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Abstract   

Design to capacity is an engineering principle that is increasingly applied in chemical industry, among others 
due to increasing plant sizes and associated investments. This principle aims to reduce over-capacity, over-
sized buffers and excessive redundancy. Concurrently, a high level of availability is targeted over the entire 
production chain. The consequences of unavailability of highly interconnected chemical process plants can 
be significant because a technical disruption in one plant is able to spread over the entire production network. 
In chemical process plants not only technical equipment determines the availability but also storage units, 
which are able to bridge times of planned or unplanned interruptions of production. To find a balance 
between the principle of design to capacity and high production availability, the influence of different design 
parameters, such as capacity of production units, redundancy concept and the size of storage units have to be 
evaluated and integrated in the design process. In this paper, we present an analytical method for availability 
evaluation based on extending Semi-Markov processes integrating storage units and multiple production 
lines. Semi-regenerative states are used to capture the characteristics of storage units, and an approach is 
proposed in this work to assign distributions for the remaining holding times in these states. The proposed 
modelling and analysis are demonstrated on two case studies.  
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Introduction 

Market growth, steady technological advancements and the push for more profitability have amplified the 
principle of economies of scale in chemical industry (which also leads to increasing plant sizes), especially 
for basic chemical products. From the complexity side, chemical products are highly interrelated and 
therefore production plants are often characterized by a high degree of interconnection. This can result in 
complex production chains consisting of several interconnected, partly multi-channelled production plants 
and storage units.1 As a consequence, failures can spread over the entire production network causing, besides 
the direct costs of repair, also shutdown events in interconnected plants.  
 
The availability of chemical production plants is not only determined by the availability of the technical 
equipment but also by that of storage units. These are designed to bridge planned or unplanned interruptions 
of production of single plants in a production chain.  
 
Due to the significant impacts of the unavailability of a single plant on the connected production plants, but 
also due to fluctuations and uncertainties in markets, the production plants may often have over-capacities, 
the storage units may be oversized and the production chain may exhibit excessive redundancy. To cope with 
this issue, several value improving practices (VIP) are pursued in process industry, one of which is design to 
capacity.2 It implies a systematic evaluation of the operating capacity of the entire production chain and the 
individual contributions and influences of each major item of equipment. Design to capacity in the context of 
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chemical process engineering aims to reduce over-capacities, oversized buffers and excessive redundancy, 
and thus investment costs. The application of the principle of design to capacity implies an availability 
evaluation of the production chain, based on plant capacities, production rates, and failure behaviour of 
technical equipment and storage tank sizes. Availability analysis provides a basis for specifying the optimal 
capacities for plants and sizes for storage units.3 As production availability is determined by both the 
technical equipment as well as by storage units, both must be included in the availability analysis.  
 
There are several approaches to evaluate the availability of a process plant. Many rely on Monte Carlo 
simulations,4, 5 for the flexibility offered to model different types of distributions, aging behaviours and 
maintenance policies. Some of the simulation models also include storage units in the availability 
evaluation.6, 7 Besides simulation approaches, there are also analytical methods to evaluate the availability,8-10 
but they are not flexible enough to evaluate all the relevant parameters.   
 
The motivation of the present work is to develop an analytical method for availability evaluation of chemical 
production chains capable of:  

- integrating storage units in the overall availability analysis;  
- evaluating the availability of the total production system and of different output products, which are 

not necessarily the output of the last production unit in the production chain;  
- evaluating the sensitivity of the capacity of a storage unit on product availability in an interconnected 

production chain;  
- evaluating several parameters, such as the frequency of entering a certain state or the holding time 

spent in a defined state, which is not only limited to non-functional states;   
- accounting for the possibility of operating at levels below the designed capacity.  

 
An analytical method that can in principle integrate the stated requirements is that of Semi-Markov 
processes.11 However, inclusion of the states representing the storage units results in semi-regenerative states 
which cannot be represented by the process. An attempt to include the semi-regenerative states in the process 
would result in a loss of memory on the repair actions undertaken on the failed unit in cases when the storage 
unit is either drained or filled. To overcome this problem, an approach to assign a distribution for the 
remaining holding times in the semi-regenerative states is proposed in this paper. The approach is first tested 
on a simple case study consisting of two identical production units separated by a storage unit. The 
sensitivity of the volume of the storage unit on the availability of the output product is analysed. 
Subsequently, the approach is applied to a case study of a Cx production chain.   
 
In the next Section of this paper, the issues related with the integration of storage units are introduced and an 
overview on Semi-Markov processes is given followed by an overview over the different possibilities of 
integrating semi-regenerative states in the Semi-Markov processes. Then, Sections 3 and 4 illustrate the case 
studies and Section 5 is left for discussion and conclusions.  

Methodology 

Integrating storage units in availability evaluation 

In process engineering, storage units are applied to decouple single production subsystems and thereby to 
reduce their mutual influence and the degree of interconnection. Storage units are able to increase the 
availability of the entire production system because decoupling of units can prevent that production units 
have to be shut down due to failures in the upstream or downstream of the production chain. One prerequisite 
of the influence of storage units on system availability is that it has to be possible to adapt the output 
capacity of production plants after failure events, in order to control the filling level of the storage tanks.  
 
The ability of storage units to decouple the interdependencies of chemical production plants has a significant 
impact on production availability and therefore it has to be included in the availability evaluation. The 
impact is in two directions (Figure 1): if the upstream unit fails, the downstream unit can still be operated 
and the product continuously produced as long as the tank is not drained; if the downstream unit fails and its 
restoring duration is shorter than the buffering time of the tank, the shutting down and starting up processes 
of the upstream unit can be obviated although the unavailability of output production cannot be prevented.  
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Figure 1. Bridging effect of the tank in case of failure of the upstream unit (left) or downstream unit (right). 
 
Because the storage units have different effects on downstream and upstream units, its buffering function can 
be divided according to the effect: either the effect to supply the input product to the downstream unit or the 
effect to provide an empty storage volume for the upstream unit. In the state space, these conditions will be 
represented by separate states. 

Few concepts of Semi-Markov processes 

Semi-Markov processes belong to the class of stochastic point processes12 and are, analogously to Markov 
processes, regenerative processes. In the literature Semi Markov processes are also referred to as Markov-
renewal processes.13, 14 Equivalently to Markov processes, Semi-Markov processes can be divided into 
discrete and continuous processes. However, contrary to the Markov processes, which are regenerative in 
each single moment, Semi-Markov processes only lose their memory in state transition. The holding time in 
a state does not only depend on the state in which the process is in the considered moment, but also from the 
state which the system will change to, at the next step.12 The holding time of the state is stored and influences 
the state which the process makes a transition to, at the next step. The state transition is then conditional and 
the process only loses its memory in state transitions. 
 
The holding time in state i before the transition to state j is a positive random variable with distribution 
function Fij(t). Semi-Markov processes are determined completely by defining the distribution functions Fij(t) 
of all states and specifying the initial distribution. For reliability and availability analyses, all relevant system 
parameters, as for example the reliability or availability of the system, can be derived from these functions. 
The processes are often defined by their transition probabilities Qij(t): 
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with  Qij(t): probability of state transition in one step from the state i to the state j, within time t (without 

entering other states) 
 S: set of all states 

Fij(t): distribution function of conditional holding time Tij. 

 
The conditional probability Pij(t) that the system is in state j at time t if the system started at state i at time t=0 
can then be calculated by convolution of two probabilities: 
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with   S: set of all states 
 δij: Kronecker’s delta 
 
With this equation it is possible to calculate also the reliability of the system Ri(t) . In this case, only the 
conditional probability of not-entering the down-states, but only remaining in the up-states, is calculated: 
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with  S: set of all states 

US: set of all up-states 

Integrating semi-regenerative states in Semi-Markov processes 

One of the advantages of applying Semi-Markov processes is that it is possible to use different types of 
holding time distributions, whereas Markov processes are limited to exponential distributions. However, 
Semi-Markov processes have limitations due to the fact that they are regenerative in each state transition. 
Therefore, they can only be applied for systems which can be modelled by regenerative processes. In order to 
expand applicability of Semi-Markov processes, non-regenerative states have to be integrated. This implies 
that between two renewal points state changes are allowed which are not regenerative.13 In some literature 
sources, a new class of semi-regenerative processes for this extension has been introduced.15 In some 
references, this enhancement is referred to as Markov-Renewal processes with some non-regenerative 
states.16 There are different approaches to integrate the evaluation of non-regenerative states, but not all of 
them fulfil the requirements of a new process class. Therefore, the enhancement induced by integrating non-
regenerative states is referred to as an extension of Semi-Markov processes and not as a new class of 
processes. In the following, an overview of different approaches to integrate semi-regenerative states in the 
evaluation of Semi-Markov processes is introduced. 
 
One of the possibilities for integrating semi-regenerative states is based on the condition that the process 
changes from each semi-regenerative state to a regenerative state15 and that only one regenerative state can 
be entered from a semi-regenerative state.  
 
Nakagawa and Osaki introduced in 16 another possibility to evaluate semi-regenerative states. This approach 
introduces a new class of transition probabilities and the process either transfers through several cyclic semi-
regenerative states before it re-enters a regenerative state or the process always re-enters a regenerative state 
before it can enter a semi-regenerative state.    
 
Another possibility to evaluate semi-regenerative states is to identify the distribution of the remaining 
holding times. If the distributions of the remaining holding times can be defined, semi-regenerative states 
merge into regenerative states and the evaluation of the process can be based on Semi-Markov processes. 
However, in practice it is usually difficult to determine these distributions. Therefore, typically, assumptions 
are made on the distribution of remaining holding times. 
 
A further possibility to evaluate Semi-Markov processes with semi-regenerative states is to transfer the 
whole state space into a Markov process. At first glance this approach seems not to have any advantage over 
setting up directly a Markov process, without having to detour to Semi-Markov processes. But the holding 
times in single states cannot always be assumed or approximated to be exponentially distributed. The direct 
assumption of constant transition rates would lead to a loss of information and inaccuracies in computation 
results. Approximations of Semi-Markov processes by Markov processes intend to integrate memory in the 
approximated processes and by this to reduce loss of information and inaccuracies, but at the same time to 
facilitate the computation of the modelled processes. Therefore, this approach is more powerful compared to 
pure Markov processes.  
 
There are numerous ways to approximate Semi-Markov processes by Markov processes. One of the 
possibilities is to introduce supplementary variables that transfer a non-Markovian process in a Markov 
process (Non-Markovian processes are stochastic point processes, which do not have the Markovian 
attributes and include Semi-Markov processes but are not limited to them17). The introduced supplementary 
variables are predominantly time variables. They represent holding times in semi-regenerative states, as for 
example the remaining duration of a repair activity. The state space is thereby transferred in a 
multidimensional state space.18, 19 This method can always be applied if parts of the process already 
incorporate the Markovian assumption.20 The application of the method is limited to systems with only few 
components and a limited number of supplementary variables.21, 22 The reason for this limitation is that 
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typically, not only one supplementary variable is required but several, and the state space can be significantly 
extended by this approach.  
 
A further possibility to approximate Semi-Markov processes by Markov processes is limited to Erlang 
distributed holding times and involves the introduction of auxiliary transition steps.14  An Erlang distribution 
represents systems that consist of several components with identical failure behaviour. It is formed by an n-
fold convolution of the exponential distribution with itself, which corresponds to the sum of n identical 
exponentially distributed random variables. Due to this property of the Erlang distribution, the Semi-Markov 
process described by Erlang distributed holding times can be directly transferred in an equivalent Markov 
process. The number of auxiliary steps and the transition rates between the single states are indicated by the 
distribution function. This approach leads to an expanded state space due the introduction of auxiliary 
transition states.  
 
A generalization of the approach of auxiliary steps has been introduced in 23 with the phase-type distribution, 
which is also referred to as ph-distribution. Phase-type distributions are characterized by a finite, absorbing 
Markov process. A phase-type-distributed variable of n-th order represents the time up to absorption in a 
Markov process with n states. Generally, there is a distinction between discrete and continuous phase-type 
distributions, but only the latter is relevant for approximatimg Semi-Markov processes. By applying phase-
type distributions, it is not the processes that are approximated but the distributions of the holding times. 
Some distributions are particularly suitable for approximations by the phase-type distributions, such as 
hyper-exponential distribution or its generalization in the Cox distribution.24 The distributions can be 
substituted by several combined exponential distributions: thereby, transition rates are constant. The 
approximation process is a two-step process. First, a suitable distribution or combination of distributions for 
approximation is selected. Thereafter, the number of steps and the parameters of the distribution are 
determined. This approach provides a good approximation for arbitrary distributed functions when applied 
with an appropriate number of steps. The memory of processes is created indirectly by the number of steps in 
the distribution.  
 
Another possibility to approximate Semi-Markov processes by Markov processes is to determine constant 
equivalent transition rates between the states. The prerequisite is that relevant information in the model is not 
lost. A central assumption for approximating Semi-Markov processes by Markov processes is that the 
considered processes are ergodic, which means that they are not dependent on initial conditions. Time 
dependent Semi-Markov processes are non-ergodic. Limnios states in 11 that for finite time periods the 
determination of state probabilities with approximated processes is inaccurate. But stationary processes can 
be approximated by equivalent transition rates. For obtaining the equivalent transition rates the following 
equations have to be solved:  
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with  λ`ij : equivalent transition rate from state i to state j 

pij : probability of one step transition from state i to state j 
Ti : holding time of the process in state i, before the process changes to an arbitrary state 
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with  Hi(t): distribution function on non-conditional holding time Ti 
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For the purposes of the work presented in this paper, we have adopted the method of determining remaining 
holding times for semi-regenerative states combined with the method of equivalent Semi-Markov transition 
rates. The latter is applicable to not time-dependent Semi-Markov processes, but the inaccuracies which can 
occur in a finite time space are accepted in our case. Additionally, in order to deduce the state space of the 
obtained Markov processes, similar states are aggregated by determining equivalent transition rates. 

Verification of the concept on a simple case study 

A simple system was selected in order to verify the proposed modelling approach. The system consists of 
two units which are connected by a storage unit (Figure 2). The units are assumed to have the same failure 
behaviour with equal constant failure and repair rates. Then, the time between failures and the time to restore 
the function are assumed to be exponentially distributed. This assumption was only made for simplicity 
reasons and can be easily relaxed. The mean time between failures (MTBF) is equal to 800 operating hours 
and the mean time to restore the units and put them back to operation (MTTR) is equal to 25 hours. 
Additionally, the units have the same production rate, which is equal to 20 m3/h, so that the tank can be filled 
and drained with the same rate. The decoupling time of the tank can be computed based on the capacity of 
the tank and the filling and the draining rate, respectively. This is the time during which the tank can be 
considered as a redundant system that supplies the product. During this time, the units are decoupled and the 
failures of one unit do not influence the production of the other unit. The tank can only fulfil this function for 
a limited period of time, the decoupling time (TD). 

 

Figure 2. Simple system with an upstream and a downstream unit decoupled by a storage tank. 

It is additionally assumed that the production capacity of the units can, for a short period of time, exceed the 
nominal value. Thereby, after a failure event the units are able to produce with a higher production rate in 
order to be able to regulate the filling level of the tank. If it were not possible to increase the production rate 
above the nominal, the time to put the production system back into full operation would increase or the 
output production would decrease until the desired filling level of the tank is achieved.  
 
Figure 3 demonstrates the state space diagram of the considered system, consisting of six states (which are 
numbered and coded). State 1 is the only state that is fully operable. In state 3 the output product can be 
produced in full amount. In state 2, even though the output product cannot be produced, the upstream unit 
can still be operated and does not have to be shut down. For simplicity reasons, it is assumed that if both 
units fail, they are taken together back into operation, which corresponds to state 4. This assumption makes 
perfectly sense in terms of practical considerations. States 5 and 6 are semi-regenerative states. Making them 
regenerative in first place would mean that the repair works that have already been performed on the failed 
units would have to be restarted when the tank is drained or filled. This would lead to significant 
inaccuracies in calculations. Therefore, distributions for the remaining holding times are assigned to these 
states in order to make them regenerative while preserving accuracy in calculations.  
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Figure 3. State space diagram of the considered system. 
U: upstream unit; D: downstream unit, TE: storage unit empty; TF: storage unit filled; states marked red: 
production unit failed or storage unit not fulfilling its function . 
 
The filling level of the storage tank is assumed to be regulated and therefore can be considered as 
deterministic. It is regulated to a filling level of 50% of the total tank capacity. Thereby, down- and upstream 
units are regarded as being equally important. Based on this assumption we can deduce the distribution for 
the remaining holding times in the semi-regenerative states. Therefore, it is assumed that the tank can buffer 
the portion of the restoring times that are smaller than the decoupling time of the storage tank. The part of the 
density function for which t > TD is assigned to the remaining holding time of the semi-regenerative states.  
The density function is divided therefore in two parts. For the time smaller than the expected decoupling 
time of the tank, the following density function is assigned: P(t>TD )=µe-µ(t-T

D
) .  In Figure 4 the assigned 

density function to the semi-regenerative states is marked hatched.   
 

 

Figure 4. Distribution of the remaining holding times in the semi-regenerative states. 

By assigning the distribution to the remaining holding times for semi-regenerative states, all the conditional 
and unconditional transition probabilities can be calculated. The sensitivity of the decoupling effect of the 
tank volume is analysed. Assuming that in the first place we are only interested in the availability of the 
production output, we will consider the influence of the tank volume on the mean time between successive 
production unavailabilities. There are two extremes: when the units are operated in series and are not 
decoupled, and when the tank has a sufficient volume to completely decouple both of the units so that only 
the downstream unit determines the number of shutdowns and therefore also the number of times when the 
production is not available. Figure 5 shows the relationship between the capacity of the tank unit and the 
mean time between successive production unavailabilities which arise at shutdown of the downstream unit, 
due either to failure of the unit itself or if the tank volume is not able to supply the input product in case of a 
failure of the upstream unit. With a tank volume of approximately 5000 m3 both units are decoupled and only 
the failures of the downstream unit determine the unavailability of the production output.  
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Figure 5. Impact of storage tank volume on the mean time between successive production unavailabilities. 

Application to a Cx production chain
 

A Cx production chain is considered (x substitutes a number in organic carbon compounds, due to 
information protection). The block diagram of the production chain is shown in Figure 6. Real failure and 
repair data were alienated due to information protection, but without a loss of significant information and 
characteristics.  
 

 

Figure 6. Block diagram of Cx production chain. 

The chemical production system consists of five plants (units 1-5) and three storage units (T1-T3). The plants 
that are shown in Figure 6 as being redundant, i.e. units 1 and 2, and units 4 and 5, are multi-channelled and 
not fully redundant. The capacities of the single multi-channelled units add up to 100% of the required 
capacity in the next production step. If one of the multi-channelled units fails, the upstream and downstream 
units are usually still able to operate, but with a reduced production capacity. The capacity proportions of the 
single units of the total production capacity in each production step are listed in Table 1. Additionally, the 
failure and restore behaviour of the single units is specified. For failure behaviour, only information on the 
frequency of random failures was available. As the exact distribution could not be determined due to lack of 
data, exponential failure behaviour was assumed.  

Table 1. Failure and repair behaviour of units in the production chain.  

Production unit % of total capacity MTBF in h MTTR in h

1 33.33 14,600 72 
2 66.67 14,600 72 
3 100 4380 72 
4 75 8760 24 
5 25 876 48 
 
The maximum volumes of the storage units are listed in Table 2.  

Table 2. Maximum volumes of storage units. 

Storage unit Volume of the storage unit in m
3

1 2000 
2 2800 
3 2000 

T1

1

2

T23

4

5

T3
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Availability considerations not only integrate the influence of random events, but also include the influence 
of planned maintenance activities. Planned preventive maintenance activities have a deterministic character. 
The present analysis only focuses on time-based maintenance scheduling. Generally, it is possible to 
coordinate into groups single maintenance activities of the production units. This approach is not included in 
this study, and therefore the maintenance activities are considered separately. The frequency and duration of 
the individual maintenance activities are listed in Table 3. 

Table 3. Frequency and duration of planned maintenance activities.  

Production unit 
Frequency of planned  

maintenance activities 

Duration of maintenance  

activities in d 

1 
twice in 5 years 
once in 5 years 

7 
35 

2 
twice in 5 years 
once in 5 years 

7 
35 

3 
once in 5 years 
twice in 5 years 

35 
21 

4 
once in 2 years 
once in 5 years 

5 
16 

5 
once in 1 year 
once in 5 years 

10 
20 

 
For the case study, the following assumptions were made to facilitate the computations. The same 
assumption made in the previous case study on the filling level of the storage tank in case of a failure event is 
adopted (50% of the total tank capacity). In general, this assumption can be relaxed and the filling level can 
be optimized depending on the relative failure behaviour of the up- and downstream units. But for this 
calculation, the optimization of the filling level is not in the focus of the study. In case of planned 
deterministic events, it is assumed, that the filling level of the tank is anticipated and the tank is either 
drained or filled. 
 
Furthermore, it is assumed that in case of multi-channelled units, if both of them fail, they are started up 
simultaneously. If one of the multi-channelled units has already failed and the second unit fails before the 
tank is drained or filled, the filling level is assumed to be 75%, respectively 25%, of the tank capacity. If one 
of the multi-channelled units fails, storage tanks cover the lost capacity for the period during which the tank 
volume is available. Thereafter, all the connected production units reduce their production capacity to the 
maximal capacity of the functioning multi-channelled unit which is still in operation. It is assumed that it is 
possible for all the production units to reduce their product output to these production levels. Furthermore, 
this approach neglects that other storage units in the production chain could also buffer the capacity gap of 
the up- or downstream units. This assumption reduces significantly the state space of the Semi-Markov 
process. The inaccuracies caused by this assumption are negligible.   
 
In the first step only the influence of random events is analysed. The deterministic analyses are performed 
separately and are included in the state space of Semi-Markov processes. But it is generally possible to 
perform the analysis by including random and deterministic events in one single Semi-Markov process. 
 
To reduce the complexity of the resulting state space, the system is divided in three subsystems, as shown in 
Figure 7. The first subsystem includes the units 1 and 2, and the storage unit T1. The second subsystem 
includes the unit 3 and the storage units T1 and T2. The third subsystem integrates the units 4 and 5, and the 
storage unit T3. The subsystems are first analysed separately; if necessary, the number of states is reduced. If 
the states are not feasible from the practical point of view, they are not included in the considerations. The 
reason that the storage unit T1 is included twice in the subsystems is that storage units have always an 
influence on the upstream units and on the downstream units. For storage unit T2, it is covered by the 
combination of the subsystems. 



Journal of Risk and Reliability 

 

Figure 7. Division of the Cx production chain into subsystems for availability analysis. 

The models of subsystems 1 and 3 result in 11 states, each; the model of subsystem 2 results in 4 states. The 
pertinent state spaces are shown in Figure 8. Subsequently, the transition probabilities and holding times of 
the subsystems are computed. Based on these data, the states of the subsystems are aggregated and the state 
space is reduced. When combining the subsystems, the interaction of the subsystems is considered and 
supplementary states are created if required. When combining the subsystems, some of the states are not 
feasible. These states are excluded from further consideration. The transition probabilities and the holding 
times of the merged subsystems are calculated and if required the state space is reduced, or the states are 
aggregated.  

  
 

Figure 8. State spaces of the three subsystems (subsystem 1: left, subsystem 2: middle, subsystem 3: right).    
P: unit in up-state; F: unit failed; T: storage unit not affected; TE: storage unit empty or filled; states marked 
in a shade of grey: production output degraded. 
 
In the following, the results of the availability analysis are presented. The production chain can be fully 
functional and have a 100% production output (state 1) or it can be in states with reduced production output 
(states 2-5). There are four possible states with a degraded production output (75%, 67%, 33% and 25% of 
the total production capacity) and one non-functional state (state 6). The results of the analysis are shown in 
Table 4. The probabilities to be in the considered state and the average stationary holding times in the states 
are listed in the Table. The analysis shows that the product is on average unavailable only in 0.6% of the 
time and if the production is unavailable it takes on average 23 hours to restore it. The storage unit can buffer 
a large part of the repair time of single units, which can be seen in the comparison of the holding times in the 
degraded states that vary on average between 4 and 43 hours, and times to repair single units that vary 
between 24 and 72 hours. Additionally, the storage units can prevent the system from entering a state with a 
degraded production output in cases when the repair times are shorter than the bridging times of the storage 
units. State 5 with the maximal production output of 25% is the degraded state with the longest average 
holding time of 43 hours and the highest probability of 0.22%. This state is determined by the most 
unreliable unit in the whole production chain (unit 5) and the repair times of this unit can only be buffered 
partly by the storage unit.   
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Table 4. Computational results of the case study. 

Aggregated 

state 

j 

Percentage of maximal 

production output,              

in % 

Probability to be in state j, 

in % 

Average stationary 

holding times of the 

system in the state, in 

h 

1 100 99.1180 3407.17 
2 75 0.0281 18.22 
3 67 0.0199 3.98 
4 33 0.0259 5.36 
5 25 0.2231 43.21 
6 0 0.5850 22.94 
 
The impacts of the planned maintenance activities are analysed separately from the stochastic events. With 
the assumptions described previously, the results shown in Table 5 are obtained. The percentage of the time 
was calculated in which the system is not able to provide the total required production capacity due to the 
planned maintenance activities.  

Table 5. Reduced production output due to planned maintenance activities.  

Aggregated state 

j 

Percentage of maximal 

production output, in % 
Percentage of the time the 

system is in state j, in % 
7 75 0.71 
8 67 0.60 
9 33 0.44 
10 25 0.37 
11 0 3.12 
 
As the maintenance activities are planned, the volume of the storage units can be regulated to the maximal 
buffer capacity. Therefore, some of the maintenance activities can be buffered entirely by the storage units. 
Other maintenance activities have a reduced impact on the availability of the product. In 3% of the time, the 
product cannot be supplied in full and in 2% of the time only a reduced volume of the product can be 
supplied. By regulating the level of the storage units and by coordinating the maintenance activities, it is 
possible to reduce the time in which the product cannot be supplied in full or in part to 5% in total. Without 
these measures the time with reduced production output would be threefold of this number.  

Conclusions 

By extending Semi-Markov processes with semi-regenerative states, it has been shown possible to integrate 
storage units in chemical production chains for their availability evaluation. By combining different 
approaches such as assigning distributions to the remaining holding times, determining the equivalent 
transition rates and aggregating of states based on transition rates and holding times, a reduction of the 
computational complexity could be achieved.  
 
Some of the assumptions specified in this case study can be easily relaxed, such as the exponentially 
distributed failure and repair behaviour. Semi-Markov processes are flexible to be applied with any 
distribution. 
 
As modelling of the state space was not automated, it was essential in this case study to maintain an 
overview of the system and its behaviour in different states, and to be able to understand the generated state 
space in terms of its technical interpretation. Therefore, the system was divided into subsystems and part of 
the analysis was performed at the subsystem level, before the sub-processes were combined and integrated. 
On the contrary, the aggregation of states reduces the flexibility of the analysis and the degrees of freedom. 
Therefore, the next step to expand the flexibility of this approach is to automate the analysis with having 
predefined components with predefined state spaces based on their failure behaviour, and then combining 
these predefined components into a production chain and its state space. By this approach, an overview and 
understanding of the technical function of the system is maintained and at the same time the flexibility is 
gained, without having to reduce the state space.  
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In the application, the load profiles of the single plants were not considered. Including the load profiles in the 
analysis would additionally increase the state space. However, it is possible to easily integrate different load 
profiles with the proposed approach. 
 
As discussed in Section 2, it is possible to approximate Semi-Markov processes by the phase-type 
distribution approach. The proposed approach did not follow the phase-type distribution approach, which 
might be beneficial to include in future research. 
 
The paper proposes an approach to include semi-regenerative states in Semi-Markov processes by assigning 
distributions for the remaining holding times in these states. This approach is adopted for applying it to 
availability evaluation of chemical production chains with storage units. By assuming regulated filling levels 
of the storage units, the density function representing repair times larger than the bridging time of the storage 
units is assigned to the semi-regenerative states. 
 
The proposed approach enables analytical availability evaluations which include both, the stochastic failure 
behaviour and the buffering influence of storage units. Additionally, the approach enables evaluations of all 
relevant parameters such as holding times in different states, and conditional and unconditional probabilities. 
Even though some assumptions may cause some inaccuracies in the results, the overall level of accuracy is 
appropriate for applying the approach in the design or modification phase, to enable an optimal layout of 
production network and to support decisions.  
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