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Abstract—In this work we address the problem of channel
probing in a multicarrier downlink wireless network where in
order to collect CSI feedback from each user at a channel, a
fraction of the available time for transmission is used. This means
that the time left to transmit is getting smaller. We study the
aspect of stability of such a system and we find a randomized
algorithm which can guarantee an expansion of the stability
region with respect to full probing and prior works. In addition,
we investigate a special case of a probing scheme that does not
require knowledge of the statistics of the channels and can still
enlarge the stability region of the system. Simulations show the
performance of the proposed scheme.

I. INTRODUCTION
User scheduling has emerged as an attractive solution to

improve the performance of wireless networks by allocating

the resources (timeslots, frequencies) to the users depending

on their channel states. Since each user in the network is

associated with an incoming traffic process, stability is among

the first-order desirable properties (performance metrics) of a

scheduler. It roughly means that the mean of all the queue

lengths (and consequently delays experienced by the users) in

the network is finite. It was shown [1], [2] that MaxWeight

types of scheduling policies are throughput optimal i.e. stabi-

lizing the system if it can indeed be stabilized. However, these

works assume that the realizations of the channel processes

are known to the scheduler at each time slot, which can only

be done by feedback from the receivers. The cost, in terms

of resources, needed to acquire the instantaneous channel

processes is neglected in these works.

On the other hand, in most works tackling the problem

of limited feedback (e.g. see [3] and references therein) the

focus is on maximizing the total throughput (i.e. assuming

constantly backlogged transmitters). Adding the objective of

attaining stability, the authors in [4] study the problem of

deciding which subset of users to collect feedback from. Also

in [5], a CSMA-based scheme is presented for channel state

feedback. In the latter two cases however the authors do not

take into account the fact that time (e.g. in TDD mode) or

frequency (e.g. in FDD mode) resources need to be taken up

by probing. Assuming channel statistics are known, the authors

in [6] propose a heuristic feedback scheme with two feedback

slots based on the idea of maximum quantile scheduling. More

in this direction, in [7] it is shown that for a system of L
carriers with FDD mode for feedback,the base station needs

to acquire at least Θ(L) channel realizations each time slot to

obtain the biggest achievable stability region. In [8], a TDD

mode of probing is used: the base station probes the users

to feed back their channel states but each such procedure is

centralized and takes up a portion of the time slot. Based on

optimal stopping theory and assuming that the distributions of

the channel gains are known to the base station, the authors

derive the general properties of the centralized optimal probing

policy and completely characterize it in some special cases.

Finally, for the same model, the authors in [9] propose a simple

feedback scheme for a single channel system. This scheme

requires no knowledge of channel and traffic statistics and

is shown to guarantee greater stability region than a scheme

where all channels are probed. In multi-carrier systems, the

probing problem is more challenging since a user may be

scheduled on a subset of channels and therefore each user

needs to feed back the channel state informations CSIs of

a subset (as small as possible) of its channels/subcarriers.

Applying the aforementioned schemes to multi-carrier systems

will not result in good performance (stability region) as one

will see later in this paper.

In this paper, we focus on the downlink of a multi-carrier

single cell system with feedback in TDD mode. We assume

that the base station schedules the users using a MaxWeight

scheduling policy where the weight of each user is its cur-

rent queue state. We propose a randomized scheme where a

threshold for the achievable rate of the channel is adjusted by

the base station according to the queue lengths of the users

and then users with rate above the threshold feed back in this

subcarrier with some probability. We also provide a version

of this randomized scheme where the probing probability

does not require the channel statistics (which simplifies the

implementation of the algorithm) and that still increases the

stability region.

The rest of the paper is organized as follows: In Section

II we present the system model and describe our proposed

probing scheme. In Section III, we provide our stability

analysis and prove the expansion of the region compared

to existing probing schemes. In Section IV, we describe an

approximate probing scheme where the probing probability

does not depend on the statistics of the channels. In Section

V, we present simulation results to illustrate the performance

of the probing schemes and Section VI concludes the paper.

II. PRELIMINARIES

A. Setting and basic notions
In this work we consider a single cell multi-carrier system

where a base station serves K users using N subcarriers.

Subcarriers are assumed to be randomly time varying, i.i.d.



across time. Let Rkn(t) be this rate for user k at subcarrier n.

Also they are independent from each other and across users,

but not necessarily identically distributed. Time is slotted.

Each user i ∈ {1, ...,K} requests randomly incoming traffic

with mean rate λi. Incoming traffic processes are i.i.d. across

time, independent across users and independent with respect

to the channel processes . For the MAC layer, the base station

maintains a different queue for each user, whose queue length

at time slot t is denoted Qi(t).
Central in our case is the notion of stability of the system.

We say that the system is (strongly) stable if for every queue i
it holds limT→∞ sup 1

T

∑T
t=1 E{Qi(t)} < +∞. This implies

that the process of queue lengths converges to an ergodic

distribution and that the queues (therefore delays) for each

user will be finite.
Definition 1 (Stability Region). The stability region Λ of an

algorithm is defined as the set of vectors of the arrival rates

for which the system is stable under this algorithm.

B. Probing scheme
We consider feedback in TDD mode. At the beginning of

each timeslot of duration Ts, the users feed back their CSIs

and once the feedback procedure is finished the base station

schedules a user and transmits in the rest of the slot. This

procedure is done per subcarrier. It takes βTs for a user to

feed back its channel state. Also, the base station can broadcast

other signalling information but still taking up time of βTs.

The scheme we propose is essentially a randomized version

of the scheme proposed in [9] initially for a single carrier

downlink. At each time slot t:

1) At the beginning of the slot, the base station broadcasts

pilot signals (of duration that is assumed negligible).

2) The base station requests the user with maximum queue

length, say user k∗, to report its subcarriers. After this

is done, it broadcasts the channel states at the corre-

sponding subcarriers. This implies that if Un(t) users in

total (that is including the user with the maximum queue

whose channel states have been requested by the base

station) feed back on subcarrier n, transmission will be

done for the remaining duration of (1−β(1+Un(t)))Ts

3) At each subcarrier n, each user k compares the channel

state of this subcarrier with the broadcasted channel state

Rk∗n(t). If Rkn(t) < Rk∗n(t), the user does not report

its channel state for subcarrier n. Otherwise, he reports

the channel state with some probability p.

4) At each subcarrier n, as soon as users have finished

reporting, the base station selects the user to schedule

using a MaxWeight type of criterion, i.e. is scheduled

the user that maximizes the quantity Qk(t)(1 − β(1 +
Un(t)))Rkn(t).

The intuition of introducing this feedback probability in the

scheme in [9], termed ”SDF” for the rest of the paper, is

that it can be tuned in a way so that fewer users will feed

back while still scheduling good users for transmission on

each subcarrier. In the remainder of the paper, the proposed

scheme will be denoted as ”pSDF”. Also, we will refer to the

quantity Qi(t)Rin(t) as ”weight” of user i in subcarrier n.

C. Preliminary results and definitions
Define Zkn(t) the scheduling decision at time slot t (i.e.

Zkn(t) = 1 if user k is scheduled on channel n at time

slot t and zero otherwise) for the SDF scheme. Note that

Zkn(t) is the same schedule as MaxWeight scheduling when

all the channels were known [9]. Since at most one user can

be scheduled on a subcarrier, Zkn(t) = 1 only for the user

with the maximum weight at subcarrier n.

A tilde over the variables will indicate that they correspond

to the pSDF scheme. Also, boldface letters will denote vectors.

Unless stated otherwise, all expectations in the remainder of

the paper are taken over the stationary distribution of the

channel states and the feedback decisions taken (for the case

of pSDF).

Define the following quantities, which essentially corre-

spond to the average total utility function of the system under

the SDF and pSDF schemes (in other words, the MaxWeight

scheduler assign the users such that the instantaneous total

utility is maximized):

f(Q(t)) =

E{
N
∑

n=1

(1− β(Un(t) + 1))
K
∑

i=1

Qi(t)Rin(t)Zin(t)|Q(t)},

f̃(Q(t)) =

E{

N
∑

n=1

(1− β(Ũn(t) + 1))

K
∑

i=1

Qi(t)Rin(t)Z̃in(t)|Q(t)}.

Notice also that these quantities correspond to negative part

of the drift of the quadratic Lyapunov function under the SDF

and pSDF schemes. The expectation is taken with respect to

the randomness of channel variation and scheduling decisions.

Then, the following holds (see [10], also e.g. [9], [7]):

Theorem 2. If there exists an ǫ > 0 such that for every queue

length vector Q(t) it holds

f̃(Q(t))

f(Q(t))
≥ 1 + ǫ,

then the stability region of pSDF is guaranteed to increase at

least to (1 + ǫ) times the stability region of SDF.

We denote the expectations of the maximum weights at

channel n as Wn(t) = E

{

∑K
i=1 Qi(t)Rin(t)Zin(t)|Q(t)

}

=

E {max(Qi(t)Rin(t))|Q(t)}. Also, let W (t) :=
∑N

n=1 Wn(t). For the algorithm where every user is

probed at every slot (referred to as ”full feedback

scheme” hereafter) define f̂(Q(t)) = E{
∑N

n=1(1 −

βK)
∑K

i=1 Qi(t)Rin(t)Zin(t)|Q(t)}. Finally, we denote the

number of users not feeding back at time slot t and subcarrier

n as Mn(t) in the SDF scheme and M̃n(t) in the pSDF

scheme. Then, Mn(t) = K − Un(t) and similarly for M̃n(t).
Finally, note that for the whole analysis to make sense there

must be β < 1/3. This can be justified because if β = 1/3
then there is no use to broadcast the rate of the user with the

maximum queue length: If at least a user reports back then



no time is left for transmission and if no user reports back

then we lose time to send data to the user probed first.

III. INCREASING THE STABILITY REGION WITH PSDF

In this section we work on the case where there is enough

time in the slot for each user to probe every channel, i.e.

(1− βK) > 0. An important intermediate result follows:

Lemma 1. For any vector of queue lengths, the following

holds:

f̃(Q(t))

f(Q(t))
≥

1 + r(Q(t), p)ǫ

1 + ǫ
(1)

where ǫ > 0 is the increase of the stability region guaranteed

by SDF with respect to full probing and

r(Q(t), p) = (1− (K − 2)S(Q(t))) p2

+
1− 2β

β
S(Q(t))p−

1− βK

β
S(Q(t)).

(2)

In the above,

S(t) =
W (t)

∑N
n=1 (E(Mn(t)|Q(t))− 1)Wn(t)

. (3)

Proof:

Note that the schedule decided in SDF and full probing

schemes (after probing has been done) is the same, picking

the user with the maximum product Rin(t)Qi(t) in every

subchannel n [9]. Note also that this value does not de-

pend on the number of users probing each channel in SDF

algorithm, which implies that its expectation is independent

of the expectation of the number of users probing. Then,

we have f(Q(t)) = f̂(Q(t)) + β
∑N

n=1(E {Mn(t)|Q(t)} −
1)Wn(t),and therefore

f(Q(t))

f̂(Q(t))
= 1+

β
∑N

n=1(E {Mn(t)|Q(t)} − 1)Wn(t)

f̂(Q(t))
:= 1+ǫ

(4)

with ǫ > 0.

Now we will do the same procedure for the quantities

in pSDF. Since now the user with the maximum weight is

not guaranteed to probe the channel, we cannot proceed as

above. However, a lower bound can be found considering the

following: For every channel n, if the user with the maximum

weight has probed then is scheduled, otherwise no user is

scheduled. This is a lower bound since even if the user with the

maximum weight is not probed there will be some other user

with nonzero rate scheduled with some probability.. Denoting

Ũn(t) the set of the users that have probed the channel at slot

t and by M̃n(t) the set of users that have not, we have

f̃(Q(t)) ≥

E







N
∑

n=1

(1− β(Ũn(t) + 1))
∑

i∈Ũn(t)

Qi(t)Rin(t)Zin(t)|Q(t)







=

N
∑

n=1

E

{

(1− β(Ũn(t) + 1))

K
∑

i=1

Qi(t)Rin(t)Zin(t)|Q(t)

}

−

N
∑

n=1

E{(1− β(Ũn(t) + 1))
∑

i∈M̃n(t)

Qi(t)Rin(t)Zin(t)|Q(t)}−

N
∑

n=1

E







(1− β(Ũn(t) + 1))
∑

i∈M̃n(t)

Qi(t)Rin(t)Zin(t)|Q(t)







≥ f̂(Q(t)) + β

N
∑

n=1

(E
{

M̃n(t)|Q(t)
}

− 1)Wn(t)−

N
∑

n=1

E







(1− β(Ũn(t) + 1))
∑

i∈M̃n(t)

Qi(t)Rin(t)Zin(t)|Q(t)







(5)

To proceed further, we use that in pSDF a user among the

Un(t)− 1 (i.e. excluding the user polled by the base station)

whose channel is better than the broadcasted feeds back with

probability p independently of anything else, therefore the

average number of users that feed back after the threshold

has been set will be pE {Un(t)− 1|Q(t)}. So

E

{

Ũn(t)|Q(t)
}

= 1 + p(K − 1− E {Mn(t)|Q(t)}). (6)

Now consider the second sum in (5) and denote Xn the

event that the user with the maximum queue is not the

user with the maximum weight in subcarrier n. If this

event happens, the user with the maximum weight has not

been probed so the sum over i ∈ M̃n(t) is the maximum

weight over this subcarrier. Also, note that if Xn does

happen, the probability that the sum i ∈ M̃n(t) being

nonzero is 1 − p, since the user with the maximum weight

will not feed back with this probability. Denote thus X ′
n)

the event where the user with the maximum weight does

not feed back given the event Xn does happens. There is

P(X ′
n|Xn) = 1 − p. Then, the sum (denoted S2) can be

written as S2 =
∑N

n=1 P(Xn)P(X
′
n|Xn)E{(1−β(Ũn(t)+1))

∑

i∈M̃n(t)
Qi(t)Rin(t)Zin(t)|Q(t),Xn,X

′
n} =

∑N
n=1 (1− p)P(Xn)(1− β(E

{

Ũn(t)
}

+ 1))Wn(t) ≤

(1− p)
∑N

n=1 (1− β(E
{

Ũn(t)
}

+ 1))Wn(t). Here, we have

used that the expectation is conditioned on the fact that the

user with the maximum weight does not feed back, therefore

is contained in the set M̃n(t) and that each user feeds back

independently.

Therefore, applying the above in (5) and using (6), we



obtain:

f̃(Q(t)) ≥ f̂(Q(t))+
(

N
∑

n=1

(E {Mn(t)|Q(t)} − 1)Wn(t)− (K − 2)W (t)

)

βp2

+ p(1− 2β)W (t)− (1− βK)W (t).
(7)

The stated result follows combining the above with (4).

Using Lemma 1 and Theorem 2 we get the following:

Theorem 3. If r(Q(t), p) > 1, ∀Q(t) then the stability region

is guaranteed to increase with respect to the SDF algorithm.

Moreover, this guaranteed increase is the biggest for feedback

probability

p∗ = min

{

1,
1− 2β

2β

S(Q(t))

(K − 2)S(Q(t))− 1

}

. (8)

Proof: Assume that for every Q(t), r(Q(t), p) ≥ 1 +

δ(p) > 1. Then, denoting ǫ′ = ǫδ(p)
1+ǫ

, from Lemma 1 it follows

that
f̃(Q(t))
f(Q(t)) > 1 + ǫ′, and using Theorem 1 we conclude that

the stability region of pSDF is (1+ǫ′) times bigger the stability

region of SDF. Also, note that the ratio (1) is increasing in

r(Q(t), p), which in turn is concave in p. Therefore optimizing

over it we get the stated result. We skip the detailed derivation

of p∗ due to space limitations.

It is has to be noted that optimizing according to the above

result implies that S(Q(t)) is known at every time slot. This

assumes that the probability distributions of the channels are

known and requires some complexity computation since this

quantity S(Q(t)) should be frequently updated. Therefore,

we will present in the next section a simple version of our

algorithm that guarantees an expansion of the stability region

at least with respect to full probing when the distribution of

the channels is identical among users. The interest in this case

is that the probability p will be independent of S(Q(t)).
In the above analysis we have implicitly assumed that

E{Mn(t)|Q(t)} > 1 for each subcarrier. Recall that K, being

the number of users, can take only positive integer values.

From [9] we have that for every subcarrier, E{Mn(t)} ≥
1
2 (1 +

1
L
)(K − 1). Therefore, the assumption holds for every

K ≥ 3, i.e. whenever there are at least three users in the

system. This is the case where it actually makes sense to

use SDF/pSDF kind of schemes. Indeed, for the case where

K = 1 there is essentially no scheduling problem. For K = 2,

a scheme where every user feeds back is always better than

the proposed one and SDF since both require a fraction of

timeslot for the base station to broadcast the channel states of

the user with maximum queue.

IV. APPROXIMATE PSDF
In order to simplify the implementation of our probing

algorithm, we provide in this section an algorithm where the

probing probability p does not depend on quantity S(Q(t)).
We will consider the case where the channels are homoge-

neous, that is when the distribution of the rates at a subcarrier

n is the same for all users. Further, let us consider the case

where the achievable rates are uniformly distributed. Denote

by Muni := E {Mn(t)|Q(t), uniform channel distribution} =
(1/2+1/(2L))(K−1) (relation given in [9]). By (7), (8) and

(3), it follows that the increase in the stability region guar-

anteed by pSDF with respect to full probing in the case with

homogeneous is increasing as E{Mn(t)|Q(t)} increases. For

each subcarrier, we can prove that Muni ≤ E {Mn(t)|Q(t)}
for any possible distribution of the channel states, in other

words the case with uniform channel distribution has the worst

lower bound gain with respect to the full probing case. The

detailed proof of this result is not provided here since it

can be obtained directly from the results in [9]. Therefore,

examining this case gives a lower bound on the guaranteed

achievable improvement with respect to full probing in the

case of homogeneous channels .

From the analysis in the previous Section it follows:

Corollary 4. When channel rates are uniformly distributed

the feedback probability that maximizes the guaranteed en-

largement of the stability region is given as p∗uni =

min
{

1, 1−2β
2β

2L
2KL+K−3L−1

}

.

Proof: Since the achievable rates are now identically

distributed among subcarriers and users, it will also hold that

Wn(t) = W ′(t), therefore W (t) =
∑N

n=1 Wn(t) = NW ′(t).

So in the uniform distribution case, S(t) = NW ′(t)
W ′(t)N(Muni−1) =

1

(K−1)(L+1

2L
−1)

. Replacing in (8) we get the stated result.

An attractive property of the feedback probability in this

case is that it reduces the implementation complexity of pSDF

in practice. Therefore, and even if the distributions of the

channel states are not homogeneous, we propose in this section

to simplify the implementation of the pSDF by using p∗uni
given above instead of p∗ given by (8). We call this algorithm

”approximate pSDF”. Also, note that for homogeneous but

not uniform channel there will be p∗ > p∗uni, which implies

that the approximate method will probe fewer channels. This

follows from the fact that p∗ is decreasing in E{Mn(t)|Q(t)}
(see equations (3) and (8)), which is the smallest possible in

the case of uniform distribution.

V. SIMULATION RESULTS AND DISCUSSION

In order to illustrate the gains and operation of the algorithm

we will consider a single cell downlink with N = 15 channels.

The channels are assumed to be i.i.d. across users, frequencies,

and time slots and the achievable rates (in bits per time slot)

are as in Table I (the rates are calculated according to the LTE

specifications, with Ts = 1ms ).

We set the traffic patterns to be i.i.d. Poisson, with the same

arrival rate, λ bits per slot for each user. We run simulations

lasting 10000 time slots each for different arrival rates and

plot the average total queue length at each simulation for

SDF, randomized SDF with probing probability as derived in

Section III (denoted ”Optimized pSDF”) and the approximate

probability as set in Section IV.

At first we simulate the system with β = 0.1 and K = 9
users. In this case full probing is possible. The results are

plotted in Fig. 1. We can see that the randomized version of



the algorithm obtained via optimizing the upper bound is the

same as SDF here, while the probability of probing in the

approximate algorithm is smaller. Also, the performance of

the approximate algorithm is better from the other two.

In Fig. 2 we present the results of a scenario with K = 25
users and two different values of β, namely 0.05 and 0.01.

Note that in both of these cases full probing is not possible.

Again, the approximate version of the algorithm has a lower

probing probability than the version that optimizes the upper

bound and performs better. In turn, the latter version performs

better than SDF. Also, from Figures 1 and 2 we can see that the

stability region of the system shrinks under all algorithms as β
and/or the number of users K grow larger. In the case of SDF

this happens because as these parameters grow larger, more

time needs to be devoted to channel reporting, leaving fewer

time for transmission. However, in the randomized versions

the main reason for the rate decrease is that it becomes more

possible that the user with maximum weight will not report

his channel and subsequently another user will be scheduled

instead of him. As we can see in the figures, the decrease in

the stability region is slower in the case of the randomized

algorithms. This demonstrates that there is a gain with respect

to SDF algorithm and moreover that the relative gains of

randomizing the SDF algorithm are bigger when there are

more users and/or channel probing is more costly.

The main reason why the approximate algorithm outper-

forms the other pSDF is that the bound to which the optimized

probability corresponds to is not tight. In fact, the theoretical

analysis in this paper has been done in terms of region increase

guarantee and this has been studied using the lower bounds

developed in the previous sections. These lower bounds are not

necessarily tight which means that the real expansion is higher

than the lower bound. Recall that in the course of derivation

of equation (2), the quantity was bounded assuming implicitly

that (i) if the user with the maximum weight has not probed

a channel then no user is scheduled in the channel and (ii)

the user polled by the base station is never the user with

the maximum weight. As seen previously the approximate

probability p∗uni is less or equal that the one obtained through

full optimization.

VI. CONCLUSIONS

We examined a randomized channel feedback algorithm that

expands the stability region in a multi-carrier system. We have

obtained a lower bound of the expansion of the region and

found the optimal feedback probability that maximizes this

bound. Our probing scheme ensures thus a region increase

guarantee. We provided also a simple version of our algorithm

that simplifies the implementation of the feedback scheme by

finding a feedback probability that does not depend on the sys-

tem statistics and can achieve also a very good performance.

Further issues to be studied include finding the maximum

stability region with distributed probing as well as looking at

practical ways to implement the probing scheme taking into

account delay constraints.

Rate (bits/slot): 0 25 39 63 101 147 197 248

Probability: 0.03 0.04 0.05 0.05 0.06 0.06 0.09 0.09

Rate (bits/slot): 321 404 458 558 655 759 859 933

Probability: 0.1 0.1 0.09 0.06 0.06 0.05 0.04 0.03

TABLE I
ACHIEVABLE RATES AND PROBABILITIES USED FOR THE SIMULATIONS
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Fig. 1. Average Total Queue Length for Different Mean Arrival Rates for 9
users and β = 0.1
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Fig. 2. Average Total Queue Length for Different Mean Arrival Rates for 25
users and different values of β


