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Abstract

In this paper, we derive a performance comparison between two training-based schemes for Multiple-Input Multiple-
Output (MIMO) systems. The two schemes are the time-division multiplexing scheme and the recently proposed
data-dependent superimposed pilot scheme. For both schemes, a closed-form expressions for the Bit Error Rate
(BER) is provided. We also determine, for both schemes, the optimal allocation of power between pilot and data
that minimizes the BER.
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1 Introduction
The use of Multiple-Input Multiple-Output (MIMO) antenna systems enables high data rates without any
increase in bandwidth or power consumption. However, the good performance of MIMO systems requires a
priori knowledge of the channel at the receiver. In many practical systems, the receiver estimates the channel
by time division multiplexing pilot symbols with the data. Although high quality of channel estimation could
be achieved especially when using a large number of pilot symbols [1], this method may entail a waste of the
available channel ressources. An alternative method is the conventional superimposed training. It consists in
transmitting pilots and data at the same time. However, since during channel estimation, data symbols act
as a source of noise, channel estimation is affected. In the literature, the impact of channel estimation error
upon the performance indexes has been investigated. In [2] and [3], a comparison between the performance
of the conventional superimposed training scheme and the time-multiplexing based scheme has been carried
out. The optimal power allocation between pilot and data that maximizes a lower bound of the maximum
mutual information criterion has been provided. It has been shown that the use of the optimal conventional
superimposed training scheme entails a gain in terms of channel capacity only in special scenarios (many
receive antennas and/or short coherence time). In other scenarios, the superimposed training scheme suffers
from high channel estimation errors and its gain over the time-multiplexing based scheme is often lost. For
this reason, many alternatives to the conventional superimposed training scheme have been proposed in
recent works.

In [4], M. Ghogho et al proposed to introduce a distortion to the data symbols, prior to adding the known
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pilot in such a way to guarantee the orthogonality between pilot and data sequences. It is shown that the
channel estimation performance is by far enhanced as compared to the standard superimposed scheme. This
technique is referred to as the data-dependent superimposed training (DDST). While the DDST scheme
exhibits the same channel performance as its TDMT counterpart, the effect of the introduced distortion may
considerably affect the detection performance. The aim of this paper is thus to study the BER performance
of the DDST and TDMT schemes and to evaluate to which extent, the performance of the DDST scheme is
altered.

In the literature, the few works focusing on BER performance have been based on unrealistic assumptions
like the uncorrelation between the noise and channel estimation error, [5], [6]. These assumptions make
calculations feasible for fixed size dimensions but are far away from being realistic. To make derivations
possible while keeping realistic conditions, we will relax the assumption of finite size dimensions by allowing
the space and time dimensions to grow to infinity at the same rate. Working with the asymptotic regime,
allows us to simplify the derivations and at the same time, we observe that the obtained results apply as
well to usual sample and antenna-array sizes. We show also that the obtained expressions can be used to
determine the optimal power allocation that minimize the BER.

The remainder of this paper is as follows: In the next section, we introduce the system model. After
that, we review in section 3 the channel estimation and data detection processes for the TDMT and DDST
schemes. Section 4 is dedicated to the derivation of the asymptotic BER expressions. Based on these
results, we determine the optimal allocation of power between data and training for both schemes. Finally,
simulation results are provided in section 7 to validate the analytical derivation.

Notation: Subscripts H, # and Tr (.) denote hermitian, pseudo-inverse and trace operators. The sta-
tistical expectation and the Kronecker product are denoted by E and ⊗. The (K × K) identity matrix is
denoted by IK , and the (Q × Q) matrix of all ones by 1Q. The (i, j)th entry of a matrix A is denoted by
Ai,j .

2 System model and problem setting
2.1 Time-division multiplexing scheme

We consider a M ×K MIMO system operating over a flat fading channel. Two phases are considered:
First phase: In the first phase, each transmitting antenna sends N1 pilot symbols. The received symbol
Y1 writes as:

Y1 = HPt +V1,

where Pt is the K ×N1 pilot matrix and

Assumption A.1. H is the M × K channel matrix with independent and identically distributed (i.i.d.)
Gaussian variables with zero mean and variance 1

K ,

Assumption A.2. V1 is the M ×N1 matrix whose entries are i.i.d. with variance σ2
v

Second phase: In the second phase, N2 data symbols with power σ2
wt

are sent by each antenna so that
the received signal matrix Y2 writes as:

Y2 = HWt +V2

where

Assumption A.3. Wt is the K × N2 data matrix with i.i.d. bounded data symbols of power σ2
wt

and V2

is the M ×N2 additive Gaussian noise matrix with entries of zero mean and variance σ2
v. Moreover, Wt is

independent of V1 and V2.
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2.2 Data-dependent superimposed training scheme (DDST)

An other alternative to TDMT based schemes is to send the training and data sequences at the same time.
Since data is transmitted all the times, these schemes allow efficient bandwidth efficiency but may suffer
from the interference caused by the training sequence. Ghogho et al proposed thus to distort the data so
that is becomes orthogonal to the training sequence. The proposed distortion matrix D is defined as:

D = IN − J

where J = K
N 1N

K
⊗ IK , (we assume that N

K is integer valued, N being the sample size). This distortion

matrix was shown to be optimal in the sense that it minimizes the averaged euclidean distance between the
distorted and non-distorted data, [7]. The received signal matrix at each block is therefore given by:

Y = HWd(IN − J) +HPd +V

where

Assumption A.4. Wd is the data matrix with i.i.d. bounded data symbols of power σ2
wd

, and V is the
M ×N matrix whose entries are i.i.d. zero mean with variance σ2

v.

Moreover, Pd is theK×N training matrix . The chosen pilot matrix Pd should fulfill two requirements. It
should be orthogonal to the distortion matrix D, thus satisfying DPH

d = 0, and also verify the orthogonality
relation PdP

H

d = Nσ2
Pd
IK in order to minimize the channel estimation error subject to a fixed training

power. A possible pilot matrix that meets these requirements is :

Assumption A.5.

Pd(k, n) = σPd
exp (2πkn/K) with k = 0, · · · ,K − 1 and n = 0, · · · , N − 1. (1)

3 Channel estimation and data detection
3.1 TDMT scheme

In the first phase, we assume that the receiver estimates the channel in the least-square sense. Hence, the
channel estimate is given by:

Ĥt = Y1P
H

t (PtP
H

t )
−1

= H+V1P
H

t (PtP
H

t )
−1

= H+∆Ht

where ∆Ht = V1P
H

t (PtP
H

t )
−1

. Thus the mean square error writes as:

MSEt = Mσ2
v tr (PtP

H

t )
−1

As it has been shown in [1], the optimal training matrix that minimizes the MSE under a constant training
energy N1σ

2
Pt

should satisfy:

Assumption A.6.

PtP
H

t = N1σ
2
Pt
IK
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where σ2
Pt

denotes the amount of power devoted to the transmission of a pilot symbol. The optimal
minimum value for the MSEt is then given by:

MSEt =
KMσ2

v

N1σ2
Pt

.

In the data transmission phase, the linear receiver uses the channel estimate in order to retrieve the trans-
mitted data. After channel inversion, the estimated data matrix is given by:

Ŵt =
(
Ĥt

)#
Y2

where
(
Ĥt

)#
denotes the pseudo-inverse matrix of Ĥt. Assuming that the channel estimation error is small,

the pseudo-inverse of the estimated matrix can be approximated by the linear part of the Taylor expansion
as, [8]: (

Ĥt

)#
= H# −H#∆HtH

# +H#
(
H#

)H
∆Ht

(
IM −HH#

)
(2)

Substituting H# by (HHH)
−1

HH in (2), we obtain:

(
Ĥt

)#
= H# −H#∆HtH

# + (HHH)
−1

∆HH

t Π

where Π = IM −H (HHH)
−1

HH is the orthogonal projector on the null space of H. Hence, the zero-forcing
estimate of the transmitted matrix can be expressed as:

Ŵt = Wt −H#∆HtWt +
(
H# −H#∆HtH

#
)
V2 + (HHH)

−1
(∆Ht)

H

ΠV2.

Consequently, the effective post-processing noise ∆Wt = Ŵt −Wt could be written as:

∆Wt = −H#∆HtWt +
(
H# −H#∆HtH

# + (HHH)
−1

(∆Ht)
H

Π
)
V2.

3.2 DDST scheme

The LS channel estimate is obtained by multiplying Y by PH

d (PdP
H

d )
−1

, thus giving:

Ĥd = YPH

d (PdP
H

d )
−1

= H+VPH

d (PdP
H

d )
−1

= H+∆Hd

where ∆Hd = VPH

d (PdP
H

d )
−1

denotes the channel estimation error matrix for the DDST scheme. As
aforementioned above in assumption A.5, the optimal training matrix that minimizes the MSE should
satisfy:

PdP
H

d = Nσ2
Pd
IK .

The MSE is thus given by:

MSEd = Mσ2
v tr (PdP

H

d )
−1

=
KMσ2

v

Nσ2
Pd

For the DDST scheme, we consider a zero-forcing receiver which, prior to inverting the channel matrix,
cancels the contribution of the training symbols by right multiplying Y by (I− J), where

Y = HWd (IN − J) ,
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the matrix Wd being the sent data matrix. Thus, the zero-forcing estimate of Wd is given by:

Ŵd =
(
Ĥd

)#
Y (I− J)

=
(
H# −H#∆HdH

# + (HHH)
−1

∆HH

dΠ
)
(HWd (I− J) +V (I− J))

=
(
I−H#∆Hd

)
Wd (I− J) +

(
H# −H#∆HdH

#
)
V (I− J) + (HHH)

−1
∆HH

dΠV (I− J)

= Wd (I− J)−H#∆HdWd (I− J) +
(
H# −H#∆HdH

#
)
V (I− J) + (HHH)

−1
∆HH

dΠV (I− J)

= Wd +
(
−WdJ−H#∆HdW (I− J) +

(
H# −H#∆HdH

#
)
V(I− J)

)
+ (HHH)

−1
∆HH

dΠV (I− J)

Hence:

∆Wd = −WdJ−H#∆HdWd (I− J) +
(
H# −H#∆HdH

#
)
V (I− J) + (HHH)

−1
∆HH

dΠV (I− J) .

4 Bit error rate performance
4.1 TDMT scheme

In order to evaluate the bit error rate performance, we need to evaluate the asymptotic behaviour of the
post-processing noise observed at each entry of matrix ∆Wt. Using the ’characteristic function’ approach,
we can prove that conditioned on the channel matrix, the noise behaves asymptotically like a Gaussian
random variable. This result is stated in the following theorem but its proof is postponed in appendix A.

Theorem 1. Under assumptions A.1, A.2, A.3, A.6 and under the asymptotic regime defined as:

M,K,N1, N2 → +∞ with
K

N1 +N2
→ c1, 0 < c1 < 1

M

K
→ c2 > 1 and

N2

N1
→ r

the post-processing noise experienced by the i-th antenna at each time k, ∆Wt(i, k), for the TDMT scheme
behaves in the asymptotic regime as a Gaussian random variable:

E

[
eℜ(z∗∆Wt(i,k))

]
− e−

σ2
wt

δt

[

(HH
H)

−1
]

i,i
|z|2

4 −−−−−→
K→+∞

0

where

δt = c1(1 + r)
σ2
v

σ2
Pt

+
σ2
v

σ2
wt

+
c1(1 + r)(c2 + 1)σ4

v

σ2
wt
σ2
Pt
(c2 − 1)

.

and K → +∞ refers to this asymptotic regime.

Remark 1. Note that as compared to the results in [9], our results make appear a new additive term of
order σ4

v.

The gaussianity of the post-processing noise being verified in the asymptotic case, we can derive the bit
error rate for QPSK constellation and Gray encoding as [10]:

BER = EQ(
√
x) (3)

where the expectation is taken with respect to the probability density function of the post processing SNR
at the i-th branch defined as:

γt =
1

δt

[
(HHH)

−1
]
i,i

.
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From [11] and [12], we know that 1

[(HHH)−1]
i,i

is a weighted chi-square distributed random variable with

2(M −K + 1) degrees of freedom, whose density function is given by:

f(x) =
KM−K+1xM−Ke−Kx

(M −K)!
1[0,+∞[,

where 1[0,+∞[ is the indicator function corresponding to the interval [0,+∞[. Hence, the probability density
function of γt is given by:

fγt
(x) =

(Kδt)
M−K+1xM−K exp(−Kδtx)

(M −K)!
1[0,+∞[ (4)

Plugging (4) into (3), we get:

BERt =
(Kδt)

M−K+1

(M −K)!

∫ +∞

0

xM−K exp(−Kδtx)Q(
√
x)dx (5)

To compute (5), we use the following integral function:

J(m, a, b) =
am

Γ(m)

∫ +∞

0

exp(−ax)xm−1Q(
√
bx)dx. (6)

The BER is therefore equal to:
BER = J(M −K + 1,Kδt, 1). (7)

The integral in (6) has been shown to have, for c > 0 the following closed-form expression, [13]:

J(m, a, b) =

√
c/πΓ(m+ 1

2 )

2(1 + c)m+ 1

2Γ(m+ 1)
2F1(1,m+

1

2
;m+ 1;

1

1 + c
), c =

b

2a

where 2F1(p, q;n, z) is the Gauss hyper-geometric function [14]. If c = 0 equivalently b = 0, it is easy to
note that J(m, a, 0) is equal to 1

2 . When m is restricted to positive integer values, the above equation can
be further simplified to [15]:

J(m, a, b) =
1

2

[
1− µ

m−1∑

k=0

(
2k

k

)(
1− µ2

4

)k
]

(8)

where µ =
√

c
1+c . Plugging (8) into (7), we get:

BERt =
1

2

[
1− µt

M−K∑

k=0

(
2k

k

)(
1− µ2

t

4

)k
]

(9)

where µt =
√

1
2Kδt+1 .

4.2 DDST scheme

Unlike the TDMT scheme, the asymptotic distribution of entries of the post-processing noise matrix is not
Gaussian. Actually, we prove that:
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Theorem 2. Under assumptions A.4, A.5, and under the asymptotic regime defined as:

K

N
→ c1, 0 < c1 < 1 with

M

K
→ c2 > 1

the post-processing noise experienced by the i-th antenna at each time k behaves asymptotically as a Gaussian
mixture random variable, i.e,

E

[
exp

(
ℜ
(
z∗ [∆Wd]i,k

))]
−

Q∑

i=1

pi exp (ℜ (z∗αi)) exp


−

|z|2δdσ2
wd

[
(HHH)

−1
]
i,i

4


 −−−−→

K→∞
0 (10)

where :

δd = (1− c1)

(
c1σ

2
v

σ2
Pd

+
σ2
v

σ2
wd

+
c1σ

4
v(c2 + 1)

(c2 − 1)σ2
Pd
σ2
wd

)
(11)

and Q is the cardinal of the set of all possible values of
[
W
]
i,k

= c1
∑ 1

c1

k=1 [Wd]i,k, and pi is the probability

that
[
W
]
i,k

takes the value αi.

We can also prove that conditioning on the fact that [W]i,k = ǫ1

√
σ2
wd

2 + ǫ2

√
σ2
wd

2 where ǫ1 = ±1 and
ǫ2 = ±1 the post-processing noise satisfies:

E

[
exp

(
ℜ
(
z
∗ [∆Wd]i,k

))
| [W]

i,k
= (ǫ1 + ǫ2)

√
σ2
wd

2

]
−

Q
′

∑

i=1

p
′

i exp

(
ℜ

(
z
∗

(
−c1 (ǫ1 + ǫ2)

√
σ2
wd

2
+ α

′

i

)))

(12)

× exp


−

|z|2δdσ
2
wd

[
(HH

H)
−1
]

i,i

4


 −−−−→

K→∞
0 (13)

where Q′

is the cardinal of the set of all possible values W i = c1
∑ 1

c1
−1

l=1 [W]i,l, and p
′

i is the probability that

W i takes the value α
′

i.

Proof. See Appendix B.

The assumption of the gaussianity of the post processing noise has been always assumed. For time
division multiplexed training, this assumption is well-founded, since the post-processing noise, converges to
a Gaussian distribution in the asymptotic regime, (see theorem 1).

In the superimposed training case, the distortion caused by the presence of data symbols affects the
distribution of the post-processing noise which becomes asymptotically Gaussian mixture distributed. To
assess the system performance in this particular case, we will start from the elementary definition of the
bit error rate. Let ∆Wi,k denotes the post processing noise experienced at the i-th antenna at time k (we
omit the subscript d for ease of notations). As it has been previously shown, ∆Wi,k behaves as a Gaussian

mixture random variable. Let σ2
d be the asymptotic variance of ∆Wi,k, i.e, σ

2
d = σ2

wd
δd

[
(HHH)

−1
]
i,i
.

Using the symmetry of the transmitted data, the BER expression at the ith branch, under QPSK
constellation and for a given channel realization is given by:

BERi =
1

2
P

[
ℜ
(
Ŵi,k

)
> 0|ℜ (Wi,k) = −

√
σ2
w

2

]
+

1

2
P

[
ℜ
(
Ŵi,k

)
< 0|ℜ (Wi,k) =

√
σ2
w

2

]

=
1

2
P

[
ℜ (∆Wi,k) >

√
σ2
w

2

]
+

1

2
P

[
ℜ (∆Wi,k) < −

√
σ2
w

2

]
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In the asymptotic regime, (∆Wi,k) converges to a mixed Gaussian distribution with the probability density
function:

f(x) =
1√
πσ2

d

√
Q′∑

s=1

ps exp(−
(x+ c1ǫ

√
σ2
wd

2 −ℜ(αs))
2

σ2
d

)

Hence, conditioned on the channel, the asymptotic bit error rate can be approximated by:

BERi,d =
1

2

1√
πσ2

wd

∫ +∞
√

σ2
wd
2

√
Q′∑

s=1

p
′

s exp


−

(x− c1

√
σ2
wd

2 −ℜ(αs))
2

σ2
wd


 dx

+
1

2

1√
πσ2

wd

∫ −

√

σ2
wd
2

−∞

√
Q′∑

s=1

p
′

s exp


−

(x+ c1

√
σ2
wd

2 −ℜ(αs))
2

σ2
wd


 dx

Finally, the proposed approximation of the BER can be obtained by averaging with respect to the channel
realization H, thus giving:

BERd = E
1

2

√
Q′∑

s=1

p
′

sQ



√

σ2
w

σ2
wd

(1− c1)−
ℜ(αs)√

σ2
wd

2


+

1

2

√
Q′∑

s=1

p
′

sQ



√

σ2
wd

σ2
wd

(1− c1) +
ℜ(αs)√

σ2
wd

2




For QPSK constellations, it can be shown that
√
Q′ = 1

c1
, where 1

c1
= N

K is assumed to be integer. Moreover,
the set S of the values taken by ℜ(αs) can be given by:

S =

{
ℜ(αs) = c1

√
σ2
wd

2
(
1

c1
− 2s− 1), s ∈

{
0, · · · , 1

c1
− 1

}}
.

with probability ps =
(

1

c1
−1

s
)

2
1

c1
−1

.

Let γd =
σ2

wd

σd
then, the BER expression becomes:

BERd = E

1

c1
−1∑

s=0

( 1

c1
−1
s

)

2
1

c1
−1

Q(2sc1
√
γd) (14)

where the expectation is taken over the distribution of γd given by:

fγd
(x) =

(Kδd)
M−K+1xM−K

(M −K)!
exp(−Kδdx).

The computation of the BER can be treated similarly to the TDMT scheme, thus leading to:

BERd =
1

2
1

c1
−1

1

c1
−1∑

s=0

( 1
c1

− 1

s

)
J(M −K + 1,Kδd, 4s

2c21) (15)
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5 Optimal power allocation
So far, we have provided approximations of the BER for the TDMT and DDST schemes. As it has been
previously shown, these expressions, depend on the power allocated to data and training, in addition to
other parameters. While the system has no control over the noise power or the number of transmitting and
receiving antennas, it still can optimize the power allocation in such a way to minimize this performance
index. Next, we provide, for the TDMT and DDST schemes, the optimal data and training power amounts
that minimize the BER under the constraint of a constant total power.

5.1 Optimal power allocation for the TDMT scheme

Referring to the expressions of BER, we can easily see that the optimal amount of power allocated to data
and pilot for the TDMT scheme is the one that minimizes δt. Let c̃1 = (1 + r)c1, then minimizing δt with
respect to σ2

wt
and σ2

Pt
under the constraint that N1σ

2
Pt

+N2σ
2
wt

= (N1+N2)σ
2
T (σ2

T being the mean energy
per symbol) results in the following lemma:

Lemma 3. The optimal power allocation minimizing the BER under

σ2
wt

=

(1 + r)σ2
T

√
r
(
(1 + r)σ2

T +
c̃1σ2

v(c2+1)
c2−1

)

r

(√
r
(
(1 + r)σ2

T +
c̃1σ2

v(c2+1)
c2−1

)
+

√
c̃1(
(
(1 + r)σ2

T +
rσ2

v(c2+1)
c2−1

)) , (16)

σ2
Pt

=

r(1 + r)σ2
T

√
c̃1

(
(1 + r)σ2

T +
rσ2

v(c2+1)
c2−1

)

r

(√
r
(
(1 + r)σ2

T +
c̃1σ2

v(c2+1)
c2−1

)
+

√
c̃1

(
(1 + r)σ2

T +
rσ2

v(c2+1)
c2−1

)) . (17)

5.2 Optimal power allocation for the DDST scheme

For the DDST scheme, we can deduce from (14) that maximizing γd leads to minimize the BER. To maximize
γd, we need to optimize δd as a function of σ2

wd
and under the constraint that σ2

Pd
+(1− c1)σ

2
wd

= σ2
T . After

straightforward calculations, we can find that the optimal values for σ2
wd

and σ2
Pd

are given by:

Lemma 4. Under the data model, the optimal power allocation minimizing the BER under a total power
constraint σ2

T is given by:

σ2
wd

=

√
(1− c1)

(
σ2
T +

c1(c2+1)σ2
v

c2−1

)
σ2
T

(1− c1)

(√
(1− c1)

(
σ2
T +

c1(c2+1)σ2
v

c2−1

)
+
√
c1σ2

T +
c1(c2+1)(1−c1)σ2

v

c2−1

) , (18)

σ2
Pd

=

√
c1σ2

T +
c1(c2+1)(1−c1)σ2

v

c2−1 σ2
T√

(1− c1)
(
σ2
T +

c1(c2+1)σ2
v

c2−1

)
+
√

c1σ2
T +

c1(c2+1)(1−c1)σ2
v

c2−1

. (19)

6 Discussion
To get more insight into the proposed analysis, we provide here some comments and workouts on the
theoretical results derived in the previous sections.
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High SNR behaviour of the BER: At high SNRs, the error variance parameters δt and δd are close to zero
and hence, by using a first order Taylor expansion of the BER expressions in (9) and (15), we obtain:

BERt ≈ 1

2M−K+1
(Kδt)

M−K+1

(
2(M −K) + 1

M −K + 1

)
(20)

BERd ≈ 1

2
1

c1

+O((Kδd)
M−K+1) (21)

where O(x) denotes a real value of the same order of magnitude as x. From these approximated expressions,
one can observe that the BER at the TDMT scheme is a monomial function of the estimation error variance
parameter δ and the number of transmitters K. For example, if the noise power is decreased by a factor
2, then the BER will decrease by 2M−K+1. The diversity gain is thus equal to M − K + 1, which is in
accordance with the works in [16] and [5]. Also, we observe that, for the DDST case, we have a floor effect
on the BER (i.e. the BER is lower bounded by 1

2
1

c1

) due to the data distorsion inherent to this transmission

scheme.

Gaussian vs. Gaussian mixture model: In our derivations we have found that the post-processing noise in
the DDST case behaves asymptotically as a Gaussian mixture process while, in most of the existing works,
the noise is assumed to be asymptotically Gaussian distributed. In fact, one can show that for large sample
sizes (i.e. when c1 −→ 0) the Gaussian mixture converges to a Gaussian distribution allowing us to retrieve
the standard Gaussian noise assumption. However, for small or moderate sample sizes the considered Gaus-
sian mixture model leads to a much better approximation of the BER analytical expression than the one we
would obtain with a post-processing Gaussian noise model. In other words, Theorem 2 results allow us to
derive closed form expressions for the BER that are valid for relatively small sample sizes.

Workouts on the optimal power allocation expressions of the TDMT scheme: We consider here two limit

cases: (i) The high SNR case where σ2
v ≪ σ2

T and (ii) the case of high dimensional system (the number
of transmit antennae is of the same order of magnitude as the number of receive antennae) where c2−1 ≪ 1.
From (17), the data to pilot power ratio can then be approximated by:

case (i)
σ2
wt

σ2
Pt

≈ N1√
N2K

(22)

case (ii)
σ2
wt

σ2
Pt

≈ N1

N2
(23)

Equation (22) shows that the optimal power allocation in the high SNR case realizes a kind of trade off
between the pilot size and its power such that the total energy N1σ

2
Pt

is kept constant. This suggests us to
use the smallest possible pilot size that meet the technical constraint of limited transmit power, to increase
the effective channel throughput without loss of performance.
Equation (22) shows that in the difficult case of large dimensional system, one needs to allocate the same
total energy to pilots and to data symbols, i.e. N1σ

2
Pt

≈ N2σ
2
wt
. In other word, we should give similar

importance (in terms of power allocation) to the channel estimation and to the data detection.

Workouts on the optimal power allocation expressions of the DDST scheme: A similar workout is consid-
ered here for the DDST scheme. We consider the two previous limit cases and we assume that the sample
size is much larger than the number of transmitters, i.e. N ≫ K. In this context, we obtain the following
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approximations for the data to pilot power ratio:

case (i)
σ2
wd

σ2
Pd

≈
√

N

K
(24)

case (ii)
σ2
wt

σ2
Pt

≈ 1 (25)

Again we observe that for the large dimensional system case, one needs to allocate the same total energy
to pilot and to the data. For high SNRs, one observe a kind of trade off between the pilot power and size
but in a different way than the TDMT case. In fact, if we increase by a factor of 4 the sample size, one can
increase the data to pilot power ratio by a factor of 2 without affecting the BER performance.

High SNR BER comparison of the two pilot design schemes: For the DDST scheme, the BER expression

can be lower bounded as follows (using the convexity of Q(
√
bx) as a function of b):

BERd =
1

2
1

c1
−1

1

c1
−1∑

s=0

( 1
c1

− 1

s

)
J(M −K + 1,Kδd, 4s

2c21)

≥ J(M −K + 1,Kδd,
1

2
1

c1
−1

1

c1
−1∑

s=0

( 1
c1

− 1

s

)
4s2c21) = J(M −K + 1,Kδd, 1− c1)

≥ J(M −K + 1,Kδd, 1)

the latter inequality comes from the fact that J(m, a, b) is a decreasing function of its last argument. Now,
in the high SNR and large sample size scenario (i.e, for σ2

v/σ
2
T ≪ 1 and N ≫ N1,K), we have δt ≈ δd and

by continuity J(M − K + 1,Kδd, 1) ≈ J(M − K + 1,Kδt, 1) = BERt. Consequently, in this context, the
TDMT scheme is better than the DDST in terms of BER, i.e.

BERd ≥ BERt.

7 Simulations
Despite being valid only for the asymptotic regime, our results are found to yield a good accuracy even
for very small system dimensions. In this section, we present simulation results that compares between the
TDMT and DDST schemes.

7.1 Performance comparison between DDST and TDMT based schemes

In this section, except when mentioning, we consider a 2 × 4 MIMO system (K = 2, M = 4) with a data
block size N = 32.

7.1.1 Bit error rate performance

Fig. 1 plots the empirical and theoretical BER under QPSK constellation for N = 32, K = 2 and M = 4 for
the TDMT and DDST based schemes. All comparisons are conducted in the context when both schemes have
the same total energy. The number of training symbols is set to N1 = 2 (N2 = 30) for the TDMT scheme.
For low SNR values (SNR below 6 dB), both schemes achieve approximatively the same BER performance,
and therefore, the DDST scheme outperforms its TDMT counterpart in terms of data rate, since it has a
better bandwidth efficiency. For high SNR values, the noise caused by the data distortion is higher than the
additive Gaussian noise, thus affecting the performance of the DDST scheme.
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Figure 1: Theoretical and empirical BER for the TDMT and DDST based schemes.

7.1.2 Applications

To compare the efficiency of the TDMT and DDST schemes, we consider applications in which the BER
should be below a certain threshold, say 10−2. This may be the case for instance of circuit-switched voice
applications. Note that for non-coded systems, a target BER of 10−2 is commonly used.

Application 1 In this scenario, we set the SNR ,
σ2

T

σ2
v
to 15 dB. We then vary the ratio c1 = K

N from 0.01 to

0.5. Since we consider K = 2 and M = 4, N = K/c1 varies also with c1. For each value of N we compute
the BER by using (9) and (15). Fig. 2 illustrates the obtained results. We also superposed in the same
plot the empirical results for the TDMT and the DDST scheme. The results show a good match thereby
supporting the usefulness of the derived results. We note that the DDST scheme may be interesting for long
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Figure 2: BER with respect to c1 when K = 2, M = 4 and SNR=15 dB

enough frames (N ≥ 16). For small frames (high distortion ratio c1), the distortion of the data becomes too
high thus reducing the interest of the DDST scheme.

Application 2 In this experiment, we propose to determine for the TDMT scheme (K = 2,M = 4, N = 32) the
optimal ratio N2

N1

that has to be used to meet a certain quality of service. For that, we consider a scenario

where the BER should be below 10−2. Using (16), (17) and (9), we determine the minimum number of
required training symbols to meet the BER lower bound requirement. We then, plot the corresponding ratio
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r = N2

N1

with respect to the SNR. We note that if the SNR is below 2 dB, the BER requirement could not
be achieved. This is to be compared with the DDST scheme where the SNR should be set at least to 10.5
dB so as to meet the BER lower bound requirement as it can be shown in fig. 3. Moreover, for a SNR more
than 8.5 dB, the minimum number of pilot symbols for channel identification (equal to K) is sufficient to
meet the BER requirement.
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Figure 3: Required r versus SNR for BER ≤ 10−2.

A Proof of theorem 1
In the sequel, we propose to determine the asymptotic distribution of the post-processing noise of each entry
of the matrix ∆Wt. Actually the (i, j) entry of ∆Wt is given by:

(∆Wt)i,j = −h
#
i ∆Htwj + h

#
i

(
IK −∆HtH

#
)
v2,j + h̃i(∆Ht)

H

Πv2,j

where h#
i and h̃i denote respectively the ith row of H# and (HHH)

−1
, and wj and v2,j denote jth columns

of Wt and V2, respectively. Conditioned on H, V1 and Wt, (∆Wt)i,j is a Gaussian random variable with

mean equal to −h
#
i ∆Htwj and variance

σ2
w,K = σ2

v

(
h
#
i − h

#
i ∆HtH

# + h̃i(∆Ht)
H

Π
)((

h
#
i

)
H

−
(
H#

)H
∆HH

t

(
h
#
i

)
H

+Π∆Ht

(
h̃i

)
H
)

Since our proof will be based on the ’characteristic function’ approach, we shall first recall the expression of
the characteristic function for complex random variables:

Theorem 5. Let Xn be a complex Gaussian random variable with mean mX,n and variance σ2
X,n, such that

E(Xn −mX,n)
2 = 0. Then, Xn can be seen as a two-dimensional random variable corresponding to its real

and imaginary parts. The characteristic function of Xn is therefore given by:

E [exp (ℜ(z∗Xn))] = exp (ℜ (z∗mX,n)) exp

(
−1

4
|z|2σ2

X,n

)
.

Applying Theorem5, the conditional characteristic function of (∆W)i,j can be written as:

E

[
exp

(
ℜ
(
z∗ (∆Wt)i,j

))
|V1,H,Wt

]
= exp

(
−ℜ

(
z∗h#

i ∆Htwj

))
exp

(
−1

4
|z|2σ2

w,K

)
. (26)

13



To remove the condition expectation on V1 and Wt, one should prove that σ2
w,K converges almost surely to

a deterministic quantity. Actually, σ2
w,K can be expanded as follows:

σ2
w,K = σ2

vh
#
i

(
h
#
i

)
H

+ σ2
vh

#
i ∆Ht (H

HH)
−1

(∆Ht)
H

(
h
#
i

)
H

− 2σ2
vℜ
(
h
#
i ∆Ht (H

HH)
−1
(
h
#
i

)
H
)

+ σ2
vh̃i∆HH

t Π∆Ht

(
h̃i

)
H

.

Let

Aσ,K = σ2
vh

#
i ∆Ht (H

HH)
−1

(∆Ht)
H

(
h
#
i

)
H

Bσ,K = σ2
vh̃i∆HH

t Π∆Ht

(
h̃i

)
H

ǫσ,K = h
#
i ∆Ht (H

HH)
−1
(
h
#
i

)
H

.

The limiting behaviour of Aσ,K can be derived by using the following known results describing the asymptotic
behaviour of an important class of quadratic forms:

Lemma 6. [17, Lemma 2.7] Let x = [X1, · · · , XN ]
T

be a N × 1 vector where the Xn are centered i.i.d.
complex random variables with unit variance. Let A be a deterministic N × N complex matrix. Then, for
any p ≥ 2 there exists a constant Cp depending on p only such that:

E

∣∣∣∣
1

N
xHAx− 1

N
Tr(A)

∣∣∣∣
p

≤ Cp

Np

((
E|X1|4Tr (AAH)

)p/2
+ E|X1|2pTr

(
(AAH)

p/2
))

(27)

Noticing that Tr (AAH) ≤ N‖A‖2 and that Tr
(
(AAH)

p/2
)
≤ N‖A‖p, we obtain the simpler inequality:

E

∣∣∣∣
1

N
xHAx− 1

N
Tr(A)

∣∣∣∣
p

≤ Cp

Np/2
‖A‖p

((
E|X1|2

)p/2
+ E|X1|2p

)
(28)

Hence, if A and x have respectively finite spectral norm and finite eigth moment, we can conclude,
using Borel-Cantelli lemma, about the almost convergence of the quadratic form 1

N xHAx, thus yielding the
following corollary:

Corollary 7. Let x = [x1, · · · , xN ]
T

be a N × 1 vector where the entries xi are centered i.i.d. complex
random variables with unit variance and finite eight order. Let A be a determinsitic N ×N complex matrix
with bounded spectral norm. Then,

1

N
xHAx− 1

N
Tr(A) −→ 0 almost surely.

By corollary 7, the asymptotic behavior of Aσ,K is then given by:

Aσ,K −
σ2
v

[
(HHH)

−1
]
i,i

N1σ2
P

Tr (HHH)
−1 −→ 0 almost surely.

Since 1
KTr (HHH)

−1
converges asymptotically to 1

c2−1 as the dimensions go to infinity [18], we get:

Aσ,K − c1(1 + r)σ4
v

(c2 − 1)σ2
Pt

[
(HHH)

−1
]
i,i

−→ 0.

Note that Theorem7 can be applied since the smallest eigenvalue of the Wishart matrix (HHH) are almost
surely uniformely bounded away from zero by (1−√

c2)
2 > 0, [19].

Before determining the limiting behavior of Bσ,K , we shall need the following lemma:
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Lemma 8. Let Y =
(

1√
K
yi,j

)M,K

i=1,j=1
be a M × K with Gaussian i.i.d entries. Then, in the asymptotic

regime given by:

M,K → ∞ such that
M

K
→ c2 > 1

we have: [
(YHY)

−2
]
i,i

− c2
c2 − 1

([
(YHY)

−1
]
i,i

)2

→ 0

Proof. Without loss of generality, we can restrict our proof to the case where i = 1. Let y1, · · · ,yK denote
the columns of Y. Matrix YHY is then given by:

YHY =



yH

1y1 yH

1y2 · · · yH

1yK

...
...

yH

Ky1 yH

Ky2 · · · yH

KyK




Let vy =

[[
(YHY)

−1
]
1,2

, · · · ,
[
(YHY)

−1
]
1,K

]
. Then, using the formula of the inverse of block matrices,

we get:

vy = −
[
(YHY)

−1
]
1,1

yH

1 Ỹ
(
ỸHỸ

)−1

where Ỹ = [y2, · · · ,yK ].
On the other hand,

[
(YHY)

−2
]
1,1

=

([
(YHY)

−1
]
1,1

)2

+ vyv
H

y

=

([
(YHY)

−1
]
1,1

)2(
1 + yH

1 Ỹ
(
ỸHỸ

)−2

ỸHy1

)

Using corollary 7, we have:

yH

1 Ỹ
(
ỸHỸ

)−2

ỸHy1 −
1

K
Tr
(
ỸHỸ

)−1

→ 0 almost surely.

Since 1
KTr

(
ỸHỸ

)−1

tends to 1
c2−1 almost surely, we get the desired result.

We are now in position to deal with the term Bσ,K . Using corollary 7, we get:

Bσ,K − σ4
v(M −K)

N1σ2
P

[
(HHH)

−2
]
i,i

→ 0 almost surely

Hence,

Bσ,K − σ4
vc1(c2 − 1)(1 + r)

σ2
P

[
(HHH)

−2
]
i,i

→ 0 almost surely

Using lemma 8, we get that:

Bσ,K − σ4
vc1c2(1 + r)

σ2
P

([
(HHH)

−1
]
i,i

)2

→ 0 almost surely
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It can be shown that
[
(HHH)

−1
]
i,i

converge almost surely to 1
c2−1 , (its inverse is the mean of independent

random variables [12] ), then:

Bσ,K − σ4
vc1c2(1 + r)

σ2
P (c2 − 1)

[
(HHH)

−1
]
i,i

→ 0 almost surely

To prove the almost sure convergence to zero of ǫσ,K , we will be based on the following result, about the
asymptotic behaviour of weighted averages:

Theorem 9. Almost sure convergence of weighted averages [20] Let a = [a1, · · · , aN ]
T

be a sequence of N×1
deterministic real vectors with supN

1
N aT

NaN < +∞. Let xN = [x1, · · · , xN ] be a N × 1 real random vector
with i.i.d. entries, such that Ex1 = 0 and E|x1| < +∞. Therefore, 1

N aT

NxN converges almost surely to zero
as N tends to infinity.

This theorem was proved in [20] for real variables. Since we are interested in the asymptotic convergence

of the real part of ǫσ,K , it can be possible to transpose our problem into the real case. Indeed, let x = VH

1h
#
i

and a = PH

t (H
HH)

−1
h
#
i , then ℜ (ǫσ,K) is given by:

ℜ (ǫσ,K) =
1

N1σ2
P

ℜ(xHa)

Let ar,xr (resp. ai,xi) denote respectively the real parts (resp. imaginary parts) of a and x, then

ℜ (ǫσ,K) =
1

N1σ2
P

aT

rxr − aT

i xi

Referring to theorem 9, the convergence to zero of ℜ (ǫσ,K) is ensured if 1
2N1

(aT

rar + aT

i ai) = 1
2N1

‖a‖22is
finite. This is almost surely true, since:

1

N1σ2
P

‖a‖22 =
1

N1σ2
P

Tr
(
PH

t (H
HH)

−1
h
#
i

(
h
#
i

)
H

(HHH)
−1

h
#
i

)

= h
#
i (HHH)

−2
(
h
#
i

)
H

< ‖ (HHH)
−2 ‖2

[
(HHH)

−1
]
i,i

This leads to
σ2
w,K − σ̃2

w,K −→ 0 almost surely.

where σ̃2
w,K is given by:

σ̃2
w,K = σ2

v

[
(HHH)

−1
]
i,i

+
c1(c2 + 1)(1 + r)σ4

v

(c2 − 1)σ2
P

[
(HHH)

−1
]
i,i

.

Substituting σ2
w,K by its asymptotic equivalent in (26), we get:

E

[
exp

(
ℜ
(
z
∗ (∆Wt)i,j

))
|H,Wt

]
−E

[
exp

(
−ℜ

(
z
∗
h
#
i ∆Htwj

))
|W,H

]
exp

(
−
1

4
|z|2σ̃2

w,K

)
−→ 0 almost surely.

Also conditioning on Wt and H, h#
i ∆Htwj is a Gaussian random variable with zero mean and variance

σ2
m,K =

σ2
v

N1σ2
P

h
#
i wj

Hwj (hi)
#
.
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Since 1
Kwj

Hwj −→ σ2
wt

almost surely, we get that σ2
m,K converges almost surely to σ̃2

m,K where

σ̃2
m,K =

c1(1 + r)σ2
vσ

2
wt

σ2
Pt

[
(HHH)

−1
]
i,i

,

Using the fact that the characteristic function of h#
i ∆Htwj is

E

[
exp

(
−ℜ

(
z∗h#

i ∆Htwj

))
|W,H

]
= exp

(
−1

4
|z|2σ2

m,K

)
,

we obtain that conditionally on the channel:

E

[
exp

(
ℜ
(
z∗ (∆Wt)i,j

))]
− exp

(
−1

4
|z|2

(
σ̃2
m,K + σ̃2

w,K

))
−→ 0 almost surely.

We end up the proof by noticing that σ̃2
m,K + σ̃2

w,K = σ2
wt
δt

[
(HHH)

−1
]
i,i
.

B Proof of theorem 2
For the DDST scheme, the post-processing noise matrix ∆Wd is given by:

∆Wd = −WJ−H#∆HdW (IN − J) +
(
H# −H#∆HdH

#
)
V (IN − J)

+ (HHH)
−1

∆HH

dΠV (IN − J)

= −WJ−H#∆HdW (IN − J) +H#V (IN − J)−H#∆HdH
#V (IN − J)

+ (HHH)
−1

∆HH

dΠV (IN − J) .

Hence,

(∆Wd)i,j = −w̃iJj − h
#

i VP
H
(
PP

H
)−1

W (ej − Jj) + h
#

i V (ej − Jj)− h
#

i VP
H
(
PP

H
)−1

H
#
V (ej − Jj)

+ h̃i

(
PP

H
)−1

PV
H

ΠV (ej − Jj)

where ej and Jj denotes the jth columns of IN and J, respectively and w̃i denotes the ith row of the matrix
W.

Let v1 = V (ej − Jj), and v2 = vec(V (PPH)
−1

PH)
The vector [vT

1 ,v
T

2 ]
T

is a Gaussian vector. Since E [v1v
H

2 ] = 0, we conclude that v1 and v2 are indepen-

dent. Then v1 and V2 = V (PPH)
−1

PH are also independent. Moreover, E [v1v
H

1 ] = σ2
v

(
1− K

N

)
IN .

Conditioning on V2, H and W, (∆Wd)i,j is a Gaussian random variable with mean equal to −w̃iJj −
h
#
i V2W (ej − Jj) and variance σ2

wd,N
equal to:

σ
2
wd,N

= E

[(
h
#

i − h
#

i V2H
# + h̃iV

H

2 Π

)
v1v

H

1

((
h
#

i

)
H

−
(
H

#
)

H

V
H

2

(
h
#

i

)
H

+ΠV2h̃
H

i

)
|V2

]

= E

[
h
#
i v1v

H

1

(
h
#
i

)
H

]
+ E

[
h
#
i V2H

#
v1v

H

1

(
H

#
)

H

V
H

2

(
h
#
i

)
H

]
− 2E

[
ℜ

(
h
#
i V2H

#
v1v

H

1

(
h
#
i

)
H

)]

+ σ
2
v(1−

K

N
)h̃iV

H

2 ΠV2(h̃i)
H

= (1−
K

N
)σ2

v

[(
H

H

H
)−1
]

i,i
+ σ

2
v(1−

K

N
)h#

i V2

(
H

H

H
)−1

V
H

2

(
h
#

i

)
H

− 2(1−
K

N
)σ2

vℜ

(
h
#

i V2H
#
(
h
#

i

)
H

)

+ σ
2
v(1−

K

N
)h̃iV

H

2 ΠV2(h̃i)
H
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Using the same techniques as before, it can be proved that:

(1− K

N
)σ2

vh
#
i V2 (H

HH)
−1

VH

2

(
h
#
i

)
H

− c1(1− c1)σ
4
v

(c2 − 1)σ2
P

[
(HHH)

−1
]
i,i

→ 0 almost surely.

and also that,

ℜ
(
h
#
i V2H

#
(
h
#
i

)
H
)
−→ 0 almost surely.

On the other hand, we have:

σ2
v(1− c1)h̃iV

H

2ΠV2

(
h̃i

)
H

− c1σ
4
v(1− c1)(M −K)

Nσ2
P

[
(HHH)

−2
]
i,i

→ 0 almost surely.

Since
[
(HHH)

−2
]
− c2

c2−1

[
(HHH)

−1
]2
i,i

→ 0 by lemma 8, we get that:

σ2
v(1− c1)h̃iV

H

2ΠV2

(
h̃i

)
H

− σ4
v(1− c1)c1c2
(c2 − 1)

[
(HHH)

−1
]
i,i

→ 0.

Therefore,
σ2
wd,N

− σ̃2
wd,N

−→ 0 almost surely

where,

σ̃2
wd,N

=

(
σ2
v(1− c1) +

c1(c2 + 1)(1− c1)σ
4
v

(c2 − 1)σ2
Pd

)[
(HHH)

−1
]
i,i

.

Consequently,

E

[
exp

(
ℜ
(
z∗ (∆W)i,j

))
|H,W,V2

]
= E

[
exp

(
−ℜ

(
z∗w̃iJj + z∗h#

i V2W (ej − Jj)
))

|W,v2

]

× exp

(
−1

4
|z|2σ̃2

wd,N

)
.

Conditioning on W and H, w̃iJj + h
#
i V2W (ej − Jj) is a Gaussian random variable with mean equal to

w̃iJj and variance σ2
wm,N given by:

σ2
md,N

= E

[
h
#
i V2W (ej − Jj)

(
eH

j − JH

j

)
WHVH

2

(
h
#
i

)
H

|W,H
]

=
σ2
v

Nσ2
Pd

[
(HHH)

−1
]
i,i

(
eH

j − JH

j

)
WWH (ej − Jj) .

Using corollary 7, we can easily prove that:

σ2
md,N

− σ̃2
md,N

−→ 0 almost surely,

where

σ̃2
md,N

=
(1− c1)σ

2
wd

σ2
v

σ2
Pd

[
(HHH)

−1
]
i,i

.

Conditioning only on H, the conditional characteristic function satisfies:

E

[
exp

(
ℜ
(
z∗ (∆Wd)i,j

))
|H
]
− E [exp (−jℜ (z∗w̃iJj))] exp

(
−1

4
|z|2

(
σ̃2
wd,N

+ σ̃2
md,N

))
−→ 0.
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Giving the structure of the matrix J, w̃iJj involves the average of 1
c1

symmetric independent and identically
distributed discrete random variables, and therefore,

E [exp (−jℜ (z∗w̃i))] =

Q∑

i=1

pi exp (ℜ (z∗αi))

where Q is the set of all possible values of Wi,k = c1
∑ 1

c1

i=1 Wi,k and pi is the probability that Wi,k takes
the value αi. Consequently;

E

[
exp

(
ℜ
(
z∗ (∆Wd)i,j

))
|H
]
=

Q∑

i=1

pi exp (ℜ (z∗αi)) exp

(
−1

4
|z|2

(
σ̃2
md,N

+ σ2
wd,N

))
.

We conclude the proof by noting that

σ̃2
md,N

+ σ2
wd,N

= σ2
wd

[
(HHH)

−1
]
i,i

δd.
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