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ABSTRACT: In this work we address the problem of performing uncertainty and sensitivity analysis of com-
plex physical systems where classical Monte-Carlo methods are too expensive to be applied due to the high
computational complexity. We consider the Polynomial Chaos Expansion (PCE) as an efficient way of comput-
ing a response surface for a model of gas injection into an incompressible porous media aiming at assessing the
sensitivity indices and the main distributional features of the maximal spread of the gas cloud. The necessity of
an uncertainty study for such a model arises in case of CO2 storage risk assessment and is here performed by
jointly using a numerical scheme to solve the system of partial differential equation (PDE) governing the model
and the PCE method to efficiently simulate the physical system response by a meta-model. The performances
of the PCE method and a standard MC approach are compared through an extended simulation study showing
that the computational gain of the PCE approach is remarkable without significant loss in the precision of the
estimates.

1 INTRODUCTION

The uncertainty quantification for a complex numer-
ical model is an important goal for which significant
challenges are yet to be achieved. In general, the un-
certainty might be associated to several elements of
the system such as input data measurements, parame-
ter values, model structure, model solution algorithms
and even human behavior. Therefore, the uncertainty
assessment under a given cost might not be straight-
forward.

Most of the research efforts have been focused so
far on the development of efficient algorithms to be
used in different applications, assuming ideal input
data measurements with precisely defined computa-
tional domains: to this end, for instance, Monte-Carlo
approaches can be employed. However, the simula-
tion of a large-scale system turns in computationally
very heavy operations: thus the need of making the
convergence to the solution faster naturally arises.
The classical Monte-Carlo approach is used in such
cases as the last resort. Another option is the pertur-
bation method where all the stochastic quantities are

expanded around the mean via Taylor series, never-
theless, it is limited to small perturbations and does
not provide information on high-order statistics of the
response. The expansion of the inverse of the stochas-
tic operator in a Neumann series can be considered,
but it is again limited to small fluctuations (Shinozuka
and Deodatis 1988).

A more effective approach pioneered by Ghanem
and Spanos (1991) in the context of finite element
method is the Polynomial Chaos Expansion, which
is a method based on a spectral representation of
uncertainty. This idea comes from the theory about
polynomial chaos by Wiener (1938), (1962), which
was firstly applied in the study of turbulence in the
1960s (Meecham and Siegel 1964, Siegel et al. 1965,
Meecham and Jeng 1968). Nevertheless, its conver-
gence rate was judged slow (Orszag and Bissonnette
1967, Crow and Canavan 1970, Chorin 1974): hence,
it did not receive much attention until the work of
Ghanem and Spanos (1991). A rich state of art with
many applications can be found in (Sudret and Der
Kiureghian 2000, Xiu and Karniadakis 2002, Xiu
et al. 2002).



However, the availability of solid theoretical basis
as well as efficient numerical codes (OpenTURNS
2012) for performing uncertainty analysis has re-
cently contribute in making possible the sensitivity
analysis of very complex systems (Blatman and Su-
dret 2010, Sudret 2008, Formaggia et al. 2012, Ola-
dyshkin et al. 2011).

The main purpose of this work is to show how
Polynomial Chaos Expansion (PCE) can be used for
uncertainty and sensitivity analysis. In particular, we
study as a specific application a model of gas injec-
tion into porous media, presented in Section 2. The
theoretical basis of PCE is briefly introduced in Sec-
tion 3. The validity of this approach is proved by sim-
ulation in Section 4: here, we first perform the sen-
sitivity analysis on our model, then we compare the
results of the analytical solution from available sim-
plified model and the results of the Monte Carlo sim-
ulation.

2 INJECTION OF GAS INTO POROUS MEDIA

The predictive numerical model engaged in this study
represents a two-phase flow of immiscible compress-
ible fluids through incompressible porous medium.
This model is developed in INERIS in order to es-
timate the intensity of physical processes in under-
ground compartments in case of CO2 storage in a
saline aquifer. The injected gas displaces water (ini-
tially in place) and simultaneous flow of the two flu-
ids takes place in the porous medium. The model ac-
counts for gravity, capillarity and fluid compressibil-
ity effects, and is formulated in terms of CO2 and
water pressures. Empirical laws by van Genuchten
(1980) are used to close the system with the relations
between capillary pressure, relative permeability and
saturation.

The corresponding system of differential equations
is solved within the software COMSOL (2012) in 2D-
axisymmetric mode. The source (injection well) is
concentric to the symmetry axis.

The upper and lower bounds of the reservoir
are considered impermeable, therefore a “zero flux”
boundary condition is used. On the bound along the
injection well the debit of the gas phase is fixed, on
the other side the boundary condition fluid pressures
are fixed. The main configuration and the variable of
interest are shown in Figure 1.

In Figure 1, pw and pnw [Pa] are water and gas
pressures respectively, Cp [Pa−1] the coupling term,
θw and θnw the water and gas volume fractions, krw
and krnw[-] the water and gas relative permeabilities;
Qnw [m/s] represents the gas injection rate,Kint [m2]
the intrinsic permeability, pw0 and pnw0 [Pa] the ini-
tial water and gas pressures, ρw and ρnw [kg/m3] the
fluid densities, µw and µnw [Pa · s] the fluid viscosi-
ties and, finally, χw and χnw [Pa] are the fluid com-
pressibilities.

The numerical solution of the system at time t =
10 years is finally shown in Figure 2. The uncertainty
analysis as well as the sensitivity analysis which will
be described in Section 4 are referred to this solution.

3 POLYNOMIAL CHAOS EXPANSION FOR
SENSITIVITY ANALYSIS

3.1 Polynomial Chaos Expansion

Let y be the scalar output of a model that depends
on the n-dimensional random vector x = (x1, ..., xn)
collecting n random parameters xi, valued in Ωi ⊆ R,
i = 1, ..., n:

y = f(x), x ∈ Ω ⊆ R
n, (1)

where Ω denotes the cartesian product Ω1 × · · · ×Ωn.
Suppose x1, ..., xn to be statistically independent

and the response y to be a second-order integrable
variable: the PCE of y (Maı̂tre and Knio 2010,
Ghanem and Spanos 1991, Xiu and Karniadakis
2002) is the spectral decomposition of f over a set
of polynomials Ψi(x), which are orthogonal with re-
spect to the probability measure on Γ (i.e. the law of
x), namely (Sudret 2008):

y =
∞∑

k=0

βkΨk(x). (2)

The PCE was first introduced for Gaussian input pa-
rameters involving Hermite polynomials (e.g., Wiener
(1938)). In the presence of non-Gaussian distributed
variables, two strategies can be adopted in order to
preserve the optimal exponential convergence rate:
a) transform the input parameters to obtain Gaussian
random entries b) consider other families of polyno-
mials (Xiu and Karniadakis 2002, Soize and Ghanem
2005).

In this work, for every input parameter xi, i =
1, ..., n, a log-normal distribution ρΓi

(xi) is consid-
ered. In this case, the simplest way to reach the ex-
ponential rate of convergence is to use the Hermite
basis, by transforming each input parameter xi into a
standard normal random variable ξi:

ξi = Φ−1(Fxi
(xi)), (3)

where Φ and F denotes the cumulative density func-
tion (CDF) of a standard Gaussian variable and
of the variable xi respectively. Given the vector
of transformed (independent) input parameters ξ =
(ξ1, ..., ξn), the PCE can be computed as:

y = f̃(ξ) =
∞∑

k=0

βkΨk(ξ). (4)

For computation, expansion (4) needs to be truncated,
obtaining finally an approximation of the response as:

y ≈

P−1∑

k=0

βkΨk(ξ), (5)



Figure 1: Specification of the problem: the vertical section of the domain and the system of differential equations entered in Comsol
Multiphysics.
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Figure 2: Numerical solution of the system for t = 10 years. The color mapping shows the water saturation level.
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where P =

(
n+ p
p

)
, if (5) is the truncated expan-

sion on a basis of n-dimensional Hermite polynomials
of degree not exceeding p.

The P coefficients βk, k = 0, ..., P − 1 appear-
ing in (5) are assumed deterministic and fully char-
acterize the randomness of the response y. In ap-
plications, these coefficients are unknown and thus
need to be properly estimated. A number of methods
are presented in the literature (Sudret 2008, Crestaux
et al. 2009); among them, in this work, the regres-
sion method is used. It consists in estimating βk by
least-squares on the basis of an experimental design
{yj, j = 1, ...,N}. The experimental design is built by
collecting N exact solutions yj , j = 1, ...,N , which
are derived solving the complete mathematical model
for N realizations xj , j = 1, ...,N , of the random in-
put x. The least-squares estimate of β = (βk) ∈ R

P

is found by solving the minimization problem:

β = argmin
β0,...,βP−1∈R

1

N

N∑

j=1

{
yj −

P−1∑

k=0

βkΨk(ξ
j)

}2

, (6)

being ξj = (Φ−1(Fxi
(xi))). If the design matrix Ψ =

(Ψj(ξ
i)) ∈ R

N,P is of full rank, problem (6) admits

the unique solution β̂:

β̂ = (ΨT
Ψ)−1

Ψ
Ty, (7)

where y = (y1, ..., yN). Techniques for an efficient
computation of coefficients estimates (7) has been
presented in the literature (e.g., Sudret (2008)) and are
exploited in the simulations here presented.

The utility of PCE for the uncertainty analysis of
the response is two-fold:

• Response mean and variance can be directly ob-
tained from (5) as:

E[y] = β0; Var(y) ≈
P−1∑

k=0

β2
k‖ψk‖

2.

Analogously, the sensitivity Sobol’ indices can
be computed directly from coefficients βk, k =
0, ..., P − 1 (see Subsection 3.2)

• The approximation (5) can be used as meta-
model for Monte-Carlo simulations (i.e., the re-
sponse is simulated through the approximate
model instead of solving the PDE system). This
allows to perform a much more efficient assess-
ment of the CDF as the approximated model is
easier to simulate compared to the full model (1).

3.2 Sensitivity Analysis through Sobol Indices

Sobol’ indices (Sobol 1993) will be used in Section
4 to perform the sensitivity analysis on the response.
The total variance of the response can be decomposed
into the effect of each random parameters xj and the
joint effects of all the subsets xi1 , ..., xis of the input
parameters x1, ..., xn. As stated in (Sobol 1993, Sudret
2008, Formaggia et al. 2012), this variance decompo-
sition follows from the Sobol’ decomposition of the



function f̃(ξ) which appears in (4):

f̃(ξ) = f̃0 +
N∑

i=1

f̃i(ξi) +
N∑

i,j=1

f̃i,j(ξi, ξj)+ (8)

+ · · ·+ f̃1,2,...,n(ξ1, ξ2, . . . , ξn),

where

f̃0 =

∫

Γ

f̃(ξ)ρΓ(ξ)dξ,

f̃
i
(s)(ξ

i
(s)) =

∫

Γ
−i

(s)

f̃(ξ)ρΓ
−i

(s)
(ξ−i(s))dξ−i

(s) −
∑

I⊆i
(s)

f̃I

denoting with i(s) the multi-index {i1, . . . , is}, with
ξ
i
(s) the collection {ξi1 , ..., ξis}, with ρΓ =

∏n

i=1 ρΓi

the multivariate gaussian density of ξ, Γ−I =
×i∈{1,...,N}\IΓi and ρΓ−I

=
∏

i∈{1,...,N}\I ρΓi
.

Notice that in the considered case Γi = R, i =
1, . . . , n, but what follows remains valid for any mea-
surable Γi ⊆ R. In particular, decomposition (8) is

unique whenever f̃ is integrable over Γ and each term

f̃
i
(s) in (8) is orthogonal with respect to the others.
To define the Sobol’ indices, call Vf , V

f̃
the vari-

ance of f , f̃ respectively. The Sobol’ index relative to
the mixed effect ξ

i
(s) (or to x

i
(s)) is defined as:

S
i
(s) =

1

V
f̃

∫

Γ
i
(s)

f̃ 2
i
(s)(ξi(s))ρΓ

i
(s)
dξ

i
(s) , (9)

where Γ
i
(s) = Γi1 × · · · × Γis . Hence, S

i
(s) represents

the proportion of the total variance explained by ξ
i
(s)

(or x
i
(s)) and thus the Sobol’ indices sum to 1.

Concerning the total effect of a parameter ξi(xi) (or
of xi) on the total variability, it can be computed di-
rectly from Sobol’ indices as:

ST
i =

∑

i
(s):i∈i(s)

S
i
(s) . (10)

The computational effort needed to compute the
sensitivity indices (9) and (10) consists mainly in
the cost of calculating (numerically) 2n − 1 integrals.
To this end, Monte-Carlo quadrature schemes can be
used but, due to its low rate of convergence, the com-
putational cost might become unaffordable. However,
this problem can be faced and solved by introduc-
ing the PCE of the response y, since Sobol’ indices
can be directly computed from coefficients βk, k =
0, ..., P − 1. Indeed, expansion (5) can be reordered
so that it is equivalent to (8):

f̃(ξ) =
∑

i
(s)⊆{1,...,n}

∑

k∈K
i
(s)

βkΨk(ξ), (11)

where K = {0, . . . , P − 1}, K
i
(s) = {k ∈K|Ψk(ξ) =

Ψk(ξ = ξ
i
(s))} (Crestaux et al. 2009).

From the equivalence between (4) and (11) the bi-
jective relation existing between Sobol indices and
coefficients βk, k = 1, ..., n can be derived. Indeed,
the PC-based Sobol’ indices can be obtained as:

S
i
(s) =

∑
k∈K

i
(s)
β2
k〈Ψk,Ψk〉

∑P−1
k=0 β

2
k〈Ψk,Ψk〉

,

being i(s) ⊆ {1, . . . , n}, while the total indices can be
computed from (10).

4 SIMULATION AND RESULTS

After a preliminary study on the analytical model, the
following four input parameters of the model have
been considered: the maximal relative gas permeabil-
ity krmax[-], the reservoir thickness H[m], the reser-
voir total porosity φ [-] and the irreducible water satu-
ration (or maximal gas saturation Snwmax[-]). These
four parameters form the random vector x appearing
in (1): x = (krmax,H,φ,Snwmax). In this study the
log-normal probability density function is attributed
to each parameter.

The response variable which is of interest for the
sensitivity analysis is the natural logarithm of the
maximal spread of the gas cloud, ln(rmax). Once a set
of input parameters x0 = (kr0max,H

0, φ0, Snw0
max) is

fixed, the corresponding ln(r0max) can be calculated
by numerically solving the system of partial differen-
tial equation governing the model (Figure 1). The so-
lution includes the saturation 2D profile for any time
step: ln(r0max) is calculated as the maximum horizon-
tal extension of the 0.99 saturation contour. The nu-
merical solution of the system for a given set of pa-
rameters requires 5.67 minutes on a personal com-
puter (4 CPU Xeon E31245 3.30GHz, RAM 16GB).

The experimental design In order to determine the
least-square estimate of vector β as in (6), an exper-
imental design {ln(rjmax), j = 1, ...,N} of size N =
100 has been considered. The number of replications
N has been tuned by balancing the computational cost
and the precision in least square estimate: the higher
N is, the higher either the precision in estimating β or
the computational cost are. In particular, the compu-
tational cost spent for generating an experimental de-
sign of size N on a personal computer with the tech-
nical characteristic specified before is about 5.67 ·N
minutes (O(N)), which corresponds to 9 hours and 27
minutes in the considered scenario.

In order to justify the choice of N , a preliminary
study has been performed on the analytical model
corresponding to the simplified physical problem pre-
sented in (Nordbotten and Celia 2006), for which the
exact expression of the response distribution can be
computed. In Figure 3 the empirical CDF of the out-
put samples on which the meta-model is built (solid
green line) is compared to the exact CDF calculated



Figure 3: Comparison of the meta-model CDF (red line) with the exact CDF (dashed blue line) and with the empirical CDF of the
samples used for the meta-model construction (green line). The figures correspond to the analytical solution with varying number
of the samples for PCE decomposition, from left to right: 50 samples (first panel), 100 samples (second panel), 1000 samples (third
panel).
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(a) N = 50

6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln(r.max)

C
D

F

Empirical CDF (100 MC+PCE)
Empirical CDF (100 MC)
Exact CDF

(b) N = 100
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(c) N = 1000

analytically (dashed blue line), for N = 50,100,1000
(subfigures (a), (b) and (c) respectively). Even the
meta-model built out of 50 samples reproduces the
response variability quite closely; for N = 100 the
approximation is very accurate without showing sig-
nificant gains with respect to N = 1000. Therefore, a
reasonable value for the parameterN isN = 100: this
choice seems to balance the most the precision in the
CDF estimate and the corresponding computational
cost.

Supported by these results, the PCE on the gas in-
jection model –detailed in Section 2– has been per-
formed on the basis of an experimental design of
size N = 100 (Figure 4). In Figure 4 the N = 100
realizations of the (log-transformed) response rmax

are represented against the parameters krmax, H , φ
and Snwmax, superimposing the corresponding least
squares lines. The slope of the regression line is pos-
itive in the case of parameters krmax, while it is neg-
ative for H , φ and Snwmax. This result can be ex-
pected from the point of view of the physical model:
the higher the relative permeability of the gas is, the
further it can penetrate, that is why the first correla-
tion is positive. Concerning the other three parame-
ters, the correlation is negative. Indeed, the increase
of the reservoir height is not favorable for the hor-
izontal spread. Increasing the porosity and maximal
gas saturation leads to a bigger fraction of gas stay-
ing in place after the front passage, which means that
for the same injected volume the maximal horizontal
extension would be smaller.

PCE expansion and sensitivity analysis The coef-
ficients to be included in PCE has been selected fol-
lowing the sparse PCE approach proposed in (Blat-
man and Sudret 2010, Blatman 2009). Having fixed
the maximum degree p of Hermite polynomials to
p = 4, the 15 coefficients β0, β1, β2, β3, β4, β5, β7,
β9, β15, β18, β20, β38, β40, β48, β58, proved to be sig-
nificant for the expansion. Only the first 5 coefficients
are reported in Table 1, since the other coefficients
proved unstable when replicating the simulations. No-
ticed that coefficients β1, β2, β3, β4 reflects the behav-

Table 1: Estimates of the decomposition coefficients

Parameter Estimate

β0 7.2157
β1 0.0387
β2 -0.0370
β3 -0.0485
β4 -0.0475

ior previously noticed by inspecting Figure 4.
Afterward, the estimates of the first two moments

of the response probability density function (PDF)
have been derived by using (5), obtaining:

E[ln(rmax)] ≈ 7.2157

sd[ln(rmax)] ≈ 0.0871.

These estimates are coherent with a standard Monte
Carlo simulation: indeed, 1000 Monte Carlo simula-
tion provides an estimate of 7.2197 for the mean (er-
ror: 0.05%), and of 0.0863 for the standard deviation
(error: 0.9%)).

In order to assess the uncertainty propagation
through the system, Sobol’ indices have been com-
puted by using (11) and (10); the results are reported
in Table 2. According to Sobol’ total indices (Table
2, second column), the parameters which seem to in-
fluence the most the response variability are the reser-
voir total porosity Φ and the maximal gas saturation
Snwmax, whose variability explains about 31.0% and
29.8%, respectively, of the output variability. The re-
maining variability is explained in decreasingly order
of importance by maximal relative gas permeability
krmax (20.2%) and reservoir thickness H (18.2%).
Very similar conclusions can be drawn by consider-
ing the Sobol’ indices reported in the first column of
Table 2, meaning that the influence of the input pa-
rameters on the output is mainly due to single effects,
while mixed effects play a minor role.

To access the uncertainty in the estimated statis-
tics, the simulation has been replicated with the same
settings starting from different seeds. The results are



Figure 4: Experimental design. From left to right: plot of rmax against krmax (first panel), H (second panel), φ (third panel) and
Snwmax (fourth panel).
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Table 2: Sobol’ indices

Parameter Sobol’ index Sobol’ total index

krmax 0.2019 0.2098
H 0.1823 0.1884
Φ 0.3102 0.3177

Snwmax 0.2977 0.2990

Table 3: Mean, standard deviation and coefficient of variation
relative to the estimated indices.

Mean Sd C.V.

E[ln(rmax)] 7.2151 0.0020 2.8e-4
sd[ln(rmax)] 0.0861 8.5e-4 0.0099
Skrmax 0.2026 0.0087 0.0431
SH 0.1640 0.0179 0.1091
SΦ 0.3119 0.0104 0.0335

SSnwmax 0.3149 0.0214 0.0681

ST
krmax

0.2079 0.0082 0.0395

ST
H 0.1701 0.0236 0.1384

ST
Φ 0.3159 0.0100 0.0318

ST
Snwmax

0.3168 0.0192 0.0608

reported in Table 3. It can be noticed that the re-
sponse mean and standard deviation seem precisely
estimated. Instead, the parameters affected by the
most significant variability are the Sobol’ indices rel-
ative to the reservoir thickness H and to the maxi-
mal gas saturation Snwmax –either the indices relative
to the single effects or the total indices–. Notice also
that the coefficients βk selected by the sparse PCE ap-
proach varied by replicating the simulation, with only
the first five coefficients steadily selected. However,
both the variability in the PCE estimates and in the
selected coefficient do not seem to significantly af-
fect the conclusions previously drawn about the un-
certainty propagation through the system.

Assessing the response distribution function Al-
though Sobol’ indices provide an important tool for
sensitivity analysis, in this study the whole CDF is
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Figure 5: Comparison of
the meta-model CDF ob-
tained with an experimen-
tal design of size N = 100

(red line) with the exact
CDF (dashed blue line)
and with the empirical
CDF obtained with 1000
standard MC-simulations
(green line)
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Figure 6: Comparison of
the statistical moments
obtained through a meta-
model constructed on
N = 50,100,1000 experi-
ments(black lines), with the
exact values of the statistical
moments (blue stars).

of interest. Generally, CDF can be estimated in three
ways: (a) analytical calculation (b) standard MC sim-
ulation (c) meta-model MC simulation –i.e., genera-
tion of an experimental design of size N by a stan-
dard MC-simulation on the complete model, com-
putation of the β coefficients in approximation (5)
and finally MC simulation on the meta-model exploit-
ing the same approximation–. The main drawback of
method (a) is that an analytic form of response CDF
is rarely available; on the other hand the computa-
tional cost of a standard MC simulation on a complex
model as the one considered here increases fast with
the number of samples required (more than 94 hours
for 1000 samples). Notice in particular that a prelimi-
nary MC simulation is needed when using method (c),
but a fair size of the experimental design is typically
much smaller than the number of simulations required
to assess the complete CDF with method (b).

To evaluate the performance of methods (b) and (c)
when the analytical form of the CDF is available, the
simplified gas-injection model has been again consid-
ered. In Figure 5 the following CDFs are compared: 1)
exact CDF –method (a), dashed blue line–; 2) empir-
ical CDF obtained by 1000 standard MC-simulations
–method (b), green line–; 3) empirical CDF obtained
by 10000 PCE-based meta-model simulations having



an experimental design of size 100 –method (c), red
line–. The parameters of the latter simulation have
been chosen according to the feasibility of an analo-
gous simulation on the complete gas injection model:
indeed, the computational cost of the MC-simulation
on the complete model soon becomes unaffordable as
the sample size increases and the simulation of 1000
samples already requires more than 94 hours1.

The empirical CDFs obtained with the two meth-
ods are pretty similar to the exact CDF, but more ac-
curate and smooth results are obtained for PCE-based
simulations, being based in fact on a rich meta-model
MC sample. Figure 6 represents the statistical mo-
ments of the response. Notice that the meta-model
reproduces exactly the even statistical moments even
when it is build on a small size of the experimental
design. Theoretically being zero, the odd statistical
moments seem to be better approximated for meta-
models based on a larger size of the experimental de-
sign. Observe that the time consumption required for
computing the meta-model estimate is essentially due
to the computation of the experimental design. There-
fore the very low additional cost required for the PCE
step turns in a much more accurate CDF estimate.

Supported by these results, methods (b) and (c)
have been applied on the full numerical model of gas-
injection detailed in Section 2. The response empir-
ical CDF computed by 1000 standard Monte Carlo
simulations (blue dotted line) and with a PCE-based
meta-model simulation (red line) are presented in the
left panel of Figure 4, superimposed to the results of
the replicated simulations (grey lines). It has to be no-
ticed that the results are fairly stable among the repli-
cates, as the lines seems perfectly superimposed. This
supports the conclusion previously drawn about the
stability of the results with respect to the variability
in the selected coefficients and their estimates. More-
over, all the empirical CDF are very close to the MC
results obtained from the full model.

In order to appreciate the most the existing differ-
ences among the obtained estimates, the right panel
of Figure 4 reports the kernel density PDF estimates
computed as before from the MC sample, the meta-
model sample and the replicates. Replicates have been
built either with the same parameters (darker lines), or
by fixing the maximum degree of Hermite polynomi-
als to p = 5. Although some differences are now ap-
preciable, all the meta-model curves appear very sim-
ilar each other and very close to the MC estimates.
The main difference is present in the right tail of the
distribution, where a slight underestimation occurs.
However, the meta-model PDF estimates provides a
very good approximation of the MC PDF estimates
obtained in less than 10 hours against the 94 hours
required by the full MC-simulation.

Finally, Figure 8 shows the statistical moments of
the resulting response distributions. All the replicates

14 CPU Xeon E31245 3.30GHz, RAM 16GB

Figure 7: Response CDF (left panel) and kernel density esti-
mated PDF (right panel) for: 1000 standard Monte Carlo sim-
ulation (dotted blue line), meta-model simulation through PCE
(solid red line), replicated meta-model simulation (dark grey
lines).
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Figure 8: Comparison of
the statistical moments
for: 1000 standard
Monte Carlo simulation
(dotted blue line),
meta-model simulation
through PCE (solid
red line), replicated
meta-model simulations
when the maximum
degree of the Hermite
polynomials is p = 4

(light grey lines) and
p = 5 (solid grey lines).

seem to provide similar results, that are close to the
MC estimate. No significant gains are reached if in-
creasing the maximum degree of the Hermite poly-
nomials. The first two moments of the distribution,
in particular the mean, are very precisely estimated,
as already noticed when analyzed Table 3. Increasing
uncertainty is observed when increasing the order of
the estimated moments. As in the simplified model,
the uncertainty in the estimates is higher for even or-
der moments, while odd moments are more accurately
estimated.

5 CONCLUSION

In this work, the Polynomial Chaos Expansion
method as an efficient technique for performing un-
certainty and sensitivity analysis of complex numer-
ical models has been investigated. In particular, the
potentiality of this approach has been explored in
terms of computational efficiency when dealing with
a model of gas injection into porous media. The
regularity of the response for this particular physi-
cal model is favorable for the use of the described
method.

The crucial points encountered while performing
PCE on a real system have been underlined. For in-
stance, one need to pay close attention when making
the choice of the size of the experimental design used
for estimating the expansion coefficients and the ba-
sis functions form. The minimal size is dictated by
the number of coefficients in the decomposition, fur-
ther validation of the meta-model quality can only



be done by experience in every particular case. Here,
the size of the experimental design has been fixed by
exploiting the information coming from the applica-
tion of the same technique to a simplified model, but
other considerations –e.g., in terms of variance of the
estimate– can be made.

A great deal of attention has been focused on the
computational gain of the PCE approach, which is
very significant for the considered application: while
obtaining the response PDF by 1000 standard Monte
Carlo simulation takes more than 94 hours, with a
PCE approach the computational cost is reduced to
less than 10 hours.

However, the robustness of the procedure with re-
spect to the size of the experimental design would be
worth being further investigated. Indeed, by repeat-
ing the simulations with a different size of the experi-
mental design, the coefficients estimate might signifi-
cantly vary, with possible effects on the Sobol’ indices
and on the consequent sensitivity analysis. Although
this does not seem to be the case, in order to avoid
this problem, a direct control on the estimates vari-
ance should be considered, in particular if no ‘a priori’
information is available on the response distribution.

A further development regarding the considered
physical model, which might be of industrial and
physical importance, is to consider a space-time vary-
ing response, such as the water and gas pressure,
while analyzing the propagation of the uncertainty
from the input parameters to the space-time random
field described by the response. In such a complex
setting, the use of PCE could make the computational
cost of performing uncertainty and sensitivity analy-
sis affordable, which is a very important goal to be
reached for this kind of complex numerical systems.
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