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Abstract—As future small cell base stations (SCBSs) are set
to be multi-mode capable (i.e., transmitting on both licensed
and unlicensed bands), a cost-effective integration of both tech-
nologies coping with peak data demands is crucial. Using tools
from reinforcement learning, a distributed cross-system traffic
steering framework is proposed whereby SCBSs leverage WiFi,
to autonomously optimize their long-term performance over the
licensed spectrum band, as a function of the traffic load and
users’ heterogeneous Quality of Service (QoS) requirements.
The proposed traffic steering solution is validated in a Long-
Term Evolution (LTE) simulator augmented with WiFi hotspots.
Remarkably, it is shown that the proposed cross-system learning-
based approach outperforms several benchmark algorithms and
traffic steering policies, with gains reaching up to 200% when
using a traffic-aware scheduler as compared to the classical
proportional fair (PF) scheduler.

I. INTRODUCTION

In order to cope with peak data traffic demands, operators

are compelled to find new ways to boost their network capac-

ity, provide better coverage, and ease network congestion. By

2016, mobile operators will face the so-called “pain-point” sit-

uations in which demand will outweigh capacity, thus calling

for innovative and proactive solutions [1], [2], [3]. Since small

cells are becoming multi-mode (operating on both licensed

and unlicensed bands), leveraging the already existing WiFi

component can help alleviate network congestion, smartly

offload traffic, and achieve cell splitting gains [3].

The idea of integrating WiFi and small cells holds the

promise of helping operators solve the capacity crunch prob-

lem, exacerbated by network densification. Indeed, WiFi tech-

nology has limits that small cells can capitalize on, such as in

cases of high traffic congestion and load, in which a large

number of WiFi users compete in shared but uncontrolled

spectrum, yielding dramatically poor throughputs. This caveat

is further exacerbated when other devices (laptops, tablets and

dongles) transmit on the same unlicensed band. In contrast, a

better managed small cell operation transmitting over licensed

spectrum yields better performance gains.

In this article1, we propose a self-organizing traffic offloading

framework, through which small cells (seamlessly) steer their

traffic between 3G and WiFi radio access technologies (RATs),

as a function of (heterogeneous) users’ traffic requirements,

1This work has been partially sponsored by the European CELTIC project
SHARING.
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Fig. 1. An illustration of the inter Radio Access Technology Integration.

network load, and interference levels. Inspired from reinforce-

ment learning (RL) theory [4], we build upon our earlier work

in [5], by exploring the case where small cells simultaneously

transmit on the licensed and unlicensed/WiFi bands serving an

arbitrary number of users. In a nutshell, leveraging the free but

potentially congested WiFi band, small cells engage in a long-

term self-organizing process by learning their optimal trans-

mission configuration over both licensed/unlicensed bands.

The basic idea revolves around offloading traffic to WiFi suit-

able for delay-tolerant applications, whereas delay-stringent

applications (video, streaming, etc) are steered towards the

licensed spectrum with QoS guarantees. Furthermore, due to

load coupling between 3G and WiFi, the cross-system learning

procedure is jointly carried out on 3G and WiFi, in which the

learning procedure on WiFi happens on a faster time-scale than

on 3G. Besides, and as will be shown, endowing the cross-

system learning framework with a traffic-aware scheduler leads

to significant gains, outperforming several traffic steering and

offloading policies.

A. Related work

In [2], the authors compare the system performance when

using cell range expansion based and WiFi offloading solu-

tions. Small Cell Forum [6] recently discussed Femto-WiFi

integration to provide dual air-interface support for co-located

cell coverage locations. Therein, a comprehensive study of



use cases, scenarios and challenges of integrated Femto-

WiFi networks are presented. In [7], a quantitative study on

the performance of 3G mobile data offloading through WiFi

networks is studied. In [8], the authors propose a framework

for 3G traffic offloading incentivizing mobile users with high

delay tolerance to offload their traffic to WiFi. In [9], the

authors look at the economical aspects of WiFi offloading. In

[10], the authors characterize the coexistence of closed-access

femtocells with other unlicensed band users2. Nevertheless,

while interesting, none of these works deal with the dynamics

of small cells and WiFi offloading, nor do they explore the

degree of freedom of long-term scheduling.

This paper is organized as follows. In Section II, both sys-

tem and game models are presented. Section III describes the

cross-system learning framework carried out by small cells to

learn their optimal transmission strategies, and smartly offload

traffic. The distributed traffic steering algorithm coupled with

the traffic-aware scheduler are described in Section IV. Finally,

numerical results are presented in Section V, and Section VI

concludes the paper.

II. SYSTEM MODEL

A. Network Model

Let us consider M = 1 macrocell base station (MBS)

operating over a set S = {1, . . . , S} of S frequency bands.

Consider a set K = {1, . . . ,K} of K SCBSs underlaying the

macrocell. Each SCBS is dual-mode and transmits over both

licensed and unlicensed bands to serve its UEs (see Fig. 1).

Let p
(s)
j denote the downlink transmit power of SCBS j on

subband (SB) s and |h
(s)
i,j |

2 the channel gain between the SCBS

and its associated UE in subband s ∈ S . N
(s)
0

2
is the variance

of the additive white Gaussian noise (AWGN) at receiver k,

assumed to be constant over all subbands. Let pk,max with

k ∈ K be the maximum transmit power of SCBS k. For all k ∈

K, let the S-dimensional vector pk(t) =
(

p
(1)
k (t), ..., p

(S)
k (t)

)

denote the power allocation (PA) vector of SCBS k ∈ K at

time t. Here, p
(s)
k (t) is the transmit power of SCBS k over

subband s at time t. All SCBSs are assumed to transmit over

the licensed and unlicensed spectrum band at each time t with

a given power level not exceeding pk,max. Let Lk ∈ N be

the number of discrete power levels of SCBS k and denote by

q
(ℓ,s)
k its ℓ-th transmit power level when used over channel s,

with (ℓ, s) ∈ Lk × S , with Lk = {1, . . . , LK}. Denote also

by q
(0,0)
k , with k ∈ K, the S-dimensional null vector, i.e.,

q
(0,0) = (0, . . . , 0) ∈ RS . Thus, SCBS k has Nk = Lk ·S+1

possible PA vectors and for all t ∈ N , pk(t) ∈ Ak, where:

Ak = q
(0,0) ∪

{

q
(ℓ,s)
k : (ℓ, s) ∈ L × S

}

. (1)

The signal-to-interference-plus-noise-ratio (SINR) for SCBS

k ∈ K serving its user equipments ki ∈ {1, . . .Ki} is:

2In this work, the authors focus on a single band (worst case scenario).
In addition, femtocells and WiFi hotspots are placed in different houses, and
hence do not interfere significantly with each other.
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|h

(s)
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|2p
(s)
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+ |h

(s)
ki,0

|2p
(s)
0

︸ ︷︷ ︸
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+
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j∈K\{k}

|h
(s)
ki,j

|2p
(s)
j

︸ ︷︷ ︸

SCBS

. (2)

Each SCBS k is interested in optimizing its (long-term)

utility metric (i.e., small cell throughput) in both licensed and

unlicensed spectrum:

uk

(
pk,p−k

)
= E

[ S∑

s=1

Ki∑

ki=1

log2
(
1 + SINR

(s)
ki

)]

, (3)

B. Game Model

Due to the coupling in transmission strategies, the joint in-

terference management and traffic offloading problem is mod-

eled as a normal-form game G =
(

K, {Ak}k∈K, {uk}k∈K

)

.

Here, K represents the set of SCBSs (i.e., players) in the

network and for all k ∈ K, the set of actions of SCBS k is

the set of subbands and power allocation vectors Ak described

in (1). We denote by A = A1 × ... × AK the action set and

uk : Ak → R
+ is the payoff function of SCBS k.

At each time t, each SCBS k chooses its action from the

finite set Ak following a probability distribution πk(t) =(

π
k,q

(0,0)
k

(t), π
k,q

(1,1)
k

(t), ..., π
k,q

(Lk,Sk)

k

(t)
)

where π
k,q

(lk,sk)

k

is the probability that SCBS k plays action q
(lk,sk)
k at time

t, i.e.,
π
k,q

(lk,sk)

k

= Pr
(

pk(t) = q
(lk,sk)
k

)

. (4)

where (lk, sk) ∈ {1, ..., LK} × S ∪ {(0, 0)}.

III. CROSS-SYSTEM LEARNING FRAMEWORK FOR

SELF-ORGANIZING RADIOS

A. Rationale

The inter-RAT integration mandates a framework that allows

SCBSs to optimize their transmission over the licensed band,

by smartly offloading traffic to the WiFi network. For this

purpose, we propose a novel framework for self-organizing ra-

dios, coined cross-system learning. In this framework, SCBSs

judiciously steer their traffic over both the licensed and

unlicensed spectrum, by learning over time how to select

suitable subbands and corresponding power levels in licensed

and unlicensed bands. In what follows, we first describe the

cross-system learning procedure followed by the proactive

scheduling mechanism. This scheduling mechanism is traffic-

aware and takes into account users’ QoS requirements, e.g.

throughput and latency.

B. Subband Selection

Driven by the fact that every SCBS needs to learn its

long-term utility metric, by transmitting on both licensed and

unlicensed bands, we extend our recently proposed learning

procedure [5] in two ways: (i) unlike [5], an SCBS serves an

arbitrary number of UEs, (ii) unlike the standard proportional

fair scheduling, every SCBS schedules its UEs in a proactive

manner, by taking into account the instantaneous channel

conditions, congestion levels and file sizes. For this purpose,



a behavioral rule is defined in which SCBSs strike a balance

between minimizing their long-term regret of choosing actions

which yield lower regrets than those yielding higher regrets,

but in any case always letting a non-zero probability of

playing any of the actions. This behavioral rule is akin to

the exploration-exploitation paradigm [4].

The considered behavioral assumption is that all small cells

are interested in choosing a probability distribution π
∗ ∈

△ (A) that minimizes the regret, where the regret of SCBS

k for not having played action q
(ℓk,sk)
k from n = 1 up to time

t is calculated as follows:

r
k,q

(ℓ,s)
k

(t) =
1

t

t∑

n=1

uk

(

q
(ℓ,s)
k ,p−k(n)

)

− ũk(n), (5)

ũk(n) is the instantaneous utility observation of SCBS k at

time n (or feedback). obtained by constantly changing its

actions following a particular strategy πk. Formally speak-

ing, this behavioral rule can be modeled by the probability

distribution βk(r
+
k (t)) satisfying:

βk(r
+
k (t)) ∈

arg min
πk∈△(Ak)

[ ∑

pk∈Ak

πk,pk
rk,pk

(t) +
1

κk

H(πk)
]

, (6)

where r
+
k (t) = max (0, rk(t)) denotes the vector of positive

regrets, and H represents the Shannon entropy function of the

mixed strategy. The temperature parameter κk > 0 represents

the interest of SCBS k to choose other actions rather than

those minimizing the regret in order to improve the estimations

of the regret vectors (5). The unique solution to the right-

hand-side of the continuous and strictly concave optimization

problem in (6) is written as:

βk(r
+
k (t)) =(

β
k,q

(0,0)
k

(r+k (t)), βk,q
(1,1)
k

(r+k (t)), ..., βk,q
(Lk,Ak)

k

(r+k (t))
)

(7)

where ∀k ∈ K and for all (lk, sk) ∈ Lk × S:

β
k,q

(lk,sk)

k

(r+k (t)) =
exp

(

κkr
+

k,q
(lk,sk)

k

(t)
)

∑

pk∈Ak

exp
(

κkr
+
k,pk

(t)
) , (8)

where β
k,q

(lk,sk)

k

(r+k (t)) > 0 holds with strict inequality re-

gardless of the regret vector rk(t). Note that if r
k,q

(lk,sk)

k

(t) >

0, SCBS k ∈ K would have obtained a higher average utility

by playing action q
(ℓk,sk)
k during all the previous stages. Thus,

player k regrets for not having done it.

C. Long-Term Scheduling

After the SCBS acquires its subband, it schedules its

UEs according to their QoS requirements by considering

instantaneous channel conditions and completion time of each

transmission. In short, the SCBSs carry out their (long-term)

traffic aware scheduling procedure on the resource blocks of

the selected subband (in the licensed spectrum), whereas in

the unlicensed band, a subband is allocated to a given UE

and for a fixed transmission time. By means of the cross-

system learning procedure, the SCBS attempts to access the

unlicensed band at random time instants through sensing,

and selects the unlicensed subband whenever sensed idle for

a fixed duration. Otherwise, the SCBS does not access the

unlicensed band and waits for the next access opportunity. In

what follows, we define three key parameters that describe the

channel access procedure in the unlicensed band:

• Attempt interval: the period of the access opportunities,

which is random for each SCBS.

• Transmission duration: the fixed duration during which

an SCBS accesses the unlicensed band after a successful

channel access attempt. Within this duration, SCBS allo-

cates its selected subband to one UE, either based on a

coverage or load policy. Under the coverage-based policy,

the UE with maximum reference signal received power

(RSRP) is selected. In the load-based policy, SCBSs

strike a balance between LTE and WiFi networks. Here,

UEs with non real-time sensitive traffic models (e.g.,

FTP) are steered towards the unlicensed band based on a

set of thresholds.

• Sensing duration: the predefined time (1ms) duration

during which the SCBS senses the unlicensed band.

The proposed traffic-aware scheduling algorithm incorporates

users’ traffic requirements and builds on the work in [13].

Notably, the scheduling decision is not only based on the

instantaneous channel condition, but also on the completion

time (delay), and users’ service class. In detail, let Dki
(t)

denote the scheduling metric of UE ki serviced by SCBS i.
The proactive scheduling algorithm encompasses the following

two phases:

• Phase I: Within every small cell, all users are sorted in

an ascending order as a function of their remaining file

size Xki
(t) and the estimated average data rate uki

of UE

ki. The position of an UE ki is denoted by Pki
(t), which

reflects the priority of an UE according to its expected

transmission completion time.

• Phase II: Depending on this position, the following cost

metric Dki
(t) is calculated:

Dki
(t) =

(

Pki
(t)−1

)

−
(

Mk(t)−Pki
(t)+1

)(
Xki

(t)

uki

− 1

)

,

(9)

where Mk(t) denotes the number of UEs served by SCBS

k at time t, having data in their traffic queue. Finally, the

scheduled UE ki at time instant t is performed for each

resource block based on:

k∗i = argmin
ki

(Dki
(t)) (10)

In the simulations, we consider phase I as a benchmark

scheduler in which resource block allocation is performed for

each UE ki according to its priority obtained by its position

Pki
(t). This scheduler is known as Earliest Deadline First

(EDF) [11].
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Fig. 2. Convergence of the proposed cross-system learning algorithm vs.
standard independent learning.

IV. SIMULATION RESULTS

In this section, we validate the proposed cross-system

learning framework in an LTE-A simulator integrating WiFi

capabilities. In detail, we consider a time and frequency

selective multi-carrier WiFi with a mix of traffic distributions.

The considered scenario comprises one macrocell consisting

of three sectors underlaid with an arbitrary number of K
open access small cells operating on both 3G and WiFi.

SCBSs are uniformly distributed within each macro sector,

while considering a minimum MBS-SCBS distance of 75
m. The path-loss models and other set-up parameters were

selected according to the 3rd Generation Partnership Project

(3GPP) recommendations for outdoor picocells (model 1) [12].

NUE = 30 mobile UEs were dropped within each macro

sector out of which Nhotspot = 2
3NUE/K are randomly and

uniformly dropped within a 40 m radius of each SCBS, while

the remaining UEs are uniformly dropped within each macro

sector. Each UE is assumed to be active, with a fixed traffic

model from the beginning of the simulations while moving at

a speed of 3 km/h. The traffic mix consists of different traffic

models following the requirements of the Next Generation

Mobile Networks (NGMN) [14].

The bandwidth in the licensed (resp. unlicensed) band is 5
MHz (resp. 20 MHz). The simulations are averaged over 500
transmission time intervals (TTIs). For sake of comparison,

we consider the following cases:

• Macro-only: The macrocell is the only serving cell of all

UEs using the PF scheduler by uniformly distributing its

maximum transmission power over the whole bandwidth.

• HetNet: SCBSs are activated and transmit only on the

licensed band. Here, both MBS and SCBSs serve their

UEs in the licensed band. Uniform power distribution is

assumed per subband.

• HetNet + WiFi (load-based): each SCBS transmits on

both licensed and unlicensed bands by selecting one

subband on each licensed and unlicensed band. Access
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Fig. 3. Cumulative distribution function (CDF) of the average UE throughput
for NUE = 30 UEs.

to the unlicensed band is performed based on the load as

described in Section III.C. PF scheduling is performed

on the licensed band.

• HetNet + WiFi (coverage-based): Same as HetNet +

WiFi load-based except that the access method on the

(un)licensed band is based on the maximum reference

signal received power criterion.

Fig. 2 plots the convergence behavior of the proposed cross-

system learning algorithm in terms of the ergodic transmission

rate. Here, we consider 10 UEs per macro sector, with 1.4
MHz bandwidth in the licensed band. In addition, we plot

the standard RL algorithm [5], in which learning is carried

out independently over both licensed and unlicensed bands.

Quite remarkably, it is shown that the cross-system learning

approach converges within less than 50 iterations, while the

standard approach [4] needs several hundreds iterations to

converge. Furthermore, the standard procedure exhibits an

undesirable oscillating behavior (i.e., ping-pong effect between

the licensed and unlicensed band).

Fig. 3 plots3 the cumulative distribution function (CDF) of

the average UE throughput for NUE = 30 UEs. While, in the

macro-only case, 25% of UEs obtain no rate, deploying small

cells is shown to increase the performance; especially for cell-

edge UEs. In particular, the proposed solution (HetNet+WiFi

load-based) yields the best performance, outperforming the

other benchmark solutions.

Fig. 4 plots the total cell throughput as a function of

the deployed small cells. The proposed cross-system learning

approach using the traffic-aware (TA) scheduler outperforms

the traditional PF scheduler and earliest deadline first (EDF)

scheduler, with gains reaching 200% when deploying 6 small

cells. Additionally, Fig. 5 depicts the total cell throughput as

a function of the number of UEs in the network. While the

3For sake of clarity, in the case of random, an SCBS selects randomly
one subband and performs PF scheduling, whereas proposed refers to the
regret-based subband selection with traffic-aware (TA) scheduling.
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standard PF-based scheduler cannot cope with the increasing

number of UEs, the proposed approach is able to steer users’

traffic in an intelligent and dynamic manner over both licensed

and unlicensed spectrum, and the gains are pronounced with

300 UEs. Finally, Fig. 6 plots the average UE throughput

as a function of the number of users per sector, in which

the proposed approach outperforms the benchmark algorithms

with traditional schedulers, with 5X more gains as compared

to the EDF with 300 UEs.

V. CONCLUSION

In this paper, the tight integration of 3G/LTE and WiFi

networks has been investigated, where SCBSs transmit simul-

taneously on both licensed and unlicensed bands. We demon-

strated that the proposed cross-system learning framework

allows small cells to optimize their performance, by striking a

balance between selecting actions yielding high regrets more

often than those with low regret, while experimenting any of
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the other actions. The cross-system learning framework has

been shown to exhibit significant improvements in terms of

average UE throughput, especially in high load conditions. In

future investigations, we will extend the current model to the

case of high-mobility users and interplay between mobility,

cell association, and interference management.
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