments. The weighting matrix Qlξ ∈ CN×N is Hermitian posi-

tive semi-definite and should typically have the same structure as Qlk,

but note that we might have tr(Qlξ) < tr(Qlk) since not all types of

impairments increase the power consumption.13 As the transmitter-

distortions are much weaker than the useful signals, the second

term of (4.43) often have a negligible impact on the system [16].

An alternative model is to keep the original power constraints (i.e.,

set Qlξ = 0N ) and simply reduce each limit ql to account for the

distortions.

Furthermore, the receiver-distortion ξ
(r)
k of MSk models the

mismatch between ideal and practical reception. This term is mod-

eled as

ξ
(r)
k ∼ CN (0,σ2

k,ξ) where σk,ξ = νk

(
‖hH

k CkVtot‖F

)
(4.44)

and νk(·) is a continuous and monotonically increasing function. This

distortion function describes the receiver impairment characteristics

and maps the average received signal magnitude to the corresponding

distortion magnitude (both in unit
√

mW). The main error sources are

phase noise and IQ-imbalance, thus we can expect νk(·) to behave as

νk(x) = EVM
(r)
k x, where EVM

(r)
k is a constant EVM-term.

12 A portion of the useful signal is basically transformed into distortion in practice. From a
modeling perspective, this is essentially the same thing as viewing the remaining signal
as the design parameter and the distortion as an additive noise.

13 Nonlinearities in power amplifiers result in a saturation that might reduce the power
consumption of these components.
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4.3.2 Resource Allocation with Transceiver Impairments

The generalized system model in (4.40) results in a generalized SINR

expression for MSk,

SINRk =
|hH

k CkDkvk|2
σ2

k + σ2
k,ξ +

∑
i�=k

|hH
k CkDivi|2 + hH

k CkΞCH
k hk

, (4.45)

and the generalized power constraints (4.43), but otherwise the multi-

objective and single-objective resource allocation problems in (1.35)

and (1.40), respectively, are the same. For example, the feasibility prob-

lem in (2.29) (with the QoS constraints gk(SINRk) ≥ r∗
k) can be gener-

alized as

find v1 . . . ,vKr (4.46)

subject to |hH
k CkDkvk|2 ≥ g−1

k (r∗
k)
(
σ2

k + σ2
k,ξ

+
∑

i�=k

|hH
k CkDivi|2 + hH

k CkΞCH
k hk

)
∀k,

Kr∑

k=1

vH
k Qlkvk + tr(QlξΞ) ≤ ql ∀l,

where {r∗
k}Kr

k=1 are fixed. Theorem 2.6 showed that this is a convex

problem under ideal hardware, and the following corollary proves the

same thing for (4.46).

Corollary 4.8 The feasibility problem in (4.46) can be reformu-

lated as

find vk, tn,ρk ∀k,n (4.47)

subject to

Kr∑

k=1

vH
k Qlkvk +

N∑

n=1

tr(QlξTn)t2n ≤ ql ∀l, (4.48)

√√√√σ2
k + ρk +

Kr∑

i=1

|hH
k CkDivi|2 +

N∑

n=1

t2nh
H
k CkTnCH

k hk

≤
√

1 + g−1
k (r∗

k)

g−1
k (r∗

k)
ℜ(hH

k CkDkvk) ∀k, (4.49)
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ℑ(hH
k CkDkvk) = 0 ∀k, (4.50)

ηn(‖TnVtot‖F ) ≤ tn ∀n, (4.51)

νk

(
‖hH

k CkVtot‖F

)
≤ ρk ∀k (4.52)

and is jointly convex in the beamforming vectors and the auxiliary

optimization variables {tn}N
n=1, {ρk}Kr

k=1 provided that ηn(·) and νk(·)
are monotonically increasing convex functions.

Proof. The auxiliary variable tn is defined to describe the transmitter-

distortion magnitude at the nth antenna: tn = ηn(‖TnVtot‖F ). This

enables rewriting

hH
k CkΞCH

k hk =

N∑

n=1

t2nh
H
k CkTnC

H
k hk

tr(QlξΞ) =

N∑

n=1

t2ntr(QlξTn),

(4.53)

which are terms that appear in the SINR and power constraints, respec-

tively. These constraints are convex in tn and by minimizing over tn,

we can have inequality in (4.51) and be sure that equality holds at

the optimal solution. Next, we introduce the auxiliary variable ρk as

in (4.52) to represent the receiver-distortion magnitude at the kth user.

Equality will always hold if we minimize over ρk, thus we can replace

νk(·) with ρk in the SINR expression. The remaining terms in the SINR

expressions can be rewritten as convex second-order cones, just as in

Theorem 2.6. Finally, the convexity of (4.51) and (4.52) follows if ηn(·)
and νk(·) are increasing convex functions, as the arguments are convex

functions of the beamforming vectors.

This corollary shows that resource allocation problems with QoS

requirements are convex under transceiver impairments. As (4.46) is a

subproblem of both the different types of quasi-convex weighted max-

min fairness problems in Subsection 2.2.3 and the PA and BRB algo-

rithms for arbitrary monotonic problems in Section 2.3, we thus have

established an approach to solve any single-objective resource alloca-

tion problem under transceiver impairments.
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Example 4.3(Max-Min Fairness under Impairments). We con-

sider a coordinated beamforming scenario with two base stations with

Nj = 4 antennas and two users per cell. The average single-user SNR
E{qj‖hjk‖2

2}
σ2

k

is qjNj if user k ∈ Dj and qj
Nj

3 if k �∈ Dj , thus each user is

closer to its serving base station. We consider the performance under

ideal hardware and for different levels of transceiver impairments, which

are either handled by optimizing the beamforming vectors as described

in this subsection or by ignoring the impairments and optimize as shown

in Section 2.2.14

Max-min fairness optimization with different user performance func-

tions is shown in Figure 4.8. First, Figure 4.8(a) considers the informa-

tion rate. Impairments only yield a minor degradation at low SNR, but

the difference to the ideal case is huge at high SNR. This is explained by

the bounded asymptotic performance under transceiver impairments,

while the ideal case behaves as 1 · log2(P ) + O(1) and is said to achieve

a multiplexing gain of one. Although the multiplexing gain is zero in

practice, it is shown in [24] that SDMA can still provide several-fold

higher performance than TDMA. The figure also shows a clear gain of

optimizing the beamforming vectors with impairments in mind.

Figure 4.8(b)–(d) show the BER with three different modulations:

QPSK (4-QAM), 16-QAM, and 64-QAM. The more constellation

points, the higher SNR is required to achieve a certain BER. We

observe that QPSK can handle much larger impairments than 16-QAM

and 64-QAM. The impairment-ignoring approach behaves strangely at

high SNR (the BER is degraded), simply because it optimize another

criterion than we are considering. To summarize, this example shows

that impairment modeling and optimization become increasingly

important when moving toward higher spectral efficiencies (i.e., larger

modulations).

14 The impairment-optimized approach includes the impairments in the power constraints
by using Qlξ = Qlk ∀l in (4.43), while the impairment-ignoring approach only considers
the signal power in the power constraints. The latter approach might consume more
power than is available, but this has a negligible impact on the results since the signal
power greatly dominates the distortion power at practical EVMs.
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Fig. 4.8 Max-min fairness with four different user performance functions in a coordinated
beamforming scenario. The performance with different levels of transceiver impairments is
compared; the EVM at the transmitters and receivers is 0%, 2%, 6%, or 10%.
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We can also obtain a necessary and sufficient characterization of

the Pareto boundary by combining Corollary 4.8 with Theorem 3.9.

We illustrate this by considering the same global joint transmission

scenario as in Subsection 3.3.1, but with transceiver impairments with

ηn(x) = EVM
(t)
n x and νk(x) = EVM

(r)
k x, where EVM

(t)
n = EVM

(r)
k ∈

{0, 0.05, 0.1, 0.15}. The performance regions for the information rate

is shown in Figure 4.9 for two random channel realizations. We see

that impairments reduce the size of the regions, while the shape is

mostly unchanged. Furthermore, the user with the strongest channel is

also the most sensitive to impairments.

Remark 4.3 (Convexity of Distortion Functions). Corollary 4.8

requires that the distortion functions ηn(·),νk(·) are convex, which is a

rather mild requirements and satisfied by any polynomial function with

positive coefficients. The interpretation is that the distortion power

should increase equally fast or faster than the signal power. For exam-

ple, ηn(x) = EVM
(t)
n x and νk(x) = EVM

(r)
k x are linear (and thus con-

vex) functions when the EVM-terms are constant.

Another example is given in [24], where the transmitter-distortion

of a practical LTE power amplifier is modeled as ηn(x) = EVM
(t)
n x(1 +

( x
ω )4) and the second term models a fifth-order nonlinearity with a

cutoff magnitude of ω [
√

mW] (i.e., EVM
(t)
n is the EVM at low transmit

power while it has doubled at ω2 [mW] and continues to increase). If any

of ηn(·) and νk(·) increase faster than linear, it is not always beneficial

to increase the transmit power since the impact of distortions become

more severe [24, 255]. In other words, all power constraint might be

inactive at the optimal solution under transceiver impairments, while

Theorem 1.9 showed that at least one power constraint is active under

ideal hardware.

We can obtain a compact expression for the optimal beamforming

structure in the special case of linear distortion functions [16]. The

parametrization in Theorem 3.5, which utilizes uplink–downlink dual-

ity, is easily extended by adding a few terms to account for impairments.
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Fig. 4.9 Performance regions for two different channel realizations under global joint trans-
mission (see Subsection 3.3.1 for details). The Pareto boundary is generated by the char-
acterization in Theorem 3.9 using Corollary 4.8 with different levels of transceiver impair-
ments; the EVM at the transmitters and receivers is 0%, 5%, 10%, or 15%.
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Corollary 4.9 Every feasible point g ∈ R under transceiver impair-

ments with ηn(x) = anx and νk(x) = bkx are achieved by the

parametrization in Theorem 3.5 by replacing (3.18) and (3.20) with

Ψk =

( Kr∑

i=1

λi

σ2
i

DH
k CH

i

(
hih

H
i (1 + b2

k) +

N∑

n=1

a2
nT

H
n hih

H
i Tn

)
CiDk

+

L∑

l=1

µl

ql

(
Qlk +

N∑

n=1

a2
nT

H
n QlξTn

))
, (4.54)

[M]ik =





|hH
i CiDiv̄i|2(1 − b2

i γi) − γi

N∑
n=1

a2
n|hH

i CiTnDiv̄i|2, i = k,

−γk

(
|hH

k CkDiv̄i|2(1 + b2
i ) +

N∑
n=1

a2
n|hH

k CkTnDiv̄i|2
)
, i �= k,

(4.55)

respectively. Furthermore, every Pareto optimal point g ∈ ∂+R is

achieved in this way for some nonnegative parameters {λk}Kr

k=1 and

{µl}L
l=1 satisfying

∑Kr

k=1 λk = 1 and
∑L

l=1 µl = 1.

Proof. The proof is identical to the proof of Theorem 3.5, except

for the different SINR expression and power constraints. See [16] for

details.

This corollary shows that transceiver impairments have only a

minor impact on the optimal beamforming structure. The beamform-

ing directions v̄k =
Ψ

†
k
DH

k
hk

‖Ψ†
k
DH

k
hk‖ are rotated to further reduce the inter-

user interference and compensate for uneven channel gains (the terms∑N
n=1 a2

nT
H
n hih

H
i Tn in Ψk and

∑N
n=1 a2

nT
H
n QlξTn act as additional

per-antenna constraints). The power allocation is modified by reducing

the anticipated channel gain of the useful signal and amplifying the

interfering signals.

Interestingly, the number of parameters in Corollary 4.9 is the same

under transceiver impairments as with ideal hardware in Theorem 3.5.

It is also possible to parameterize the optimal beamforming directions
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under arbitrary distortion functions by increasing the number of param-

eters; we refer to [24] for further details.

4.4 Multi-Cast Transmission

Previous sections have considered the scenario when each transmit-

ted data signal is only intended for a single unique user. This section

describes the extension to a scenario in which one transmitter equipped

with N antennas sends the same data signal to a set of Kr users. Since

the transmission performance (e.g., information rate) depends on the

weakest link in the user set, the transmitter optimizes its transmission

to achieve max-min fairness at the users [80]. The multi-cast beamform-

ing problem to achieve max-min fairness is proven to be nonconvex and

NP-hard for Kr ≥ N in [245], which stands in contrast to the quasi-

convexity proved in Subsection 2.2.3 without multi-cast. For single-

antenna transmitters, optimization of multi-cast transmission can in

general be solved by the BRB algorithm; see [293].

There are two problem formulations typical for multi-cast beam-

forming optimization. We consider the same setting as in previous

sections but concentrate on BSj and denote the set of its multi-cast

receivers by Kj ⊆ Cj (see [127] for the extension to multiple multi-cast

groups). Then, the maximization of the minimum achievable SNR leads

to problem statement

maximize
v:‖v‖≤q

min
k∈Kj

|hH
k CkDkv|2

σ2
k

. (4.56)

Alternatively, the problem can be posed as minimizing the transmit

power under a fixed SNR requirement γ at all users in Kj , which leads

to the problem

minimize
v

‖v‖2 subject to
|hH

k CkDkv|2
σ2

k

≥ γ ∀k ∈ Kj . (4.57)

Note that it is not possible to reformulate (4.56) and (4.57) as convex

second-order cone problems (as was done in Subsection 2.2.3 without

multi-cast) since the same beamforming vector is used for multiple

users [245]. The multi-stream beamforming counterpart to (4.56) will
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however be a convex problem, but the solution is far from always rank-

one and thus only approximations are viable in practice [127].

In [266], the multi-cast max-min fairness problem (4.56) is studied

for Kr = 2 users and the set of beamforming vectors which includes

the optimal solution is characterized. Using the channel gain region,

we obtain the following generalized characterization for an arbitrary

number of users.

Corollary 4.10 For a fixed total transmit power q, the multi-cast

beamforming vector which solves (4.56) is given by

v∗
k(λ) = qvmax


∑

k∈Kj

λkD
H
k CH

k hkh
H
k CkDk


 (4.58)

for some set of |Kj | parameters that satisfies λk ≥ 0 and
∑

k∈Kj
λk = 1.

The operator vmax gives the dominating unit-norm eigenvector.

Proof. The proof follows from the characterization of the channel

gain region in direction [+1, . . . ,+1] and by a contradiction assum-

ing that the operation point is not on the Pareto boundary in this

direction.

The result in Corollary 4.10 is illustrated in Figure 4.10. The max-

min SNR point that solves (4.56) is indicated. Note that this point is

always on the upper boundary of the channel gain region in direction

[+1 . . . + 1]. The characterization of the solution to the power mini-

mization problem in (4.57) is more difficult, because the solution is not

guaranteed to satisfy all SNR constraints with equality. This is shown

in Figure 4.10(c) where (4.57) can be feasible although the point [γ γ]T

is outside the channel gain region; the optimal operating point is then

at the boundary of the channel gain region but not necessarily in direc-

tion [+1, . . . ,+1].

Finally, note that the number of parameters required to describe

the optimal beamforming vector in (4.58) increases with number of

multi-cast receivers.
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Fig. 4.10 Illustration of the channel gain region Ω for different channel realizations. The
straight lines connecting the upper boundary with the horizontal and vertical axes describe
the achievable SNR region. The multi-cast max-min SNR value is given by the intersection
of the line in direction [+1 + 1]T with the SNR region, which not necessarily coincides with
the intersection with boundary of Ω.

4.5 Multi-Carrier Systems

The single-carrier system model in (1.9) is readily extendable to a

multi-carrier system with Kc subcarriers. The received symbol-sampled

complex-baseband signal at MSk on the cth subcarrier is then

ykc = hH
kcCk

Kr∑

i=1

Disic + nkc, (4.59)

where hkc ∈ CN is the channel vector, sic ∈ CN×1 is the signal intended

for MSi, and nkc ∼ CN (0,σ2
kc) is the noise term. Observe that (4.59)

is achieved from (1.9) by simply adding a subcarrier-index c at every
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term, except Ck,Dk which for simplicity are assumed to be the same

over the subcarriers. Assuming that all signal and noise variables are

independent, the SINR at MSk on the cth subcarrier is

SINRkc(S1c, . . . ,SKrc) =
hH

kcCkDkSkcD
H
k CH

k hkc

σ2
kc + hH

kcCk(
∑
i�=k

DiSicDH
i )CH

k hkc
(4.60)

with Skc = E{skcs
H
kc}. We also extend the power constraints as

Kr∑

k=1

Kc∑

c=1

tr(QlkcSkc) ≤ ql l = 1, . . . ,L, (4.61)

where Qlkc � 0N might model subcarrier-specific characteristics. Multi-

carrier power constraints are further discussed in Remark 4.4.

The multi-objective resource allocation problem under multi-carrier

transmission can be formulated as

maximize
Skc�0N ∀k,c

{g1, . . . ,gKr}

subject to gk = gk

(
{SINRkc(S1c, . . . ,SKrc)}Kc

c=1

)
∀k,

Kr∑

k=1

Kc∑

c=1

tr(QlkcSkc) ≤ ql ∀l

(4.62)

and the sufficiency of single-stream beamforming (on each subcarrier) is

easily proved using Lemma 1.6. Compared with the single-carrier MOP

in (1.19), the multi-carrier problem in (4.62) can be viewed as joint opti-

mization of Kc superimposed single-carrier systems. The subcarriers are

coupled by the user performance functions gk(SINRk1, . . . ,SINRkKc
)

and the power constraints which generally are shared over the subcar-

riers. In other words, (4.62) has roughly a factor Kc more optimization

variables than (1.19), where Kc can be on the order of several hun-

dred in 3GPP LTE [330]. The scalarized resource allocation problems

that were shown to be convex in Section 2.2 might still be convex in the

multi-carrier setting (depending on the structure of gk(·, . . . , ·)), but the

polynomial computational complexity might not be practically feasible

when there are thousands of optimization variables.

The overwhelming multi-carrier complexity can be handled by

dividing the subcarriers into subsets of manageable size and solve
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these separately (cf. physical resource blocks in 3GPP LTE [330]).

The coupling in user performance and power constraints can then

be resolved by having separable user performance functions (e.g.,

gk =
∑Kc

c=1 gkc(SINRkc) [18]) and fixed power division (since the opti-

mal power allocation can be almost flat over the subcarriers [212]).

Alternatively, the optimization problem can be decomposed similarly

to the dual decomposition approach in Subsection 4.2.1, giving an itera-

tive optimization procedure with subproblems of manageable complex-

ity [231].

The state-of-the-art beamforming parametrizations in Section 3.2

can be extended with retained computational simplicity. For example,

the uplink–downlink duality based parametrization in Theorem 3.5 is

generalized to multi-carriers systems in [18].

Corollary 4.11 Every feasible point g ∈ R is achieved by beamform-

ing vectors vkc =
√

pkcv̄kc for all k,c, where

v̄kc =
Ψ†

kcD
H
k hkc

‖Ψ†
kcD

H
k hkc‖

, (4.63)

[
p1c . . . pKrc

]
=
[
γ1cσ

2
1c . . . γKrcσ

2
Krc

]
M†

c, (4.64)

Ψkc =

( L∑

l=1

µl

ql
Qlkc +

Kr∑

i=1

λic

σ2
ic

DH
k CH

i hich
H
icCiDk

)
, (4.65)

γkc =
λkc

σ2
kc

hH
kcDk

(
Ψkc − λkc

σ2
kc

DH
k CH

k hkch
H
kcCkDk

)†
DH

k hk,

(4.66)

[Mc]ik =





|hH
icCiDiv̄ic|2, i = k,

−γkc|hH
kcCkDiv̄ic|2, i �= k,

(4.67)

for some non-negative parameters {λkc}Kr,Kc

k=1,c=1 and {µl}L
l=1.

This corollary provides a beamforming parametrization with only

KrKc + L parameters, and the approach in Corollary 3.6 reduces it to

KrKc + L − 2 parameters between zero and one. Heuristic selection of
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these parameters might yield a reasonable starting point for further

multi-carrier performance optimization [18]. The similarity between

Corollary 4.11 and the single-carrier parametrization in Theorem 3.5

shows that the introduction of multiple subcarriers has only a small

impact on the optimal solution structure.

Remark 4.4 (Multi-Carrier Power Constraints). The physical

power constraints in OFDM-based multi-carrier systems are not easily

formulated as (4.61); the connection between the transmit power allo-

cated in the complex baseband and the resulting RF waveform is com-

plicated and nonconvex. In fact, the waveform is typically Gaussian-like

(as it is the superposition of Kc random signals where Kc is large) and

can exhibit a high peak-to-average power ratio (PAPR), which is unde-

sirable as it requires hardware components with high dynamic range.

The PAPR can be reduced by bounding the per-antenna transmit

power in the complex baseband from both above and below [11, 195].

Such constraints can be formulated as convex if we optimize over signal

correlation matrices Skc of arbitrary rank. However, we are not aware of

any tractable problem formulation that enables complete control over

the PAPR.

For a given OFDM signal, the PAPR can be improved by distort-

ing the signal before transmission. The simplest approach might be to

remove the largest amplitude spikes by clipping techniques, but there

are more powerful techniques that utilize convex optimization to basi-

cally minimize the PAPR under constraints on the tolerable error in

the modulated signal; we refer to [2, 154, 188] for further details on this

subject. The combination of beamforming optimization and distorting

of the signal for PAPR reduction seems to be an open problem.

4.6 Multi-Antenna Users

The analysis in this tutorial is based on having a single effective

antenna at each user, which according to Section 1.2 means that MSk

is equipped with either a single antenna or Mk > 1 antennas that are

combined into a single effective antenna prior to resource allocation

(e.g., using receive combining or antenna selection). This assumption
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simplifies analysis, but has also practical advantages such as requiring

less hardware on the user devices and acquiring less CSI per user.

This section explores the possibility of also including the use of

multiple receive antennas (per user) in the resource allocation opti-

mization, which certainly should increase the performance region. In

order to explain the fundamental difference between multi-cell MIMO

systems and the multi-cell MISO setup in the rest of this tutorial, we

first focus on the two-user MIMO interference channel in which BSj

transmits a single data stream (single-stream beamforming) to MSj for

j = 1,2 [47].

Suppose BSj is equipped with Nj ≥ 2 transmit antennas, while MSk

has Mk ≥ 2 receive antennas. Only one data stream is transmitted to

each user and the received signal at MS1 is modeled as15

y1 = ζH
1

(
H11v1s1 + H21v2s2 + n1

)
, (4.68)

where sj ∈ C is the data signal with E{|sj |2} = 1 transmitted by

BSj employing the beamforming vector vj ∈ CNj for j = 1,2. Further-

more, ζk ∈ CMk is the receive combining vector employed at MSk. The

term nk ∈ CMk is the additive white Gaussian noise vector with zero-

mean and covariance matrix σ2
kIMk

. The channel matrix between BSj

and MSk is denoted Hjk ∈ CMk×Nj . For simplicity, we assume per-

transmitter power constraints ‖vj‖2 ≤ 1.

Assuming that the users perform single-user decoding and treat

interference as additional additive white Gaussian noise, the perfor-

mance of MSk can be modeled as

gk(v1,v2,ζk) = gk

(
SINRk(v1,v2,ζk)

)
, (4.69)

for a strictly monotonically increasing user performance function gk(·)
(see Definition 1.4). The SINR of MS1 is then given by

SINR1(v1,v2,ζ1) =
|ζH

1 H11v1|2
σ2

1 + |ζH
1 H21v2|2

≤ vH
1 HH

11

(
σ2

1IM1 + H21v2v
H
2 HH

21

)−1
H11v1

= SINR1(v1,v2),

(4.70)

15 The expressions for the link BS2 �→ MS2 are obtained by interchanging indices.
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where the maximal SINR is achieved using the linear MMSE filter

ζ
(MMSE)
1 =

(
σ2

1IM1 + H11v1v
H
1 HH

11 + H21v2v
H
2 HH

21

)−1
H11v1. This is

the optimal receive combining vector under linear receive processing;

see Section 3.4. By replacing ζk with the expression for the optimal

ζ
(MMSE)
k , we can thus write the SINRs as SINRk(v1,v2) instead.

The expression for SINR1(v1,v2) in (4.70) has a difficult mathe-

matical structure that makes it hard to analyze the SINR directly. The

following result from [48, Proposition 1] shows that the difficulty lies

in the coupling between the beamforming vectors v1 and v2.

Lemma 4.12 For the two-user single-stream MIMO interference

channel, the SINR in (4.70) of each user under MMSE receive filtering

can be expressed as

SINR1(v1,v2) = sin2(θ1)
‖H11v1‖2

2

σ2
1

+ cos2(θ1)
‖H11v1‖2

2

σ2
1 + ‖H21v2‖2

2

,

(4.71)

where cos(θ1) =
|vH

1 HH
11H21v2|

‖H11v1‖2 ‖H21v2‖2
and θ1 ∈ [0, π

2 ].

This lemma shows that SINR1(v1,v2) can be viewed as a linear

combination of
‖H11v1‖2

2

σ2
1

and
‖H11v1‖2

2

σ2
1+‖H21v2‖2

2

with the weights sin2(θ1) and

cos2(θ1). That is, the SINR depends not only on the values of the

desired signal power ‖H11v1‖2 and the interference power ‖H21v2‖2,

but also on the Hermitian angle θ1 between their effective channel direc-

tions. Observe that cos(θ1) = 1 and sin(θ1) = 0 in the MISO case, while

the existence of a flexible θ1 creates an additional coupling in the SINRs

in the MIMO case. Therefore, it is significantly more difficult to ana-

lyze and optimize the performance of a MIMO interference channel. In

fact, even the resource allocation problem with fixed QoS requirements

is provably NP-hard in the MIMO case [158, 210]. As this is the com-

putationally simplest problem in the MISO case, we cannot expect to

solve any multi-cell single-stream MIMO resource allocation problem

to global optimally in practice.

Consequently, practical algorithms need to search for stationary

points. An alternating optimization approach is developed in [48] to
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find stationary points close to arbitrary Pareto optimal points for the

two-user single-stream MIMO interference channel. The turning points

(i.e., points where the vertical and horizontal weak Pareto boundary

changes to the strict Pareto boundary) are characterized in closed form.

Under an arbitrary number of users, [158] finds stationary points of

the max-min fairness optimization by alternating between optimizing

the transmit strategy with fixed receive combining (which equals the

MISO scenario solved in Subsection 2.2.3) and updating the receive

combining vector ζk as the MMSE filter for the current beamforming

vectors. A linear transmission algorithm for weighted sum information

rate maximization for the MIMO interfering broadcast channel is pro-

posed in [243], where the optimization problem is transformed to an

equivalent sum-MSE minimization problem. An alternating optimiza-

tion algorithm with three steps is proposed: (1) update the weight

matrices; (2) update the MMSE receive matrices; and (3) update the

transmit covariance matrices. The iterative algorithm is guaranteed to

converge to a stationary point. Therefore, a series of operating points

can be achieved corresponding to the maximum weighted sum informa-

tion rates with different weights. However, this approach cannot achieve

all the Pareto optimal points when the performance region is noncon-

vex [324]. Furthermore, it is not clear how to obtain the corresponding

weights in order to achieve given rate tuples. An alternative approach

for the same optimization problem was recently proposed in [150], based

on on iterative multi-cell waterfilling.

A few works have considered the performance region of the MIMO

interference channel in general multi-stream multi-cell multi-user sce-

narios. For example, jointly optimized MMSE and zero-forcing MIMO

transceiver algorithms for the two-user MIMO interference channel

(called interference aware-coordinated beamforming (IA-CBF)) are

proposed in [49]. However, the MMSE IA-CBF can only achieve a lower

bound on the sum information rate, and the zero-forcing IA-CBF only

finds operating points achievable by zero-forcing strategies.

Remark 4.5(Optimality of Single-Stream Beamforming). The

sufficiency of single-stream beamforming for single-antenna users was

proved in Theorem 1.8 under perfect CSI, and it also seem to hold
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true under CSI uncertainty [51, 239, 251]. The result is rather intuitive,

because single-antenna users can only make a single observation. Multi-

antenna users will however make multiple signal observations and can

thus receive and efficiently decode multi-stream beamforming transmis-

sions; in fact, the capacity-achieving TDMA scheme is multi-stream

beamforming where the signal correlation matrix is adapted to the

right singular vectors of the channel matrix [269]. Apart from decod-

ing multi-stream beamforming signals, the receive antennas at a given

user can also be utilized for interference-aware receive combining that

essentially creates an effective MISO channel with relatively good prop-

erties (i.e., balance between strong channel gain and good co-user

separability). This raises a fundamental question: Should the exis-

tence of multiple antennas at each user be utilized for multi-stream

beamforming or is it better to still perform single-stream beamform-

ing and exploit receive combining instead? To put it differently, sup-

pose the system should convey N data streams in parallel. Should

we divide these among just a few users that are served with multiple

streams or should we select N different users and perform single-stream

beamforming?

The line of work in [15, 20, 28, 268] shows that it is advisable

to perform single-stream beamforming also in the multi-user MIMO

case, especially when the resources for channel estimation and feedback

are limited. The basic explanation is that receive combining provides

resilience toward spatial correlation and nonorthogonality between co-

user channels, which are two major limiting factors in SDMA. This

recent observation motivates further study on single-stream beamform-

ing transmission to multi-antenna users. It is also very positive from a

hardware perspective, because reception of single-stream beamforming

is less demanding than reception of multi-stream beamforming.

4.7 Design of Dynamic Cooperation Clusters

This section will discuss the design of dynamic cooperation clusters

(DCCs), where the word dynamic refers to adaptation to time-

variant characteristics such as channel properties, user mobility, activ-

ity levels, user load distribution, and base station failure. Recall from
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Fig. 4.11 Illustration of the overlapping nature of dynamic cooperation clusters. BSj forms
different cooperation constellations when serving different users. Dj are the users that it
serves and Cj are the users considered in the spatial interference coordination.

Definition 1.3 that this tutorial considers a DCC model where BSj is

serving a set of users Dj , while taking interference caused at users in the

set Cj into consideration. This structure is illustrated in Figure 4.11.

The users served by a base station are naturally a subset of those users

that it tries to avoid interference at, thus Dj ⊆ Cj ∀j. As illustrated by

Examples 1.1–1.5, this type of sets can describe a variety of different

multi-cell scenarios. It ranges from interference channels (where each

base station serves a single unique user) to global joint transmission

(where all base stations transmit jointly to all users). A key property

of the DCCs is that each base station is allowed to cooperate with all

of its neighboring base stations and form different cooperation constel-

lations when serving different users — this stands in contrast to the

earliest work on static and dynamic clustering where the base stations

are divided into disjoint groups (see Figure 1.4) [106, 174, 199, 323]. The

overlapping (nondisjoint) nature of DCCs is illustrated in Figure 4.11,

where BS2 cooperates simultaneously with different base stations when

serving different users.

While this tutorial provides a thorough framework for resource

allocation for given DCCs, the practical design of DCCs is a rela-

tively new and unexplored research topic. This section describes some

fundamental factors that limit the cardinality and shape of Cj ,Dj

in practical applications and outlines some recent dynamic clustering

approaches.
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The sets {Dj}Kr

j=1 of users served by each base station (and poten-

tially by multiple ones) are selected under the following conditions:

(1) Each active user should have a master base station (MBS)

that guarantees its data services. This makes sure that no

one falls through the cracks and also creates a natural hier-

archy between the MBS and other base stations that might

participate in a joint transmission. The distributed resource

allocation in Subsection 4.2.1 requires the existence of an

MBS that computes the beamforming vector for the user.

Each user can either suggest or be appointed an MBS. In

any case, the choice should be based on CSI and the base

station with the strongest channel conditions is the natural

choice. It might however be beneficial to select another base

station when the strongest one has a heavy user load.

(2) The backhaul infrastructure should support the joint trans-

mission to a user, in terms of enabling fast exchange of

control signals for resource allocation and phase synchroniza-

tion [86]. Furthermore, joint transmission increases the delay

spread and thereby limits the number of base station that can

perform coherent interference cancelation [322]; recall from

Subsection 4.2.2 that joint transmission is only useful when

coherent interference cancelation can be achieved.

(3) Joint transmission requires the same data signal to be deliv-

ered (and equally encoded for transmission) to all of the

serving base stations, which can significantly increase the

backhaul signaling [175, 313]. Therefore, the limited backhaul

capacity suggests that joint transmission only is used when

the increase in throughput outweighs the increased demands

on the backhaul infrastructure.16

16 The backhaul capability depends greatly on the infrastructure; fiber-optic cables might
have almost infinite capacity for practical purposes, while conventional copper cables
and wireless links are much more capacity limited. Cellular networks based on exist-
ing/conventional infrastructure are however expected to have heterogeneous backhaul
networks, where new high-capacity fiber-optic links coexist with older links having mod-
est capacities.
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(4) Proximity is not measured geographically but by the average

channel gain, taking possible differences in transmit power

between base stations into account. We let users with one

strong dominating channel from one of the base stations be

called cell center users, while users with relatively similar

channel gains from multiple base stations are called cell edge

users. These different user scenarios call for a variable num-

ber of base stations per user [92]; only the base stations that

might cause relatively strong interference to a user should

consider participating in joint transmission to this user. Cell

edge users are therefore prone for joint transmission from sev-

eral neighboring base stations, while cell center users might

as well only be served by their MBSs.

(5) The base stations and many objects in the propagation envi-

ronment are static. The geographical area can therefore be

divided into location bins where the statistics of the channel

propagation is almost static [109]. It therefore makes sense

to apply the same clustering on all users that are located

in the same bin. The size and structure of the location bins

can be very different at different places, but can be deter-

mined in advance through system calibration. Although the

channel statistics capture many important large-scale fading

effects, the clustering should also depend on user mobility

and macroscopic conditions such as congestion.

The sets {Cj}Kr

j=1 of users that are considered in the beamforming

at each base station are selected under the following conditions:

(6) The channels between the base station and all the users that

it includes in its interference coordination need to be esti-

mated, for example, by using training signaling [22]. The

resources available for channel estimation are fundamentally

limited by the coherence time of the channels [45, 122],

since the estimates should both be acquired and utilized for

resource allocation and transmission during this time period.

The number of orthogonal training signals is therefore lim-

ited and need to be simultaneously reused at multiple base
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stations in FDD systems and multiple users in TDD systems.

The distance between entities using the same training signals

essentially bounds the area where a base station can obtain

reliable CSI.

(7) All neighboring base stations in TDD can estimate their

own individual channel components by listening to the same

uplink training signal from a user. On the contrary, sepa-

rate estimation and feedback of the channels from each base

station antenna is required in FDD systems, which increases

the feedback load linearly with the number of base stations

that request channel estimates — and the user needs to

know which these base stations are. Backhaul signaling of

CSI might also be needed in FDD, depending on whether

the feedback is decoded at the MBS (and then sent over

the backhaul) or directly at the corresponding base stations.

Generally speaking, TDD systems can enable larger coordi-

nation sets than FDD systems, and also the use of an arbi-

trary number of antennas per base station (i.e., N has no

impact on the estimation resources [122, 220]). On the other

hand, FDD systems have a potential advantage in the fact

that the CSI are fed back; neighboring base stations can then

listen to all the CSI feedback from a user and thereby achieve

CSI also for other cells. Although the obtained CSI might be

slightly different (due to variations in the feedback channel

conditions), this information can improve the convergence of

distributed resource allocation schemes since base stations

can predict the decisions of their neighbors [200, 312].

The selection of Cj ,Dj should certainly be based on some kind of

CSI, but the question is how much information is necessary to make

good decisions. Intuitively, the cluster dynamics are predominated by

large-scale channel properties (e.g., distant-dependent attenuation and

shadowing) and should thus be modeled as a function of the cur-

rent channel statistics (e.g., E{hjkh
H
jk}) measured over some suitable

time-window. This intuition is confirmed in [92, 198], where cluster-

adaptation based on the instantaneous channel vectors only shows a
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marginal gain over statistical clustering. It is also practically desir-

able to change the clusters over a larger time-scale than the resource

allocation decisions are made. Each base station can then easily be

aware of which users it serves and which neighboring base stations

that serve the same users. Furthermore, it enables CSI acquisition for

the right set of users.

Example 4.4 (Simple Clustering). A simple clustering algorithm

would be to include MSk in Cj if the average channel gain E{‖hjk‖2
2}

(over some suitable time-window) is above a certain threshold

value [18]. The fulfillment of this condition is rechecked at the same

time-scale as the estimate of E{‖hjk‖2
2} is updated. MSk appoints base

station

m = argmax
{j:k∈Cj}

E{‖hjk‖2
2} (4.72)

as its MBS, which is the one with the strongest channel. The user then

computes the ratio between the average channel gain of the MBS and

the gain of the second strongest base station,

E{‖hmk‖2
2}

max{j:k∈Cj}\{m} E{‖hjk‖2
2}

. (4.73)

Knowing that base stations that perform joint transmission should have

relatively similar channel gains to the user, this ratio is compared with

a threshold that determines if it seems likely that the system will ben-

efit from joint transmission [92]. This procedure can be repeated to

also include a third (and fourth, and so on) base station in the joint

transmission. Observe that this heuristic algorithm is distributed in the

sense that BSj decides on Cj and MSk decides which base stations it

want to be served by.

The clustering algorithm can be made more analytic than in Exam-

ple 4.4, but the combinatorial nature makes it easy to formulate

optimization problems that are too difficult to be solved in practice.
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A generic problem formulation (similar to [128]) is

maximize
Cj ,Dj ∀j

ϕ({Dj}Kt

j=1,{Cj}Kt

j=1)

subject to Dj ⊆ Cj ∀j,

upper bounds on |Cj | and |Dj | ∀j,

constraints on which base stations that

BSj may perform joint transmission with ∀j.

(4.74)

The utility function ϕ(·, ·) describes the preference of a certain clus-

tering. The inherent difficulty in (4.74) is threefold: (1) The number of

possible clusterings increase rapidly with the size of the system; (2) The

utility function ϕ(·, ·) should be explicitly defined and selected to indi-

cate the utility of the final resource allocation (without having to solve

an optimization problem to evaluate it); and (3) The problem requires

global CSI (statistical or instantaneous) but should be formulated to

enable distributed implementation.

A greedy algorithm for solving (4.74) under zero-forcing constraints

is proposed in [128]. Formulations of (4.74) as a linear combinatorial

problem are given in [173, 290]. Alternatively, the problem can be for-

mulated as a graph where users and base stations are nodes [86]. There

will be an edge between a user and the base stations that might serve

it, and also edges between base stations that might cooperate. In this

interpretation, clustering corresponds to selecting a subset of all edges.

This section has presented some guidelines and algorithms for

dynamic clustering that appeared during the last few years [18, 86,

92, 128, 173, 198, 198, 290]. We hope to see many more results on this

subject in the near future, both in terms of distributed low-complexity

clustering algorithms and evaluation of such algorithms in large multi-

cell systems with practical properties.

4.7.1 Distributed Multi-Cell Scheduling

This tutorial basically describes a scenario where all Kr users are

expected to be served at once; all system utility functions in Exam-

ple 1.11 (except the arithmetic mean) require that all users with strictly

positive weighted factors, wk > 0, are allocated nonzero performance.
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Scheduling (or user selection) is however an essential part of many

multi-cell systems, since the number of potential users can be much

larger than the number of data streams that can be transmitted with

manageable inter-user interference. With a proper scheduling algo-

rithm, the system can exploit multi-user diversity by riding on the

peaks of the channel fading and maintain a certain relative user fair-

ness over time [141, 284].

This subsection provides a short introduction to recent approaches

for coordinated multi-cell multi-antenna scheduling; we refer to [197] for

a recent tutorial on scheduling in single-antenna systems. As indicated

above, scheduling can be represented as setting wk = 0 for users that

should be inactive in the current resource allocation. Roughly speaking,

multi-cell multi-antenna scheduling is based on two factors: (1) User-

specific application requirements (e.g., constraints on delay and average

throughput); and (2) Spatial separability among users. The first part is

very application-dependent but can perhaps be described by a weight

w̃k that represents the urgency and a QoS request γk = gk(SINRk) that

represents an acceptable performance level for the user. The spatial

separability describes the benefit of selecting users with either near-

orthogonal channel vectors or weak channel gains from each other’s

transmitters, since this will automatically limit the inter-user interfer-

ence without the need for intricate beamforming selection. Conversely,

it is probably beneficial to allocate orthogonal time/frequency slots to

users with very similar spatial signatures17 because beamforming and

power control cannot separate them adequately [52].

Scheduling is conceptually similar to clustering, but is updated at a

much smaller time-scale to achieve continuous fairness among all users

and adapt to changes in the separability due to small-scale channel fad-

ing. The combinatorial nature of scheduling makes it practically infea-

sible to consider all possibilities; there are 2Kr different ways to select

a subset of Kr users. Fortunately, greedy algorithms that iteratively

select the user that provides the largest improvement in system utility

17 Recall that the performance region is convex when considering two well-separated users,
while two users with similar spatial signatures give a concave regions. Roughly speaking,
scheduling represents the removal of users such that the remaining performance region
becomes increasingly convex and keeps much of its volume.
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seem to provide close-to-optimal performance in single-cell applications

[64, 75, 240]. Multi-cell scheduling is more involved since the spatial

separability of MSk should be considered for every base station with

k ∈ Cj , but the asymptotic results in [83] show that simple distributed

scheduling algorithms that ignore inter-cell interference can achieve the

optimal high-SNR scaling in information rates. The decomposability is

easily motivated if the average inter-cell interference power is indepen-

dent of the user location [134], which turns out to be a relatively good

approximation when having omni-directional single-antenna transmit-

ters. These are encouraging results as the scalability of multi-cell sys-

tems requires some kind of distributed scheduling. A semi-distributed

approach is suggested in [323], where users are jointly scheduled within

each disjoint cooperation cluster, but there is no cooperation between

clusters.

As with dynamic clustering, distributed multi-cell scheduling is a

relatively new research area. One recent trend is the exploitation of

time-correlation, which means that users that are currently scheduled

are more probable than others to be good candidates in the next

scheduling round. The motivation is that a user with high applica-

tion requirements and/or good spatial separability will partially keep

these characteristics over multiple scheduling decisions. If we assume

that each base station knows the outcome of the last scheduling deci-

sion, BSj can update its user selection to improve on the previous

result. These updates can either be simultaneous (i.e., all base sta-

tion changes their decisions in each iteration [18]) or sequential (i.e.,

one base station updates at a time [100, 248] or only spatially well-

separated base stations make parallel updates [105]). This concept is

illustrated in Figure 4.12, where BS1 knows which users are currently

scheduled by the adjacent base stations and tries to make a spatially

compatible scheduling decision. A related idea is to fix the transmit

strategy and check if the system utility can be improved by changing

the intended user for each beamforming vectors [307]. Such schedul-

ing updates can be performed locally (if users report the SINR of their

preferable beam, similar to what is done in random beamforming [238])

and the system can iterate between updating scheduling and updating

beamforming vectors for the currently active users. We refer to the
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Fig. 4.12 Illustration of iterative multi-cell scheduling that utilizes time-correlation. BS1

selects users that are compatible with the current scheduling decisions in the adjacent cells.

recent works of [18, 100, 105, 248, 307] for further details and note that

we are not aware of any evaluation of distributed scheduling algorithms

under practical conditions.

4.8 Cognitive Radio Systems

In a cognitive radio scenario, the systems are capable of detecting

their environment and reconfiguring their operations accordingly. These

capabilities are feasible due to measuring and feedback mechanisms in

the network [102]. Consider a network composed of licensed primary

users. The offered radio resources might not be utilized completely by

these systems such that more users can be supported in the network.

Additional users, having cognitive radio capabilities, can be also sup-

ported in the network. These users are called secondary users,18 and

they can use the resources licensed to the primary users under the con-

dition of not imposing quality-of-service (QoS) degradations to these

systems.

18 Note that primary and secondary refers to the role in the network and the correspond-
ing priorities whereas cognitive and noncognitive (sometimes called legacy) refers to the
capabilities of the links.
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In the following, we introduce the most relevant models of coex-

istence of cognitive radio systems and legitimate systems: interweave,

underlay, and overlay cognitive radio [90].

An interweave cognitive radio is an intelligent wireless communi-

cation system that periodically monitors the radio spectrum, intelli-

gently detects occupancy in the different parts of the spectrum, and

then opportunistically communicates over spectrum holes with mini-

mal interference to the active primary users. Cognitive users transmit

simultaneously with a noncognitive user only in the event of a false

spectral hole detection. The transmit power of the secondary system

is limited by the range of its spectral hole sensing. In normal opera-

tion, this type of cognitive radio system does not lead to the multi-cell

system model (with dynamic cooperation clusters) introduced in Sec-

tion 1.2 between the primary and cognitive system. However, for the

cognitive links, our multi-cell framework can be applied.

The underlay paradigm mandates that concurrent noncognitive and

cognitive transmissions may occur only if the interference generated by

the cognitive devices at the noncognitive receivers is below some accept-

able threshold. The interference constraint for the noncognitive users

may be met by using multiple antennas to guide the cognitive signals

away from the noncognitive receivers, or by using a wide bandwidth

over which the cognitive signal can be spreaded below the noise floor,

then despreaded at the cognitive receiver. In both cases, the interfer-

ence created by the cognitive transmitter to the primary user as well as

the interference from the primary transmitter at the cognitive receiver

can be described by the multi-cell framework of this tutorial. The spe-

cial characteristics are the interference temperature constraints (ITC)

and the assumptions on the cooperation between legacy and cognitive

system. This scenario was shown in Example 1.4.

Finally, cognitive radio systems that have cooperation with the pri-

mary system as key feature are typically denoted as overlay cognitive

radio systems. In general, spectrum overlay refers to the situation where

the primary system changes its transmission strategy to involve the sec-

ondary system and to set up cooperation. Cooperation between the

primary and secondary system can be established, for example, on the

transmitter side or the receiver side. Again, this leads to the multi-cell
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system model of this tutorial with specific requirements on the ITC at

the primary receiver and on the adaptivity and cooperation.

In this subsection, we focus on the underlay cognitive radio system

and begin with null-shaping constraints [120] followed by general ITC

[170]. However, we note that the results from this tutorial could be also

applied in overlay cognitive radio systems with cooperation between

primary and cognitive transmitter [169].

The ITCs are distinguished in soft- and peak-power-shaping con-

straints [229]. These constraints refer to the maximum average power

and average peak power tolerated at the primary receivers, respec-

tively. In our case, the two types of constraints are equivalent since we

consider only single-stream beamforming (motivated by Theorem 1.8).

Reference [327] considers the setting of a single secondary trans-

mitter sharing the same spectral band with multiple primary users.

The authors provide optimal transmit strategies under ITCs for the

secondary transmitter. Moreover, convex optimization techniques for

solving cognitive radio problems are studied in [326].

We will focus and elaborate on the scenario described in Exam-

ple 1.4. The Kprimary soft-shaping constraints Qkl = DkClhlh
H
l ClDk

are assumed to be null-shaping constraints (i.e., vH
k Qklvk = 0 ∀l ∈

Kprimary). We collect all null-shaping constraints for transmission to

MSk in a matrix

Zk =
[
Qk1 . . . QkKprimary

]
. (4.75)

In order to satisfy the null-shaping constraints, we can define a new

effective channel of MSk as

h̃k = Π⊥
Zk

hk (4.76)

by projecting the original channel vector hk onto the null-space of the

null-shaping matrix Zk. Based on the effective channels h̃k in (4.76),

the complete framework developed in this tutorial can be applied.

The achievable performance region shrinks compared with the case

without null-shaping constraints. This is visualized for two secondary

users in Figure 4.13, using N = 3 transmit antennas and an SNR

of 10 dB.
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Fig. 4.13 Illustration of the rate region for two secondary users and the reduction imposed
by null-shaping constraints. Sample points of the region without null-shaping constraints
are marked with crosses, while sample points of the region with null-shaping constraints
are marked with circles.

Another interesting question concerns the performance of multiple

noncooperating cognitive transmitter–receiver pairs under null-shaping

constraints. It can be shown that by properly selecting the null-shaping

constraints, it is possible to achieve all points on the Pareto boundary

of the corresponding performance region. We have the following result

from [180, Corollary 1].

Corollary 4.13 Assume that the number of antennas at each sec-

ondary transmitter j is larger than the total number of secondary users

(i.e., Nj ≥ Kr ∀j). Construct the null-shaping constraint matrix as

WZk(λk) =
[
zk
1(λk) . . . zk

Kprimary
(λk) zk

Nj
(λk)

]
, (4.77)

where

zk
i (λk) = vi

(
Kr∑

i=1

λkiekiD
H
k CH

i hih
H
i CiDk

)
,

eki =

{
+1, k = i,

−1, k �= i,

(4.78)
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with vi as the unit-norm eigenvector corresponding to the ith strongest

eigenvalue and λk = [λk1 . . . λkKr
]T ∈ R

Kr
+ (with

∑Kr

i=1 λki = 1).

All points on the Pareto boundary of the performance region can

be achieved with (noncooperative) beamforming directions

v̄k(λk) =
Π⊥

Zk(λk)D
H
k CH

k hk

‖Π⊥
Zk(λk)D

H
k CH

k hk‖
. (4.79)

Finally, we relax the null-shaping constraints to general ITC and

consider one primary transmitter–receiver pair and one secondary

transmitter–receiver pair. The ITC is given by vH
2 Q21v2 ≤ q1, where

the limit q1 ≥ 0 can be selected in different ways. For example, it can

be related to the loading factor of the primary system; that is,

R1(load) = load · log2

(
1 +

|hH
1 C1D1v1|2

σ2
1

)
, (4.80)

where load is the loading factor between zero and one (one means

100% load). Suppose an information rate of R1(l̃oad) > 0 is required

to support the QoS of the primary system, then the resulting ITC

limit is

q1 = |hH
1 C1D1v1|2

(
2R1(l̃oad) − 1

)−1 − σ2
1. (4.81)

The optimization problem for the cognitive transmitter is to maximize

the performance of the cognitive user while satisfying the ITC and the

power constraint

maximize
v2:‖v2‖≤1

g2(SINR2(v2)) subject to vH
2 Q21v2 ≤ q1. (4.82)

Using the characterization in Example 3.1, the solution to (4.82) can

be given in closed form, as shown in [170, Proposition 1].

Theorem 4.14 The optimization problem (4.82) is solved by

v2(λ
∗) =

√
λ∗

ΠDH
2 CH

1 h1
DH

2 CH
2 h2

‖ΠDH
2 CH

1 h1
DH

2 CH
2 h2‖

+
√

1 − λ∗
Π⊥

DH
2 CH

1 h1
DH

2 CH
2 h2

‖Π⊥
DH

2 CH
1 h1

DH
2 CH

2 h2‖
(4.83)
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with

λ∗ =





λMRT, λMRT ≤ q1

‖DH
2 CH

1 h1‖2 ,

q1

‖DH
2 CH

1 h1‖2 , otherwise,
(4.84)

and λMRT =

∥∥Π
DH

2 CH
1 h1

DH
2 CH

2 h2

∥∥2

∥∥Π
DH

2 CH
1 h1

DH
2 CH

2 h2

∥∥2
+
∥∥Π⊥

DH
2 CH

1 h1
DH

2 CH
2 h2

∥∥2 .

Note that with load = 1, the solution in Theorem 4.14 reduces to

the case with null-shaping constraints.

4.9 Physical Layer Security

The data processing, transmission, and encryption in modern commu-

nication systems are carried out separately. The typical purpose of the

physical layer is to guarantee error-free transmission, whereas encryp-

tion is performed at a higher layer in the protocol stack. State-of-the-art

encryption algorithms rely on mathematical operations assumed to be

hard to compute, however, the classical approach to security becomes

increasingly difficult to justify, in particular if we consider that: (a)

the underlying intractability assumptions may be wrong; (b) efficient

attacks could be developed; (c) the advent of quantum computers is

likely to compromise this type of encryption; and (d) fast and reli-

able communications over ad hoc wireless networks require light and

effective security architectures.19

Information-theoretic results provide an alternative approach by

exploiting the randomness of physical communication channels. By

proper physical layer design, the network can actually guarantee that

the sent messages cannot be decoded by a third party, maliciously

eavesdropping on the wireless medium. Shannon pioneered to study the

notion of perfect secrecy in his seminal paper [237]. Later, the theoreti-

cal basis for an information-theoretic approach was laid by Wyner [298]

and Csiszár and Körner [58], who proved that channel codes exist which

guarantee both reliability and a prescribed degree of data confiden-

tiality. A good overview of the topic of secrecy on the physical layer

19Light means that no infrastructure access is required to exchange and manage key pairs.
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(including single- and multi-user systems as well as single- and multi-

antenna systems) is given in [27, 121, 147]. Furthermore, an overview

on current research problems and applications in the field of physical

layer secrecy is provided by [156].

In systems with multiple transmit and receive antennas, the spatial

degrees-of-freedom provide optimization possibilities for secure trans-

mission as well as clever eavesdropping. In [87], artificial noise is created

at the transmitter and relays to ensure secrecy. The secrecy capac-

ity region of MIMO broadcast channels is characterized in [6, 155]. A

closed-form expression for the secrecy capacity of the single-user MISO

channel is derived in [232]. The corresponding transmit optimization

for achieving the secrecy capacity on single-user MIMO channels is

more difficult, but a numerical algorithm based on global optimization

is proposed in [152].

In this subsection, we exemplify a scenario with four entities (or two

links in the framework described in Section 1); see Figure 4.14 [116].

The channel between Alice and Bob is the intended communication

link. Another single-antenna node called Eve is trying to overhear the

Fig. 4.14 Illustration of a simple eavesdropping scenario with four entities [116]. Alice wants
to communicate privately with Bob. Eve is trying to overhear, while Hugo supports the
private communication by intentionally creating interference at Eve (while avoiding inter-
ference at Bob).
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communication between Alice and Bob. Finally, a helper called Hugo

equipped with multiple transmit antennas supports the private com-

munication. We basically have two transmissions creating interference

to each other: from Alice to Bob and from Hugo to Eve. Following the

notation from previous sections, the link from Alice to Bob is described

by the vector channel hab = DH
1 CH

1 h1, Alice to Eve hae = DH
1 CH

2 h2,

whereas the link from Hugo to Bob is described by hhb = DH
2 CH

1 h1 and

Hugo to Eve is hhe = DH
2 CH

2 h2. The private communication uses the

beamforming vector va and the helper creates interference using vh.

For notational simplicity, the noise variances are normalized toward

the channel vectors.

The achievable secrecy rate for reliable and secure data transmission

between Alice and Bob is given by

RS(va,vh) =

[
log2

(
1 +

|hH
abva|2

1 + |hH
hbvh|2

)
− log2

(
1 +

|hH
aeva|2

1 + |hH
hevh|2

)]

+

.

(4.85)

The optimization problem for maximizing the secrecy rate is given by

max
0≤‖va‖2≤qa

max
0≤‖vh‖2≤qh

RS(va,vh). (4.86)

The outer optimization problem in (4.86) for fixed beamforming vector

vh is solved similar to [232] and [6, Section V].

Lemma 4.15 The beamforming vector v′
a that solves (4.86) for fixed

vh is given by

v′
a(vh) = qaψ, (4.87)

where ψ is the generalized eigenvector associated with the maximum

generalized eigenvalue of the pencil (I + 1
1+z1

habh
H
ab,I + 1

1+z2
haeh

H
ae)

with z1 = |hH
hbvh|2 and z2 = |hH

hevh|2.

The inner optimization problem in (4.86) for a fixed beamforming

vector va cannot be solved in closed form because the terms in the

denominator cannot be transformed into a simple quotient. However,

the beamforming parametrization in Example 3.1 can be applied to

describe the optimal beamforming vector at the helper Hugo.
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Theorem 4.16 For fixed va, the beamforming vector v′
h that solves

(4.86) is given by

v′
h(λ) =

λΠhhb
h∗

he + (1 − λ)Π⊥
hhb

h∗
he

‖λΠhhb
h∗

he + (1 − λ)Π⊥
hhb

h∗
he‖

(4.88)

for some λ ∈ [0,1].

Assume next that there are K helpers and we denote the channels from

helper k ∈ {1, . . . ,K} to Bob as hkb and to Eve as hke, respectively. In

order to find the optimal transmit strategies at the helpers and at Alice,

an iterative approach is described in Algorithm 6. In the algorithm,

we define v−k(λ
′
−k) = [v1(λ

′
1) . . . vk−1(λ

′
k−1) vk+1(λ

′
k+1) . . . vK(λK)].

Algorithm 6 converges to the global optimum because both steps in

the while loop yield unique solutions, the objective function is maxi-

mized in each step and there is an upper bound to the objective function

given by the peaceful system without any eavesdropper

RS(va,vh,v1, . . . ,vK) ≤ log2

(
1 + qa‖hab‖2

)
. (4.89)

For illustration, we consider the case in which all channel vectors

are independent and identically distributed according to a zero-mean

complex Gaussian distribution with identity covariance matrices.

Figure 4.15 shows the average secrecy rate with and without a helper

and using different beamforming strategies:

(1) Upper bound (4.89): Peaceful information rate without Eve.

(2) Optimal beamforming using Algorithm 6.

(3) Alice performs optimal beamforming without a helper.

(4) Alice performs MRT and the helper uses ZFBF.

(5) Alice performs MRT without having a helper.

We can make several observations from Figure 4.15. First, the gap

between the naive system where Alice performs MRT while being eaves-

dropped compared to the peaceful system is significant and increases

with the SNR (i.e., the best and worst curves in Figure 4.15). Second,

the optimal transmit strategy in (4.87) without any helper performs
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Fig. 4.15 Average secrecy rate with and without a helper, and using different transmit
strategies and the upper bound from (4.89). Alice and Hugo have two transmit antennas
each.

Algorithm 6: Secrecy Rate Maximization with K Helpers

Result: Find optimal beamforming vectors va at Alice and

optimal helper beamforming v1, . . . ,vK .

Input: Channel vectors hab,hae,hkb,hke for k = 1, . . . ,K;

Set v′
a = hab

‖hab‖ and v1 = . . . = vK = 0;1

while required accuracy not reached do2

for k = 1 : K do3

λ′
k = arg max

0≤λ≤1
RS(v′

a,vk(λ),v−k(λ
′
−k));4

v′
a(v1(λ

′), . . . ,vK(λ′)) = qaψ with ψ from (4.87);5

Output: Optimal beamforming vectors;

reasonably well. If Alice does not adapt to the eavesdropper channel,

the helper can almost compensate for it. But the real benefits of having

a helper are seen when both Alice and Hugo optimize their transmis-

sions. The average SNR gap between the iterative beamforming solution

(Algorithm 6) and the upper bound is about 1.5 dB.
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Fig. 4.16 Instantaneous secrecy rate with helpers using optimal beamforming from Algo-
rithm 6. Alice and all helpers are equipped with two transmit antennas.

The last observation leads to the question whether multiple helpers

can reduce the gap. We investigate this by having different numbers of

helpers with independent and identically distributed channels accord-

ing to zero-mean complex Gaussian distribution with identity covari-

ance matrices. In order to show the behavior with large (unrealistic)

number of helpers, fixed channel vectors hab and hae are used with fixed

channel vectors for varying number of helpers in Figure 4.16. It can be

observed that the gap between the upper bound (4.89) and the secrecy

rate with helpers reduces with increasing number of helpers. The (unre-

alistic) case with K = 500 helpers achieves a secrecy rate which cannot

be distinguished from the upper bound.

Note that we assumed that the transmit strategies are chosen jointly

for Alice and Hugo. This requires a central authority to decide on λ in

(4.88), thus CSI and SNRs need to be available to run Algorithm 6.

A closer look at the optimal beamforming vector va at Alice in

(4.87) shows that Alice needs only her own channel vectors hab and

hae and the interference terms z1 and z2 at Bob and Eve, respectively,

to compute the generalized eigen decomposition. Bob will voluntarily

feedback the SNR z1. In a cellular context, where Eve is an internal
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eavesdropper, who behaves well but curiously, the SNR information z2

is also available.

In order to compute the optimal beamforming vector vh at Hugo,

only information about the own channels hhb and hhe is required plus

the weighting parameter λ. The parameter selection depends again on

the helper model. If Hugo is part of the cellular network, control infor-

mation such as λ can be sent from Alice and the centralized optimiza-

tion in Algorithm 6 is well motivated. For further discussions on the

simple helper scenario considered, please refer to [116].
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Notations and Acronyms

Mathematical Notations

Upper-case boldface letters are used to denote matrices (e.g., X,Y),

while (column) vectors are denoted with lower-case boldface letters

(e.g., x,y). Scalars are denoted by italic letters (e.g., X,Y ) and sets by

calligraphic letters (e.g., X ,Y). The following mathematical notations

are used:

CN×M The set of complex-valued N × M matrices.

RN×M The set of real-valued N × M matrices.

CN ,RN Short forms of CN×1 and RN×1.

RN
+ The set of non-negative members of RN .

∅ The empty set.

x ∈ S x is a member of the set S.

x �∈ S x is not a member of the set S.

S1 ⊆ S2 S1 is included in (is a subset of) S2.

S1 ∪ S2 Union set with all members in S1 and/or S2.

S1 ∩ S2 Intersection set with all members which

are in both S1 and S2.

S1 × S2 The Cartesian product of sets S1 and S2.

355



356 Notations and Acronyms

S \ {x} The remaining set when member x is removed.

|S| The cardinality (i.e., number of members) of a set S.

∀x Means that a statement holds for all x

(in the set that x belongs to).

{x ∈ S : P} The set of all member of S having a property P.

f : S1 → S2 Function from S1 to S2.

f−1 Inverse function of a function f .

xi = [x]i Two ways of writing the ith element of a vector x.

xij = [X]ij Two ways of writing the i, jth element of a matrix X.

diag(·) diag(x1, . . . ,xN ) is a diagonal matrix with x1, . . . ,xN

at the diagonal. diag(X1, . . . ,XN ) is block-diagonal.

XT The transpose of X.

XH The conjugate transpose of X.

X−1 The inverse of a square matrix X.

X† The Moore–Penrose pseudo-inverse of X.

ΠX The orthogonal projection matrix onto the column

space of X (i.e., ΠX = X(XHX)†XH).

Π⊥
X Projection matrix onto the orthogonal complement

of the column space of X (i.e., Π⊥
X = I − ΠX).

[x]+ Obtained from x by setting negative entries to zero.

sign(x) Sign of a real-valued number x.

ℜ(x) Real part of a scalar x.

ℑ(x) Imaginary part of a scalar x.

ı The imaginary number.

|x| Absolute value of a scalar x.

∠x Phase of a complex-valued scalar x.

⌈x⌉ The smallest integer not less than the scalar x ∈ R.

loga(x) Logarithm of x using the base a ∈ R+.

O(·) Big O notation: f(x) = O(g(x)) means that it exist

c,x0 ∈ R+ such that |f(x)| ≤ c|g(x)| for x > x0.

vmax(X) Eigenvector associated with the largest eigenvalue.

vi(X) Eigenvector associated with the ith largest eigenvalue.

tr(X) Trace of a square matrix X.

rank(X) Rank of a matrix X (i.e., nonzero singular values).

span(X) The column space of a matrix X.
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∇f(x) The gradient vector of a scalar function f .

N (x,R) The multivariate Gaussian distribution with mean

x and covariance matrix R.

CN (x,R) The circularly symmetric complex

Gaussian counterpart.

x ∼ X (·) The random variable x has distribution X (·).
E{X} The mathematical expectation of a stochastic X.

‖x‖p The Lp-norm ‖x‖p = (
∑

i |xi|p)1/p of x.

‖X‖F The Frobenius norm ‖X‖F =
√∑

i,j |xij |2 of X.

X ≻ Y Means X − Y is positive definite.

X � Y Means X − Y is positive semi-definite.

x > y (x ≥ y) Means xi > yi (xi ≥ yi) for all vector indices i.

x ≥e y Means xiei ≥ yiei with at least one strict inequality.

IN The N × N identity matrix.

1N The N × 1 matrix (i.e., vector) of only ones.

0N The N × N matrix of only zeros.

0N×M The N × M matrix of only zeros.

Tutorial Specific Notations

Symbols and functions that are commonly used in the tutorial are sum-

marized as follows:

BSj Base station j.

Cj Set of users that BSj coordinates interference to.

Ck Diagonal matrix such that hH
k Ck is the channel

that carries nonnegligible interference to user k.

Cjk Equal to INj
if BSj coordinates interference to user k.

Dj Set of users that BSj can send data to.

Djk Equal to INj
if BSj can send data to user k.

Dk Diagonal matrix such that hH
k Dk is the channel for data.

δ Predefined line-search accuracy.

ε Predefined solution accuracy for a monotonic problem.

f(·) System utility function.

gk(·) Performance function of user k.

hk Channel vector from all base stations to user k.
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hjk Channel component from BSj to user k.

jk Index of the master base station of user k.

Kr Number of receiving users.

Kt Number of transmitting base stations.

L Number of power constraints in the system.

MSk User k.

N Total number of transmit antennas in the system.

Nj Number of antennas at the jth base station.

Ωk Channel gain region corresponding to Sk.

Qlk Weighting matrix for user k in the lth power constraint.

ql Total limit of the lth power constraint.

qlk Per-user limit of the lth power constraint.

R Performance region.

Sk Signal correlation matrix for user k.

σ2
k Noise variance for user k.

SINRk Signal-to-interference-and-noise ratio of user k.

u Utopia point.

vk Beamforming vector for user k.

v̄k Beamforming direction for user k.

yk Received signal at user k.

Acronyms

The following acronyms and abbreviations are used in the tutorial:

BER Bit Error Rate

BRB Branch-Reduce-and-Bound

c.u. Channel Use

CDF Cumulative Distribution Function

CoMP Coordinated Multipoint

CSI Channel State Information

dBm Decibel-Milliwatt

DCC Dynamic Cooperation Clusters

FDD Frequency Division Duplex

FPO Fairness-Profile Optimization

GPS Global Positioning System
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ITC Interference Temperature Constraint

KKT Karush–Kuhn–Tucker

LTE 3GPP Long Term Evolution

MBS Master Base Station

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MMSE Minimum Mean Square Error

MOP Multi-Objective Optimization Problem

MRT Maximum Ratio Transmission

MSE Mean Square Error

mW Milliwatt

NP-hard Non-Deterministic Polynomial-Time hard

OFDM Orthogonal Frequency-Division Multiplexing

PA Polyblock Outer Approximation

PAPR Peak-to-Average Power Ratio

PEP Pairwise Error Probability

QAM Quadrature Amplitude Modulation

QoS Quality-of-Service

QPSK Quadrature Phase-Shift Keying

RF Radio Frequency

SDMA Spatial Division Multiple Access

SER Symbol Error Rate

SINR Signal-to-Interference-and-Noise Ratio

SISO Single-Input Single-Output

SLNR Signal-to-Leakage-and-Noise Ratio

SOP Single-Objective Optimization Problem

SNR Signal-to-Noise Ratio

TDD Time Division Duplex

TDMA Time Division Multiple Access

ZFBF Zero-Forcing Beamforming
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[204] H. Pennanen, A. Tölli, and M. Latva-aho, “Decentralized coordinated down-
link beamforming via primal decomposition,” IEEE Signal Processing Letters,
vol. 18, no. 11, pp. 647–650, 2011.

[205] S. Pillai, T. Suel, and S. Cha, “The Perron-Frobenius theorem: Some of its
applications,” IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 62–75,
2005.

[206] L. Qian, Y. Zhang, and J. Huang, “MAPEL: Achieving global optimality for a
non-convex wireless power control problem,” IEEE Transactions on Wireless
Communications, vol. 8, no. 3, pp. 1553–1563, 2009.

[207] J. Qiu, R. Zhang, Z.-Q. Luo, and S. Cui, “Optimal distributed beamforming
for MISO interference channels,” IEEE Transactions on Signal Processing,
vol. 59, no. 11, pp. 5638–5643, 2011.

[208] F. Rashid-Farrokhi, K. Liu, and L. Tassiulas, “Transmit beamforming and
power control for cellular wireless systems,” IEEE Journal on Selected Areas
in Communications, vol. 16, no. 8, pp. 1437–1450, 1998.



374 References

[209] F. Rashid-Farrokhi, L. Tassiulas, and K. Liu, “Joint optimal power control and
beamforming in wireless networks using antenna arrays,” IEEE Transactions
on Communications, vol. 46, no. 10, pp. 1313–1324, 1998.

[210] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “Linear transceiver design for a
MIMO interfering broadcast channel achieving max-min fairness,” in Proceed-
ings of Asilomar Conference on Signals, Systems, and Computers, pp. 1309–
1313, 2011.

[211] T. Ren and R. La, “Downlink beamforming algorithms with inter-cell interfer-
ence in cellular networks,” IEEE Transactions on Wireless Communications,
vol. 5, no. 10, pp. 2814–2823, 2006.

[212] W. Rhee and J. Cioffi, “Increase in capacity of multiuser OFDM system using
dynamic subchannel allocation,” in Proceedings of IEEE Vehicular Technology
Conference-Spring, pp. 1085–1089, 2000.

[213] R. Rockafellar, “Lagrange multipliers and optimality,” SIAM Review, vol. 35,
no. 2, pp. 183–238, 1993.

[214] J. Roh and B. Rao, “Multiple antenna channels with partial channel state
information at the transmitter,” IEEE Transactions on Wireless Communi-
cations, vol. 3, no. 2, pp. 677–687, 2004.

[215] M. Rossi, A. Tulino, O. Simeone, and A. Haimovich, “Non-convex utility max-
imization in Gaussian MISO broadcast and interference channels,” in Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 2960–2963, 2011.

[216] B. Roy and V. Mousseau, “A theoretical framework for analysing the notion of
relative importance of criteria,” Journal on Multi-Criteria Decision Analysis,
vol. 5, pp. 145–159, 1996.

[217] R. Roy and B. Ottersten, “Spatial division multiple access wireless communi-
cation systems,” US Patent, 5515378, 1991.

[218] A. Rubinov, H. Tuy, and H. Mays, “An algorithm for monotonic global opti-
mization problems,” Optimization, vol. 49, pp. 205–221, 2001.

[219] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill, 1976.
[220] F. Rusek, D. Persson, B. Lau, E. Larsson, T. Marzetta, O. Edfors, and

F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very
large arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60,
2013.

[221] M. Sadek, A. Tarighat, and A. Sayed, “A leakage-based precoding scheme
for downlink multi-user MIMO channels,” IEEE Transactions on Wireless
Communications, vol. 6, no. 5, pp. 1711–1721, 2007.

[222] S. Sarkar and L. Tassiulas, “Fair allocation of discrete bandwidth layers in
multicast networks,” in Proceedings of IEEE INFOCOM, 2000.

[223] L. Savage, The Foundations of Statistics. Courier Dover Publications, 1972.
[224] T. Schenk, RF Imperfections in High-Rate Wireless Systems: Impact and Dig-

ital Compensation. Springer, 2008.
[225] D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, “Distributed

resource allocation schemes,” IEEE Signal Processing Magazine, vol. 26, no. 5,
pp. 53–63, 2009.



References 375

[226] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming
problem with individual SINR constraints,” IEEE Transactions on Vehicular
Technology, vol. 53, no. 1, pp. 18–28, 2004.

[227] M. Schubert and H. Boche, “QoS-based resource allocation and transceiver
optimization,” Foundations and Trends in Communications and Information
Theory, vol. 2, no. 6, pp. 383–529, 2005.

[228] M. Schubert and H. Boche, Interference Calculus: A General Framework for
Interference Management and Network Utility Optimization. Springer, 2012.

[229] G. Scutari, D. Palomar, J.-S. Pang, and F. Facchinei, “Flexible design of
cognitive radio wireless systems,” IEEE Signal Processing Magazine, vol. 26,
no. 5, pp. 107–123, 2009.

[230] G. Scutari, D. P. Palomar, and S. Barbarossa, “Cognitive MIMO radio,” IEEE
Signal Processing Magazine, vol. 25, no. 6, pp. 46–59, 2008.

[231] K. Seong, M. Mohseni, and J. Cioff, “Optimal resource allocation for OFDMA
downlink systems,” in Proceedings of IEEE International Symposium on Infor-
mation Theory, 2006.

[232] S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels with
secrecy constraints,” in Proceedings of IEEE International Symposium on
Information Theory, 2007.

[233] S. Shamai and B. Zaidel, “Enhancing the cellular downlink capacity via co-
processing at the transmitting end,” in Proceedings of IEEE Vehicular Tech-
nology Conference-Spring, pp. 1745–1749, 2001.

[234] X. Shang, B. Chen, G. Kramer, and H. V. Poor, “Noisy-interference sum-rate
capacity of parallel Gaussian interference channels,” IEEE Transactions on
Information Theory, vol. 57, no. 1, pp. 210–226, 2011.

[235] X. Shang, B. Chen, and H. V. Poor, “Multiuser MISO interference channels
with single-user detection: Optimality of beamforming and the achievable rate
region,” IEEE Transactions on Information Theory, vol. 57, no. 7, pp. 4255–
4273, 2011.

[236] C. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[237] C. Shannon, “Communication theory of secrecy systems,” Bell System Tech-
nical Journal, vol. 28, pp. 656–715, 1949.

[238] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with
partial side information,” IEEE Transactions on Information Theory, vol. 51,
no. 2, pp. 506–522, 2005.

[239] C. Shen, T.-H. Chang, K.-Y. Wang, Z. Qiu, and C.-Y. Chi, “Distributed
robust multicell coordinated beamforming with imperfect CSI: An ADMM
approach,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 2988–
3003, 2012.

[240] Z. Shen, R. Chen, J. Andrews, R. Heath, and B. Evans, “Low complexity user
selection algorithms for multiuser MIMO systems with block diagonalization,”
IEEE Transactions on Signal Processing, vol. 54, no. 9, pp. 3658–3663, 2006.

[241] M. B. Shenouda and T. Davidson, “Probabilistically-constrained approaches
to the design of the multiple antenna downlink,” in Proceedings of Asilomar
Conference on Signals, Systems, and Computers, pp. 1120–1124, 2008.



376 References

[242] M. B. Shenouda and T. Davidson, “Nonlinear and linear broadcasting with
QoS requirements: Tractable approaches for bounded channel uncertainties,”
IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 1936–1947, 2009.

[243] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE
approach to distributed sum-utility maximization for a MIMO interfering
broadcast channel,” IEEE Transactions on Signal Processing, vol. 59, no. 9,
pp. 4331–4340, 2011.

[244] H. Shirani-Mehr, G. Caire, and M. Neely, “MIMO downlink scheduling with
non-perfect channel state knowledge,” IEEE Transactions on Communica-
tions, vol. 58, no. 7, pp. 2055–2066, 2010.

[245] N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, “Transmit beamforming for
physical-layer multicasting,” IEEE Transactions on Signal Processing, vol. 54,
no. 6, pp. 2239–2251, 2006.

[246] O. Simeone, N. Levy, A. Sanderovich, O. Somekh, B. Zaidel, H. Poor, and
S. Shamai, “Cooperative wireless cellular systems: An information-theoretic
view,” Foundations and Trends in Communications and Information Theory,
vol. 8, no. 1–2, pp. 1–177, 2012.

[247] O. Simeone, O. Somekh, H. V. Poor, and S. Shamai, “Downlink multicell
processing with limited-backhaul capacity,” EURASIP Journal on Advances
in Signal Processing, 2009.

[248] H. Skjevling, D. Gesbert, and A. Hjørungnes, “Low-complexity distributed
multibase transmission and scheduling,” EURASIP Journal on Advances in
Signal Processing, 2008.

[249] M. Slater, “Lagrange multipliers revisited,” Technical Report 403, Cowles
Commission Discussion Paper, Mathematics, 1950.

[250] B. Song, Y.-H. Lin, and R. Cruz, “Weighted max-min fair beamforming, power
control, and scheduling for a MISO downlink,” IEEE Transactions on Signal
Processing, vol. 7, no. 2, pp. 464–469, 2008.

[251] E. Song, Q. Shi, M. Sanjabi, R. Sun, and Z.-Q. Luo, “Robust SINR-constrained
MISO downlink beamforming: When is semidefinite programming relax-
ation tight?,” in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2011.

[252] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for down-
link spatial multiplexing in multiuser MIMO channels,” IEEE Transactions
on Signal Processing, vol. 52, no. 2, pp. 461–471, 2004.

[253] R. Stridh, M. Bengtsson, and B. Ottersten, “System evaluation of optimal
downlink beamforming with congestion control in wireless communication,”
IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 743–751,
2006.

[254] C. Studer, M. Wenk, and A. Burg, “MIMO transmission with residual
transmit-RF impairments,” in Proceedings of ITG/IEEE Workshop on Smart
Antennas (WSA), 2010.

[255] C. Studer, M. Wenk, and A. Burg, “System-level implications of residual
transmit-RF impairments in MIMO systems,” in Proceedings of European
Conference on Antennas and Propagation, 2011.



References 377

[256] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones,” Optimization Methods and Software, vol. 11–12, pp. 625–653,
1999.

[257] A. Tajer, N. Prasad, and X. Wang, “Robust linear precoder design for multi-
cell downlink transmission,” IEEE Transactions on Signal Processing, vol. 59,
no. 1, pp. 235–251, 2011.

[258] L. Tanner, “Selecting a text-processing system as a qualitative multiple cri-
teria problem,” European Journal on Operational Research, vol. 50, no. 2,
pp. 179–187, 1991.

[259] A. Tarighat, M. Sadek, and A. Sayed, “A multi user beamforming scheme
for downlink MIMO channels based on maximizing signal-to-leakage ratios,”
in Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, pp. 1129–1132, 2005.

[260] A. Tarighat and A. Sayed, “Joint compensation of transmitter and receiver
impairments in OFDM systems,” IEEE Transactions on Wireless Communi-
cations, vol. 6, no. 1, pp. 240–247, 2007.

[261] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans-
actions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999.
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