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Proactive User Association in Wireless Small Cell
Networks via Collaborative Filtering

Francesco Pantisano, Mehdi Bennis, Walid Saad, Stefan Valentin, Mérouane Debbah, and Alessio Zappone

Abstract—In this paper, we propose a proactive cell association
framework for small cell networks, based on content recommen-
dations. We focus on multimedia data services and characterize
the user’s quality of experience (QoE) in terms of mean opinion
scores (MOSs) that accurately reflect characteristics of the wireless
transmissions and data applications. Based on such information,
we propose a collaborative filtering approach that enables the
small base stations (SBSs) to exploit the correlation across similar
user and application requirements to predict the QoE that a
UE-SBS association delivers. By leveraging such knowledge, the
SBSs ultimately devise better-informed user-cell associations and
more precise bandwidth allocations. We model this problem as a
matching game with externalities, propose a decentralized algorithm
based interference graph theory, and discuss the matching stability
conditions in the proposed approach. Simulation results show that
the proposed solution yields more precise bandwidth allocations
reaching up to 19% spectrum savings, compared to conventional
cell association approaches.

Index terms: small cell networks; matching games; game theory;
proactive bandwidth reservation; context-awareness; quality of experi-
ence.

I. INTRODUCTION

Meeting the exponentially growing traffic demands of wireless
data application in a cost-effective way, mandates a paradigm shift
in the design of wireless cellular networks. To this end, small cell
base stations (SBSs) (i.e., picocells, femtocells) have emerged as a
candidate solution for meeting stringent quality-of-service (QoS)
requirements in a scalable and spectrum efficient way [1], [2].
However, even with the latest advancements in transmission
techniques, small cell deployments still face a number of funda-
mental challenges that include the user admission control and the
spectral resource management. Most notably, the large number
of user equipments (UE) and serving base stations exacerbates
the complexity of the UE-SBS association problem for downlink
transmission [3]. In fact, the small cell scenario significantly
differs from traditional macro-cellular networks due to the density
of SBSs, heterogeneity (disparate coverage areas and cell sizes),
and unbalanced resource availability [3–5]. These distinct features
make macrocell-oriented user association techniques as in [2],
[6], [7] unsuitable to the topology of small cell networks, notably
when stringent QoS constraints are required.
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One promising approach for addressing the cell association
problem is through the exploration of additional context informa-
tion extracted from the user’s devices that can include data such as
the typical set of active applications [8]. By exploiting this knowl-
edge, each SBS can proactively allocate the necessary spectral
resources and make better informed user associations decisions,
based on each UE’s quality of experience (QoE) requirements and
on the current spectral resource availability. In summary, based
on the knowledge of the UEs’ data application requirements, SBS
networks can anticipate the resource allocation and devise the
UE-SBS association that delivers the largest individual QoE.

Anticipating the network operations based on an user context
information is an emerging topic in wireless cellular communi-
cations. In fact, such a technique – extensively surveyed in [9]
– can deliver high QoE, notably when combined with cross-tier
optimization techniques. Along this research direction, context
information has been exploited for the delivery of popular multi-
media contents, by proactively caching file copies with the aim of
preventing backhaul congestion [10], [11]. Independently, another
line of research has applied predictive algorithms to estimate the
data rate requirements of high quality video streaming applica-
tions and optimize the spectrum allocation [12]. These examples
show remarkable evidence on the benefit of combining context
information and predictive algorithms into traditional cellular
network operations.

The main contribution of this paper is to combine concepts
of QoE prediction and user context for solving the UE-SBS
association problem in the downlink of small cell networks.
We explore how the typical set of active applications and the
qualitative feedback on past data services can be translated,
at the network level, into decisions on which UE should be
serviced, and by which SBS. We address this problem in two
phases. First, we model the QoE feedbacks as mean opinion
scores (MOSs), which account for the characteristics of both
wireless transmissions and the multimedia data services in use
at the UE’s side. We assume that each SBS keeps record of
such information in local cache memory (e.g., in a local hard
disk). Based on this, the SBSs leverage the knowledge of past
data requests so as to obtain recommendations on which UEs
to service. In this regard, each SBS explores the records of past
connections’ MOSs using mathematical tools from collaborative
filtering, which is one of the most widely-used concepts for
building recommendation systems. In particular, collaborative
filtering uses known users’ information and correlations across
similar services so as to make recommendations or predictions
on which multimedia applications a new user is most likely to
request [13], [14] and with which expected QoE. In summary,
this work demonstrates how to exploit users’ context information,
available at each SBS, for making better informed decisions,



thereby improving the overall network performance.
The remainder of this paper is organized as follows: Section II

presents the considered system model and introduces the concepts
of collaborative filtering for QoE prediction. In Section III,
we formulate the UE-SBS association problem and present the
proposed solution. In Section IV, we discuss the simulation results
and, finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider the downlink transmission of an orthogonal frequency
division multiple access (OFDMA) small cell network. Let M =
{1, ...,M} and N = {1, ..., N} respectively denote the set of
UEs and SBSs deployed in the network. Each SBS i serves a set
Li, up to a maximum quota Qi. Each UE m ∈ Li is assigned
a bandwidth wi,m and the transmit power for the transmission
to UE m ∈ Li is pi. The data rate achieved by UE m ∈ Li is
denoted by ri,m.

Each UE m uses a set Am of data applications, whose data
traffic generation is modeled as a stochastic process with source
rate sa,m, a ∈ Am. Since we focus on multimedia services, a
suitable metric for the quality of service of these applications is
given by the mean opinion score (MOS) [15] – a low complexity
metric, which depends on the characteristics of the applications –
i.e., the source rate – and the wireless transmission – i.e., the
packet error rate (PER). The MOS for a UE m ∈ Li using
application a ∈ Am at a given instant t, is defined as [15] :

MOSai,m(t) =
c1 + c2 log(sa,m)

1 + c3PERi,m + c4(PERi,m)2
, (1)

where the values {c1, . . . , c4} are normalization parameters which
bound the MOSs to the interval [1, 5]. The packet error rate
depends on the signal to interference and noise ratio (SINR), and
for successful transmissions (i.e., to avoid packet error events),
the SINR is required to be above a threshold Γ.

A. MOS Prediction via Collaborative Filtering

In SBS networks, UEs serviced by the same SBS for the same
application are scheduled similarly and, on average, experience
similar QoE. As a result, given a matrix with the MOSs from
past application requests, an SBS can predict the MOSs for new
UEs whose application requests are correlated with those in the
matrix. Although this user information is easily obtainable by
each SBS, over time, it can grow much larger and faster than the
ability to process it for network optimization purposes. Therefore,
the useful exploitation of user information is contingent upon
efficiently searching and retrieving data from large and sparse
databases, in a scalable way. For sifting through such large
databases, we apply novel collaborative filtering (CF) techniques
[13], [14]. In the proposed CF setting, each SBS i maintains a
matrix with the UEs m ∈ Li and the applications Am over time.
Such knowledge can be represented in form of matrix as shown in
Table I. The a-th column of Table I refers to the MOSs of different
users who requested the same application a, while the m-th row
encompasses the MOSs of user m across his |Am| data service
requests. Finally, the dashes denote unavailable information, for
service requests which still have not occurred. The goal of the CF
approach is filling and updating the users’ entries per application,

TABLE I
REPRESENTATION OF THE MOS MATRIX AT THE SBS.

a = 1 a = 2 . . . a = |Am|
m = 1 5 - . . . -
m = 2 - 4.3 . . . 2.5
. . . . . . . . . . . . . . .

m = |Li| - 2.6 . . . -

by exploiting the correlations among similar service requests (i.e.,
across columns), and similar user contexts (across rows). In this
work, this information is used by the SBSs to predict the MOS
of a given application request and locally devise the UE-SBS
association which delivers the largest MOS.

In practice, when a new user arrives – e.g. UE m using
application a ∈ Am – an SBS i identifies two sets of data, called
neighborhoods, which serves as baseline for predicting the MOS
of UE m. The first neighborhood Sa ⊆ M is composed by the
MOSs of other UEs n ̸= m previously serviced by SBS i for
the same application a (equivalent to a subset of the a-th column
of Table I). The second neighborhood Sm ⊆ Am is defined by
the MOSs of other applications in Am previously requested by
UE m (subset of the m-th row of Table I). Finally, at SBS i,
the prediction of the MOS of an UE m requesting an application
a ∈ Am at time t, and willing to be associated to SBS i can be
expressed as [13] :

x̂a
i,m(t) = (x̄i+ba+bm)+

∑
n∈Sa

dm,n x̂
a
i,n∑

n∈Sa
|dm,n|

+

∑
ȧ∈Sm

da,ȧ x̂
ȧ
i,m∑

ȧ∈Sm
|da,ȧ|

,

(2)
where, x̄i is the average MOS over all known UEs and applica-
tions; ba =

∑
m∈Sa

x̂a
i,m

|Sa| − x̄i denotes the average MOS of the
UEs connected to SBS i, using the same application a, relative
to the average x̄i; ba =

∑
a∈Sm

x̂a
i,m

|Sm| − x̄i models the average
MOS of UE m over all the applications ȧ, with respect to the
average x̄i. Finally, dm,n = |x̂a

i,m−x̂a
i,n| and da,ȧ = |x̂a

i,m−x̂ȧ
i,m|

respectively denote the absolute error (also referred to as distance)
between the MOS of different UEs serviced by SBS i (i.e., the
neighborhood of application a), and different applications for a
given UE m (neighborhood of UE m). The nominal value of the
unavailable entries (denoted by dashes in Table I) is set to zero.

Finally, a suitable function for capturing the MOS prediction
accuracy and the UE-SBS association performance is given by
the relative error between the actual MOS and the predicted one,
defined as:

Ua
i,m(t) =

|MOSai,m(t)− x̂a
i,m(t)|

|MOSai,m(t)|
. (3)

For the cost function in (3), values close to zero represent
optimal predictions, i.e., the best UE-SBS association for a given
application a, and the prediction errors are less significant as long
as the UE-SBS association guarantees large MOSs. Naturally, as
such knowledge increases over time, sharpening the predictions,
the proposed concept aims at optimizing the long-term UE-SBS
association problem, rather than the myopic performance.



III. CELL ASSOCIATION AS A MATCHING GAME WITH
EXTERNALITIES

A. Problem Formulation

In this work, we aim at solving the problem of assigning each
UE m ∈ M to the SBS i ∈ N that minimizes the cost function
in (4) over a time horizon T , through a matching η : M → N .
Moreover, we attempt to bridge the gap between exploiting the
correlations between similar application requests and providing
differentiated QoE for the user’s application requests. Essentially,
this yields the following optimization problem:

argmin
wi,m,x̂a

i,m(t), η : (i,m)∈η

1

T

T∑
t

∑
i∈N

∑
m∈Li

∑
a∈Am

Ua
i,m(t) (4)

s.t., |Li| ≤ Qi, ∀i ∈ N , (5)
ri,m ≥ sa,m, ∀m ∈ M, i ∈ N , (6)
x̂a
i,m(t),MOSa

i,m(t) ∈ [0, 5], ∀m ∈ M, i ∈ N , (7)

where (5) is a constraint on the maximum number of UEs that an
SBS can service, constraint (6) represents a minimum data rate
requirement, and (7) defines the domains of MOSs and CF-based
estimations.

In terms of complexity, solving the UE-SBS association in (4)
using classical optimization techniques is an NP-hard problem,
which depends on the number of SBSs and UEs in the net-
work. Even by relaxing some of the constraints in (5)-(7), the
exponential complexity makes a centralized approach intractable,
especially in SBS networks where the number of UEs and SBSs
can significantly grow large.

This complexity coupled with the need for self-organizing solu-
tions in small cells mandates a distributed approach in which UEs
and SBSs autonomously decide on the best UE-SBS association.
Accordingly, in order to solve the problem in (4), while avoiding
combinatorial complexity, a suitable mathematical framework is
given by matching games with externalities [16], [17]:

Definition 1. A matching game with externalities is defined by
a tuple (M,N , U), where (M,N ) are the set of players, and a
real valued function Ui,m(t|η) that represents the cost associated
to link (i,m) ∈ η at time t, when matching η forms.

The outcome of a matching game is a matching function (or
association) η that bilaterally assigns to each player m ∈ M,
a player i = η(m), i ∈ N , and vice versa (i.e., m = η(i)).
To reach a stable matching, each player m ∈ M, i ∈ N uses
relations ≻m, ≻i so as to build preferences over one another,
i.e., to rank, respectively, the players in N and M. A preference
relation ≻ is defined as a complete, reflexive, and transitive binary
relation between the players in M and N . Thus, for any UE m,
a preference relation ≻m is defined over the set of SBSs N such
that, at a given time instant, for any two SBSs i, j ∈ N 2, i ̸= j,
and two matchings η, η′ ∈ M×N , i = η(m), j = η′(m) :

(i, η) ≻m (j, η′) ⇔
Ua
i,m(t|η) > Ua

j,m(t|η′). (8)
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Fig. 1. Construction of the interference graph. Each color indicates one operating
frequency, blue lines denote useful signals, red dashed lines represent interference
signals. Cliques are denoted by ovals. Note that, in the interference graph, the
externalities (i.e., interference) only exist within each clique (e.g., C1, C3).

Similarly, for any SBS i a preference relation ≻i over the set
of UEs M is defined as follows, for any two UEs m,n ∈ M,
m ̸= n and two matchings η, η′ ∈ M×N , m = η(i), n = η′(i):

(m, η) ≻i (n, η
′) ⇔

Ua
i,m(t|η) > Ua

i,n(t|η′). (9)

By observing (8) and (9), one must note that the preference
relations are a function of the existing matching η, at time t. In
fact, since UE-SBS links composing the matching share the same
pool of spectral resources, they affect each other’s performance
through co-channel interference. The interference across links
indicates that, for the studied matching problem, the preferences
of UEs and SBSs are interdependent, as they are both function
of the PER. These interdependence relationships are known in
matching theory as externalities, and have important implications
in the design of the proposed solution, as we discuss in the
following section.

B. Context-aware UE-SBS association approach

While most solution concepts for matching games, such as [6],
[7], [18], assume that the preferences of a player do not depend
on the other players’ choices, this assumption does not hold for
the considered UE-SBS association problem. As a matter of fact,
when dealing with externalities, the potential link (i,m) between
an SBS i and a UE m depends on the other UE-SBS associations
in η \ (i,m). Consequently, traditional solution approaches based
on preference orders, such as the deferred acceptance algorithm
used in [7], [18], are now unsuitable as the ranking of the
preference changes as the matching forms. Moreover, choosing
greedy cost-minimizing preferences does not ensure matching
stability. In fact, due to externalities, a player may continuously
change its preference order, in response to the formation of other
UE-SBS links, and never reach a final UE-SBS association, unless
externalities are well-handled.

To manage the externalities across interfering UE-SBS links,
we propose the representation of the initial SBSs network as
an interference graph [19]. In such an approach, the network
topology shown in Figure 1.a is translated into the interference
graph of Figure 1.b, in which the vertices are interfering SBSs
and UEs and the weight of the corresponding edges (shown
as red dashed lines) is the received interference signal strength



Algorithm 1: UE-SBS Cell Association Algorithm.
Data: Each UE is initially associated to a randomly selected SBS i.
Begin;
Phase I - Cliques and Interference graph;
• Each UE m discovers the interfering SBSs in the vicinity and measures
the corresponding RSSI;
• Each SBS performs the MOS prediction operations of Section II;
• Each SBS identifies the clique members and the corresponding edge
weights;
Phase II - UE-SBS matching negotiations;
repeat

• The cost Ua
i,m(t|η) is updated based on the current η;

• UEs and SBSs are sorted by ≻m and ≻i;
if (j, η′) ≻m (i, η) and RSSI of other clique edges is non-increased
then

• UE m sends a proposal to SBS j;
• SBS j computes Uj,m(t|η′) for the new link (j,m) ∈ η′;
if (m, η′) ≻j (m, η) and (5)-(7) are satisfied then

• the new link (j,m) ∈ η′ is created;
else

• SBS j refuses the proposal, and UE m sends a proposal to
the next preference.

end
end

until @η′ : (j, η′) ≻m (i, η) and (m, η′) ≻j (m, η);
Outcome;
• Convergence to a stable matching η;
• For each of the new UE-SBS links, the SBSs proceed to the preallocation
of bandwidth wi,m.

indicator (RSSI) at the UE side1. A graph-based representation
allows to partition the original network into groups of mutually
interfering SBS called cliques. The UE-SBS associations taking
place within each clique compose a sub-matching, which is a
subset of the larger matching defined over the entire network. A
graph-based representation is particularly useful as it yields two
important considerations. First, since the externalities only affect
the members of the same clique (through the preferences in (8)
and (9)), the UE-SBS association is a process that pertains to each
distinct sub-matching. In other words, with refer to Figure 1.b.,
the formation of a sub-matching in clique C1 is independent from
the similar process in clique C3, since no externalities exist across
separate cliques. Second, the absence of cross-clique externalities
allows to decompose the original matching problem, defined over
the entire network, into clique-based sub-matching problems,
defined over smaller clusters of interfering SBSs and UEs. In
summary, introducing a graph-based partition of the network into
cliques of interfering SBSs reflects a logical decomposition of the
original problem into smaller ones, each with smaller number of
players and reduced complexity.

Given of these considerations, we propose a decentralized
solution to the problem in (4), shown in Algorithm 1. In the
first phase of Algorithm 1, each SBS predicts the MOSs of the
incoming UEs2 through the operation described in Section II .
Also, in this phase, each SBS identifies the interfering SBSs and,
based on that, it constructs a weighted interference graph of its
belonging clique. In the second phase of Algorithm 1, each SBS

1Naturally, the proposed solution can also accommodate other equivalent
interference indicators, such as the interference to noise ratio (INR).

2The target users can be identified based on their current location or by
combining the proposed algorithm with mobility pattern prediction techniques
[8].
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Fig. 2. Bandwidth allocation per UE as a function of the data rate requirement.
M = 30 UEs, N = 20 SBSs.

engages in mutual negotiations with other SBSs in the same clique
for devising the UE-SBS association which minimizes the cost
function as per (3), while accounting for the constraints (5)-(7).
At the end of this stage, each UE is associated with the SBS
which maximizes its MOS, or equivalently, best accommodates
the UEs’ application requests by minimizing the prediction error
on its QoE requirements.

The matching stability follows from the lemma below:

Lemma 1. A matching η is stable if, for each clique C ⊆ η, the
creation of a new link (i,m) ∈ C at a given instant t, verifies
that RSSIi,n(t) ≤ RSSIi,n(t− 1), for all UEs n ∈ C.

Proof. The proof follows from the preference relation definitions
in (8) and (9). Since the preference relations of UE n and SBS j
are functions of the received interference (through the PERj,n),
a sufficient condition for the stability of a sub-matching (i.e., the
matching within a clique) is that the formation of any new UE-
SBS link (i,m) does not undermine the stability of the existing
ones. Such a condition is verified if the interference received by
any UE n in clique C does not increase after the formation of
link (i, n), as denoted by RSSIi,n(t) ≤ RSSIi,n(t− 1). In fact,
in this case, the preference orders of all UEs n and SBSs j in the
clique remain unaltered after the creation of link (i,m), which
ensures the stability of the sub-matching, defined over such clique.
Finally, since no externalities exist across cliques, the stability of
the network-wide matching follows from the stability of the sub-
matchings composing it.

IV. SIMULATION RESULTS

For numerical simulations, we consider a single macro-cell
with a 1 km radius and a bandwidth of 10 MHz. In this cell,
M UEs and N SBSs are uniformly deployed. The transmit power
of each SBS i is set to 30 dBm. Transmissions are affected
by distance dependent path loss and shadowing according to
3GPP specifications [2]. The minimum bandwidth assignment
wi,m = 180 KHz, and each SBS i can service up to Qi = 6
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UEs [2]. A packet error event is the result of a SINR at each UE
smaller than Γ = 9.56 dB [2], the noise level is σ2 = −121 dBm.

For comparison purposes, we also considered two baseline
solutions for user cell association [3]. In the first scheme, the UE
is associated to the SBS providing the largest SINR. In the second
scheme, each UE is associated to the SBS that maximizes the ratio
between instantaneous and average rate. Specifically, in this latter
scheme, the serving SBS is the one that, for a given bandwidth
allocation maximizes the ratio between instantaneous and average
data rate, based on a proportional fair (PF) scheduler. Clearly,
the above schemes are not proactive, hence the SBSs allocate the
spectral resources upon receiving the UEs’ application requests.

In Figure 2, we show the average bandwidth allocation per
UE as a function of the data rate requirement, in a network with
M = 60 UEs, using |Am| = 3 applications. Figure 2 shows
that leveraging UE context information allows for more precise
spectrum allocations, ultimately yielding 19% spectrum savings
with respect to the max-SINR approach and 10.1% with respect
to PF, for a target data rate of 7 Mbps.

In Figure 3, we observe the time evolution of the average cost
per UE-SBS link for all the considered approaches. Figure 3
shows that the accuracy of the proposed approach increases over
time and when larger datasets are available ( equivalently, when
the CF prediction is based on large neighborhood sizes |Sm|). For
instance, the proposed approach achieves a MOS prediction error
Ua
i,m ≤ 10%, after a simulation time of 14 s, with a scheduling

period of 0.5s, in a network composed by N = 20 SBSs and
M = 40 UEs. In summary, Figure 3 demonstrates that the
proposed algorithm achieves good predictions with a reasonable
initial delay, even in network of regular dimensions.

V. CONCLUSIONS

In this paper, we have presented a novel approach to the cell as-
sociation problem in small cell networks, which exploits the user
context information and a QoE prediction. The proposed scheme
brings forward the important advantage of providing a UE-SBS

association which can deliver high and differentiated QoE, based
on the distributed knowledge of practical context information
extracted from modern UE devices. We have modeled the UE-
SBS association problem as a matching game with externalities, in
which the UEs and SBSs build preferences over one another so as
to choose their preferred matching. Given that the preferences are
interdependent and a function of the existing matching, we have
proposed an interference graph-based algorithm that decomposes
the original problem into smaller ones, defined over clique of
interfering SBSs, while accounting for the network externalities.
Simulation results have shown that the proposed approach can
provide significant gains in terms of spectrum savings for given
data rate targets, with an acceptable initial delay, reaching up
to 19%, with respect to a traditional context-unaware SBS-UE
association which is based on the maximum SINR.
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