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Abstract—Proactive scheduling in mobile networks is known
as a way of using network resources efficiently. In this work,
we investigate proactive Small Cell Networks (SCNs) from a
caching perspective. We first assume that these small base stations
are deployed with high capacity storage units but have limited
capacity backhaul links. We then describe the model and define
a Quality of Experience (QoE) metric in order to satisfy a given
file request. The optimization problem is formulated in order to
maximize this QoE metric for all requests under the capacity
constraints. We solve this problem by introducing an algorithm,
called PropCaching (proactive popularity caching), which relies
on the popularity statistics of the requested files. Since not all
requested files can be cached due to storage constraints, the
algorithm selects the files with the highest popularities until the
total storage capacity is achieved. Consecutively, the proposed
caching algorithm is compared with random caching. Given
caching and sufficient capacity of the wireless links, numerical
results illustrate that the number of satisfied requests increases.
Moreover, we show that PropCaching performs better than
random caching in most cases. For example, for R = 192
number of requests and a storage ratio γ = 0.25 (storage
capacity over sum of length of all requested files), the satisfaction
in PropCaching is 85% higher than random caching and the
backhaul usage is reduced by 10%.

Index Terms—Small cell networks, proactive caching, popular-
ity caching

I. INTRODUCTION

Market forecasts nowadays point out an explosion of mobile
traffic [1]. The traffic generated by wireless devices is expected
to become much higher than the traffic generated by wired
devices. Even with the latest advancements, such as long term
evolution (LTE) networks, wireless networks will not be able
to sustain the demanded rates. To overcome this shortage,
small cell networks (SCNs) have been proposed as a candidate
solution [2], and they are expected to be the successor of LTE
networks [3].

Deploying such high data rate SCNs to satisfy this demand
requires high-speed dedicated backhaul. Due to the costly
nature of this requirement, the current state of the art proposes
to add high storage units (i.e., hard-disks, solid-state drives) to
small cells (SCs) and use these units for caching purposes [4],
(i.e., in order to offload the significant amount of backhaul
usage). To decrease the cost and have additional benefits,
the work in [5] proposes to use such a dense infrastructure
opportunistically for cloud storage scenarios either for caching
or persistent storage. Independently, another line of research
focuses on proactivity to handle network resources efficiently,
and can be seen as a complementary [6], [7].

In this work, we complementarily merge the two approaches
for SCNs. We focus on proactive SCNs where we have small

base stations deployed with high storage units but have limited
backhaul links. In detail, we have the following observations:

• In classical networks, called hereafter reactive networks,
user requests are satisfied right after they are initiated.
In contrast, proactive SCNs can track, learn and then
establish a user request prediction model. Therefore, we
can achieve flexibility in scheduling efficient resources.

• Although human behaviour is highly predictable and
correlated [8], [9], in reality, predicting the exact time of
user requests might not be obtainable. However, statistical
patterns such as file popularity distributions, may help to
enable a certain level of prediction. By doing this, the
predicted files can be cached in SCNs. Thus, the backhaul
can be offloaded and mobile users can have a higher level
of satisfaction.

• The caching in SCNs can be low-cost as the storage units
have become exceptionally cheap. For instance, putting
two terabytes of storage in a SC costs approximately 100
dollars.

• The network operators usually deploy transparent caching
proxies to accelerate service requests and reduce band-
width costs. We observe that these kinds of proactive
caching approaches can be a complementary way of cost
reduction by migrating the role of these proxies to SCNs.

Given these observations, the aim of this work is to investi-
gate the impact of caching in SCNs. Looking to caching as a
way of being proactive, we also introduce an algorithm called
PropCaching (proactive popularity caching). The method re-
lies on the popularity statistics of the requested files. We then
compare our results with random caching.

The rest of the paper is organized as follows. We discuss
the problem scenario and describe our model in Section II.
We formulate an optimization problem and explain the Prop-

Caching algorithm in Section III. Related numerical results
are given in Section IV. Finally, we conclude in Section V.

The mathematical notation used in this paper is the follow-
ing. Lower case and uppercase italic symbols (e.g., b, B) are
scalar values. A lower case boldface symbol (e.g., b) denotes
a row vector and an upper case boldface symbol (e.g., B) a
matrix. 1M×N represents a M ×N matrix with all ones, and
0M×N is again M × N sized matrix but with entries set to
zeros. Λ(b) is a diagonal matrix constructed from vector b.
The indicator function 1{· > ·} returns 1 when the inequality
holds, otherwise 0. Finally, the transpose of b is denoted with
bT .
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Figure 1. A SCN scenario consists of a central scheduler, small cells and
user terminals.

II. SCENARIO

Consider a SCN scenario where a central scheduler (CS)
and M SCs are in charge of serving N user terminals (UTs)
as depicted in Fig. 1. In this setting, the CS is coordinating and
providing broadband access to SCs over cheap backhaul links
with given capacities b = [b1, ..., bM ] ∈ {0,Z+}. On the other
hand, SCs have high storage units with the storage capacities
s = [s1, ..., sM ] ∈ {0,Z+}, thus, they can cache information
coming from the CS and serve their UTs over wireless links
with the rate of:

W =








w1

w2

...
wM







=








w1,1 . . . w1,N

w2,1 . . . w2,N

...
...

...
wM,1 . . . wM,N







∈ {0,Z+}M×N ,

(1)
where wi,j represents the rate from i-th SC to j-th UT, in bits
per timeslot.

Now, suppose that over a given time window T , users
want to perform requests with the rates specified by q =
[q1, ..., qN ] ∈ {0,Z+}. In other words, the j-th user wants
to perform qj number of requests during the time window T .
Let us say for instance that users want to download files from
internet. Thus, the CS keeps track of F different files indexed
as f = [f1, ..., fF ]. Each file fi is atomic and has a length
specified by li. We denote l = [l1, ..., lF ] ∈ Z

+.
In a reactive scenario, requests would be satisfied by the CS

just after they are initiated by the user. In a proactive scenario,
the CS tracks, learns and then predicts the user requests before
the actual request arrival. This helps to decide which files
should be stored in which SC before it is requested. Because
the storage capacities of SCs are limited even if they are high,
proactivity includes a file replacement policy. This policy tries
to set or replace files in order to let the cache contain the right
file at the right SC. This proactive storage mechanism would
enable the network to use its resources efficiently especially

in peak times where the load of the backhaul is very high.
Thus, it would avoid large delays in file delivery.

Let us assume discrete popularity distributions of files of
UTs:

P̄ =








p̄1

p̄2

...
p̄N







=








p̄1,1 . . . p̄1,F
p̄2,1 . . . p̄2,F

...
...

...
p̄N,1 . . . p̄N,F







∈ [0, 1]N×F , (2)

where p̄i,j represents the probability of the j-th file being
requested by the i-th UT. Note that the matrix P̄ is row-
stochastic as i-th row represents the discrete probability distri-
bution of i-th user, hence, the sum of all elements in i-th row
equals to 1. The P̄ might be sparse as number of files grows
by time.

As we defined above, P̄ represents the local file popularities
of the UTs. The file popularity distributions observed at the
SCs will be different than P̄ as all connected users will
contribute with their local file popularities. To show this, let
us first define the connectivity matrix, such that,

C =








c1
c2
...

cM







=








c1,1 . . . c1,N
c2,1 . . . c2,N

...
...

...
cM,1 . . . cM,N







∈ {0, 1}M×N , (3)

where cm,n = 1{wm,n > 0}. Then, we can derive popularity
distributions at the SCs, called P, by multiplying P̄ with
the user request rates q, the connectivity matrix C, and a
normalization factor. The equation is given in (4), where pi,j
represents the popularity of the j-th file seen by the i-th SC.

If the matrix P can be obtained by CS at t = 0, proactive
caching strategies can be employed. In practice, this matrix
can be computed at the CS by counting the number of times
the files are requested. This would give the information about
the file popularity of the future requests as the user behaviour
is correlated. Assuming that the matrix P is perfectly given in
our scenario, the following step is to decide how to distribute
these files among SCs. This is detailed in the next section.

III. PROACTIVITY THROUGH CACHING

In this section, we formulate an optimization problem
for the satisfied requests over total requests and provide a
PropCaching algorithm to heuristically maximize the objec-
tive.

Suppose that, over the time window T as assumed in the
scenario, the CS is observing a number of R file request events
listed in r = [r1, ..., rR]. A request ri ∈ r is done by a UT
to download the file fri with the corresponding length of lri .
Hence, the CS has to deliver this file to the user either from the
internet or from the caches of the connected small cells. The
delivery for the request ri starts at t = tri and finishes until the
file is completely downloaded by the UT at t = t̂ri . For each
file fi, let us define its corresponding bandwidth requirement



P =Λ

(
1

c1qT
, ...,

1

cMqT

)

CΛ(q)P̄

=










1

c1q
T 0 . . . 0

0 1

c2q
T

. . .
...

...
. . .

. . . 0
0 . . . 0 1

cMqT










︸ ︷︷ ︸

normalization factor








c1,1 . . . c1,N
c2,1 . . . c2,N

...
...

...
cM,1 . . . cM,N








︸ ︷︷ ︸

connectivity









q1 0 . . . 0

0 q2
. . .

...
...

. . .
. . . 0

0 . . . 0 qN
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(4)

Algorithm 1 PropCaching algorithm.
Input: s, f , l, P

1: Θ← 0M×F , ŝ← 0M×1 ⊲ Initializes the cache decision matrix Θ and the current storage vector ŝ
2: for i = 1, ...,M do
3: [a,b]← SORT(pi) ⊲ Sorts pi by descending order, returns a and b as ordered values and indices
4: for j = 1, ..., F do
5: k ← bj ⊲ Gets index of j-th most popular file
6: if lk + ŝi ≤ si then ⊲ Checks if the j-th most popular file can be stored in the i-th SC
7: Θi,k ← 1 ⊲ Sets the element of the cache decision matrix to 1, meaning that the file will be cached
8: ŝi ← ŝi + lj ⊲ Increases the current storage
9: else

10: break ⊲ Stops inner loop if the storage capacity is achieved
11: end if
12: end for
13: end for
Output: Θ

as di ∈ d = [d1, ..., dF ]. Now, suppose that dri ∈ d is the
bandwidth requirement for the request ri and xri(t) is the
amount of delivered information up to the time t (see Fig. 2).
By definition we consider that the request ri is satisfied, if the
average delivery rate in any time instance is superior to dri .
In this setting, the following formula holds:

1

t̂ri − tri

t̂ri∑

t=tri

1

{
xri(t)

t− tri
≥ dri

}

= 1. (5)

The idea in (5) is to ensure that the network delivers the data
with enough speed such that waiting is not going to occur
during the playback. Therefore, if the request is satisfied, UT
will have a better quality of experience (QoE). The determi-
nation of the value dri might be different for different types
of content. Roughly speaking, watching a compressed high-
definition (HD) video on a website (i.e., YouTube) requires
3 − 4 Mbps of bandwidth for interruption-free playback. For
our scenario, an optimization problem can be formulated in the
sense of maximizing the number of satisfied requests under the
capacity constraints. If we denote R̂ as the ratio of the satisfied
requests over the total requests R, or simply the satisfaction
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Figure 2. Deadline of a request ri.

ratio, we have:

maximize
tri

R̂ =
1

R

∑

ri∈r

1

t̂ri − tri

t̂ri∑

t=tri

1

{
xri(t)

t− tri
≥ dri

}

subject to b � Bmax,

s � Smax,

W �Wmax,
(6)

where Bmax, Smax and Wmax are the capacity constraints of
backhaul links, storage units and wireless links, respectively.



In general, even being able to predict the request times and
storing the corresponding files in SCs before their arrival, all
requests might not be satisfied due to the capacity constraints.
Employing a brute-force search by varying the start of the
delivery times would be hard due to the combinatorial be-
haviour of the problem. Therefore, instead of a time oriented
approach, we focus on caching the popular files to achieve a
certain amount of proactivity. Suppose that the CS has a cache

decision matrix (also called caching matrix), such that

Θ =








θ1
θ2
...

θM







=








θ1,1 . . . θ1,F
θ2,1 . . . θ2,F

...
...

...
θM,1 . . . θM,F







∈ {0, 1}M×F , (7)

where θi,j = 1 means that the i-th SC has to store the j-th
file, and θi,j = 0 is the vice versa. The complete proactive
case in our scenario would be achieved if all the files could
be cached in the SCs. Hence, our caching matrix would be
Θ = 1M×F , meaning that all SCs cache all files before the
requests start. In the worst case, no file would be stored, so
the caching matrix would be Θ = 0M×F .

The matrix Θ in CS can be obtained using the PropCaching

algorithm, as given in Algorithm 1. The algorithm basically
chooses to store the files with the highest popularities until the
storage capacity of SCs are achieved. The detailed explanation
is given step by step in the algorithm. Recall that this cache
method of decision is due to the fact that the exact request
times are not practically obtainable. Even knowing the request
times and then solving the problem would be hard with a
brute-force search algorithm. Our heuristic approach is used
to maximize our objective by caching the files according to
the popularity statistics of the files and the storage capacities
of SCs.

Assuming that the complexity of the initialization step is
O(1) and the sorting operation has O(F logF ) worst-case
complexity (i.e., by using Timsort), the complexity of Algo-
rithm 1 becomes O(1+M(F logF +4F )) ≃ O(MF logF ),
which is linear in M and almost linear in F . As we present
PropCaching in a simple way for sake of clarity, in real-time
systems where M and F is very big and the time window
is moving, a more efficient method could be implemented by
employing an iterative approach of the algorithm.

IV. NUMERICAL RESULTS

A discrete event simulator was implemented in order to
obtain the numerical results for the scenario. The capacity
of the backhaul links are assumed to be lower than the
capacity of the wireless links. Over the time window T , the
request times are pseudo-randomly generated with uniform
distribution. The popularity of files are also generated using
uniform distribution. The simulation parameters are given in
Table I. After generating the request times with respect to the
parameters, Algorithm 1 is simulated for different values of
the storage ratio γ, which is defined as

Table I
SIMULATION PARAMETERS.

Parameter Values Description

T 1024 time window (time slot)
M 4 number of SCs
N 16 number of UTs
Bmax

16 total capacity of backhaul links (Mbit/time slot)
Wmax

128 total capacity of wireless links (Mbit/time slot)
F 128 number of files
li, ∀i 256 length of files (Mbit)
bi, ∀i 4 backhaul link capacities (Mbit)
wi,j , ∀i, j 2 wireless link capacities (Mbit)
di, ∀i 4 QoE requirement (Mbit)

γ =
Smax

M
∑F

i=1
li
. (8)

In order to see the impact of the storage in SC with the
proactive caching approach, the following γ values are simu-
lated: {0, 0.25, 0.50, 0.75, 1}. In the worst case, when γ = 0,
SCs would have zero storage capacity. Hence, Algorithm 1
would compute the caching matrix as Θ = 0M×F . On the
other hand, γ = 1 is the best case where each SC has enough
storage to cache all requested files. Therefore the caching
matrix would be Θ = 1M×F .

After estimating the caching matrix for each γ values using
Algorithm 1, the corresponding files are assumed to be in SCs
in order to avoid additional bandwidth usage for their delivery
to SCs. In fact, this assumption is reasonable as some files
might be either previously stored or can be stored on their first
delivery. After this assumption, by iterating over time, the CS
delivers the files either from the internet or from the cache
of the connected SCs. In case of simultaneous transmissions
due to the same request times and/or continuing transmissions,
the network resources are fairly shared among the UTs. More
precisely, the total backhaul and wireless bandwidths are
equally divided among the requests.

The simulation using PropCaching is repeated while in-
creasing the number of requests. These operations are repeated
100 times and averaged. To compare the gain of PropCaching,
simulations of the random caching method is also performed
by filling the Θ with uniform distribution, until the storage
capacity is achieved.

Numerical results for PropCaching are shown in Fig. 3(a).
The figure shows the evolution of the satisfaction ratio R̂

over the total requests R. For each γ value, the satisfaction
ratio remains 1 until a certain threshold because of sufficient
capacity of the links. After that, due to the congestion caused
by many simultaneous deliveries, the number of satisfied
requests starts to decrease and converges to 0. This is obvious
due to the fair bandwidth sharing policy. As the total requests
R→∞, the amount of delivery bandwidth given to a request
tends to 0. Therefore, no request will be satisfied as R→∞.

The decrement in case of γ = 0 is strictly related to the
backhaul capacity as the files are delivered over the backhaul.
The more we increase γ the more we store the files in SCs.
Thus, the decrease becomes more dependent on the wireless



0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Total requests (R)

S
a
ti
sf
a
ct
io
n
ra
ti
o
(R̂

)

 

 

γ = 0

γ = 0.25

γ = 0.5

γ = 0.75

γ = 1

(a)

0 100 200 300 400 500 600
0

0.5

1

1.5

2
x 10

5

Total requests (R)

B
ac
k
h
au

l
b
an

d
w
id
th

u
sa
ge

[M
b
it
]

 

 

γ = 0

γ = 0.25

γ = 0.5

γ = 0.75

γ = 1

(b)

Figure 3. Numerical results of PropCaching: (a) evolution of the satisfaction ratio, (b) the backhaul bandwidth usage.
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Figure 4. Numerical results of random caching: (a) evolution of the satisfaction ratio, (b) the backhaul bandwidth usage.

link capacities. In general, as γ increases, the satisfaction ratio
R̂ becomes better compared to the non-caching case.

Fig. 3(b) illustrates the backhaul bandwidth consumption
over the total requests R. It is seen that as γ increases, the
amount of bandwidth consumption decreases. This is evident
as more files are cached.

For the performance of random caching, Fig. 4(a) and
Fig. 4(b) depict the evolution of the satisfaction ratio and
the backhaul bandwidth consumption respectively. In case of
γ = 0 and γ = 1, the performance is obviously identical to
PropCaching. However, in between, PropCaching has differ-
ent gains for different R values. For example, for R = 192
and γ = 0.25, the satisfaction of PropCaching is 85% higher
than random caching and the backhaul usage is reduced by
10%.

V. CONCLUSIONS

In this paper, proactive SCNs equipped with low capacity
backhaul links and high storage units are investigated from
a caching point of view. By using the popularity statistics of
the files and employing a caching strategy based on this, the
impact of storage in SCs is studied. As the load of the network
increases by the number of requests, our results show that
caching has a better performance in satisfying the requests
compared to the non-caching case. Moreover, PropCaching

outperforms random caching in the most cases.
Other approaches of proactivity could be caching the files

according to the recent and trending statistics of the files. We

think that by storing recently downloaded files or trending files
according to time varying behaviour of the file popularities,
the performance of these networks can be improved.
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