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Abstract:In the context of risk assessment, we focus on the prediction of an unknown quantity Z whose 
value is realised in the future, and for which experimental data are not available. We deal with the issue of 
the uncertainty associated to the difference between the output of the model used for the prediction of Z 
and the true unknown value of Z itself. Accepted principles and methods for handling this uncertainty in 
the specific conditions of risk assessment are still lacking. Through the paper we seek to contribute by: 
i) making a clear distinction between model output uncertainty (epistemic uncertainty about the 
differences between the true values of the output quantities and the values predicted by the model) and 
sources of model output uncertainty, from incomplete/imprecise knowledge on the values of the parameters 
of the model to model assumptions, simplifications and approximations introduced in the model,   
ii)  distinguishing between model output uncertainty, structural model uncertainty and parameter (model 
input quantities) uncertainty,  
iii)  establishing explicit links between the different purposes of modelling and risk assessment, discussing 
how model output uncertainty should be treated in the different instances. 
We argue that in risk assessment, quantification of model output uncertainty serves for the qualification and 
acceptance of the models used, whose outputs feed the following risk-informed decision making process. 

Keywords: Risk assessment, model uncertainty, model error; structural model uncertainty, parameter 
uncertainty  

1. Introduction 

Risk assessment is based on models of the phenomena, events and systems of interest (the “real 
world”).Model uncertainty is, then, a relevant concept, which often arises in the consideration of 
the quality and reliability of the assessment, but with different meanings. It is common to consider 
model uncertainty when there are alternative plausible hypotheses for describing the phenomena, 
events and systems of interest [30,35].But model uncertainty is also addressed for a single model, 
which is generally accepted but not completely validated, or it is conceptually accepted and 
validated but its implementation is of uncertain quality, or it is recognized to only partially cover 
the relevant aspects of the problem, or it is composed of submodels of different degrees of 
accuracy and credibility [10]. Finally, model uncertainty is also analyzed to describe the 
differences between the actual, real world output values and the output values of the model 
[16,23,28].   
The purpose of the present paper is to contribute to framing and better understanding the problem 
of model uncertainty in the context of risk assessment by a fundamental rethinking of the concept 
itself. Whereas much of the existing views have been founded on the probability of frequency 
approach to risk assessment (implying the existence of probabilistic models of the aleatory 
uncertainties, with unknown parameters subject to epistemic uncertainties [11]), our view expands 
onto a broader framework, to capture both the probability of frequentist set-up and the modelling 
supported by subjective probability assignments (or alternative approaches for expressing 
epistemic uncertainties, like imprecise probabilities).   



Secondly, we specify the concept in relation to the objectives of the modelling and risk 
assessment, discussing how uncertainty should be treated in the different instances.  For the 
objectives, four categories are often distinguished in industrial practice [8]: 
 To reach a required quality level of a model by validation, for its 
certified use (accredit)  
 To understand the influence of uncertainties on the results of the analysis 
and rank their importance so as to guide additional efforts (measurements, research, etc.) for 
uncertainty reduction (understand) 
 To compare performances of alternative system designs, operation modes 
and maintenance policies, for “optimal” choices (select) 
 To demonstrate compliance of a system, process, procedure with 
regulatory criteria (comply).  
Our focus is on the evaluation of the model output uncertainty, i.e. the uncertainty associated to 
the difference between the model output values and the true values of the quantities of interest for 
the risk assessment, for example the number of fatalities in relation to accidents in an hazardous 
process plant or the number of occurrences of a major accident on an offshore installation leading 
to a major oil spill. The situations we are interested in are those characterised by a lack of 
experimental data for comparing the “goodness” of and validating the models used for evaluating 
these quantities. The quality of the models, then, needs to be based on a good understanding and 
proper argumentation with respect to the events and phenomena of interest. Where available, 
detailed models are used to describe specific features of the phenomena under considerations, and 
these can often be checked and validated through experimental data. However, this type of models 
where experimental data are available is outside the scope of the present paper. The present work 
addresses the problem at the system level, where the quantities of interest are defined, and where 
experimental data are not available.  

2. A Formal Set-up for Defining and Understanding Model Uncertainty 

We consider a problem in which by way of a model we seek to know a  quantity Z, whose value is 
realised in the future. It could for example represent the failure time of a system, or the volume of 
oil that reaches vulnerable areas in case of oil spill. A model G(X) is developed for this purpose, 
whose output depends on input quantities (parameters) X and the function G.  
Let ΔG(X) be the differencebetween the model prediction, G(X),  and the true future value Z,  i.e., 
ΔG(X)= G(X) - Z. We refer to ΔG(X) as the model error and to the uncertainty on its value as 
model output uncertainty. 
Note that according to this definition, model output uncertainty is not the same as the model error 
ΔG(X): it is actually the epistemic uncertainty of it, and may be assessed by some measures of 
epistemic uncertainty, for example subjective or imprecise probabilities. The model output 
uncertainty and its measurement are considered in relation to the magnitude of the model error. 
For example, if we use probability to represent uncertainty, this is expressed by the probability 
distribution of the error. Hence if we have a situation in which the probability mass is concentrated 
around a specific value of the error, the description of the model output uncertainty would present 
a peak in the distribution in correspondence of such error, and an appropriate judgment can be 
made onitssignificance for the purposes of the risk assessment and associated decision making.  
Model output uncertainty results from the combination of two components: structural model 
uncertainty and parameter (input quantity) uncertainty, defined as follows:  

Structural Model Uncertainty: Uncertainty about the differenceΔG(Xtrue), when the true value 
Xtrueof the input quantity X is known. In other words, the structural model uncertainty expresses 
the uncertainty (lack of knowledge) on the model output error when we can ignore the 
uncertainties about the parameters (input quantities) X (hence the uncertainties are due to the 
structure G of the model, alone).  



 

Input Quantity (parameter) Uncertainty:  Uncertainty (due to lack of knowledge) about the true 
value of the input quantities X.   
Hence model output uncertainty results from both structural model uncertainty and parameter 
uncertainty. Note that various authors call model uncertainty the part of structural model 
uncertainty, keeping separate the parameter uncertainty. 
As for the model output uncertainty, the structural model uncertainty and the parameter 
uncertainty  (with their measurements) are considered in relation to the magnitude of  the relevant 
unknown quantities, ΔG(Xtrue) and X, respectively.  
Sources of structural model uncertainty stem from actual “gaps” in knowledge which can take the 
form of poor understanding of phenomena that are known to occur in the system, as well as 
complete ignorance of other phenomena. This type of uncertainty can lead to “erroneous” 
assumptions regarding the model structure.Further uncertainty in the quantitative mathematical 
models derives from approximations and simplifications introduced in order to translate the 
conceptual models into tractable mathematical expressions. The implementation of the 
mathematical models into computational codes introduces additional uncertainty caused by 
possible coding errors, discretization schemes, computational limitations, etc. Various methods 
have been developed for the identification of this uncertainty (see e.g. Oberkampf et al. [27]). 
Notice that it is possible to somewhat reduce this uncertainty by means of good Quality Assurance 
practice, e.g. by validation and sufficient computing power to render discretization errors 
negligible.  
We argue that our view on the uncertainty of the model error is the one of interest in the practice 
of quantitative risk assessment, for analysing the performance of the model G(X) which we use for 
predicting the quantity Z of interest for the risk assessment: this requires accounting for both the 
features of the model structure and the variability of the input quantity values, and the related 
lacks of knowledge. Assessing ΔG(Xtrue) when conditioning on the true value of X, is also of 
interest, but what counts in the end is all we know, and do not know about the error made when 
using the output of the model G(X) in place of Z.  
If we use probabilities to express the model output uncertainty, we have by the law of total 
probability:   
P(ΔG(X) ≤ z) = ʃ  P(G(x)-Z ≤ z | X=x) dH(x),  

where, H is the probability distribution of X. Hence, the model output uncertainty is the structural 
model uncertainty weighted over the distribution of the input quantities.   
 

2.1 Examples 

Example 1: The Poisson Model for the Occurrence of Some Type of Events  
Consider the Poisson model for describing the occurrence of an event in the future. Let p(n|λ,t) be 
the probability distribution of the random variable Nt representing the number of times the event 
occurs in the interval [0,t],  where λ is the event occurrence rate, i.e., 

P( Nt =n | λ, t) = p(n|λ, t) = (λt)n e-λt/n!,     n=0,1,2,… .    
We denote p0(n|t) the true distribution of Nt and seek to verify that its 95thquantile, n95, complies 
with a given regulatory threshold nM, i.e. n95 ≤nM. 
Using the (Z,X,G) terminology introduced above,  Z = n95,  X = λ and G(λ) is the 95thquantileof 
p(n|λ,t). 
Hence the model error ΔG(X) is given by G(λ) - n95, and the model output uncertainty is the 
combined structural and parameter uncertainty (due to lack of knowledge) about this error.  The 
structural model uncertainty is uncertainty about G(λ0) -n95when we know the true value λ0 of the 
parameter λ. This uncertainty is a result of the poissonian representation p(n|λ0, t) of p0(n|t), 



e.g.,because of the assumption that the event occurrence rate is constant. The parameter 
uncertainty is uncertainty about the true value of λ.   

Example 2: An Event Tree Model  

An event tree model is developed in a risk assessment of an LNG (Liquefied Natural Gas) plant in 
an urban area [2], see Figure 1. The quantity of interest is Z, the number of fatalities as a result of 
a release.  

 

Figure 1: Event Tree for LNG Plant  

Here: 
X0=  number of releases (which is approximately equal to 1 if a release occurs and 0 
otherwise, as we ignore the probability of two releases in the period studied) 
X1 =  I(A)   (I is the indicator function, which is equal to 1 if the argument is true and  
  0 otherwise)    A: Immediate ignition 
X2 =  I(B),  B: Delayed ignition  
X3 =  I(pool fire).   
X = (X0, X1, X2, X3) 

We see that if a release occurs, it can either result in a pool fire, an explosion or no effect, 
depending on the results of the branching events, immediate ignition and delayed ignition.  
The model provides four scenarios:  
s1: release - A - pool fire   
s2: release - not A – B - flash (pool) fire   
s3: release - not A – B - explosion  
s4: release - not A - not B - no effect.  
Assume that the number of people exposed to scenario siis vi, where v1 = 0,  v2 = 50 and v3 = 100. 
Furthermore, assume that the fraction of fatalities is di, where d2 = d3= 0.1.  
The model G for the number of fatalities is given by  
G(X)  = 5 X0 (1- X1) X2 X3 + 10 X0 (1- X1) X2 (1-X3),  
as the number of fatalities is 5 in case of scenario 2, and this scenario occurs if X0(1- X1) X2 X3 = 
1, and the number of fatalities is 10 in case of scenario 3, and this scenario occurs if X0(1- X1) X2 
(1-X3) = 1.  
The model error ΔG(X) is given by the difference in the number of fatalities, G(X) - Z, and model 
output uncertainty is the uncertainty (due to lack of knowledge) about this error. The structural 
model uncertainty is uncertainty about G(X) - Z, where it is given that we know the true value of 
X. The parameter uncertainty is uncertainty about the true value of X: for example, the number of 
releases.   

Example 3: A Groundwater Flow Model  

Consider the groundwater flow modelling problem addressed in Zio and Apostolakis [39] and 
Baraldi and Zio [5], for the evaluation of the quantity of interest Z which is the hydraulic head 
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spatial distribution (reflecting aleatory uncertainties) in the far field region of a radioactive waste 
repository site. Four alternative hypotheses have been considered regarding the hydro-geological 
properties of the media in which the repository is located and the groundwater flow mechanisms:  Groundwater flow in porous matrix only.  Groundwater flow in fractures only.  Groundwater flow in matrix and fracture simultaneously.  Groundwater flow in matrix and fracture simultaneously, but four stratigraphic layers only. 
The model error ΔG(X) is given by the differences between the distributions predicted by the 
models and the true spatial distribution of the hydraulic head on site, Z,  and model output 
uncertainty is the uncertainty (due to lack of knowledge) about this error. The structural model 
uncertainty is uncertainty about G(X) - Z when it is given that we know the true value of X. The 
parameter uncertainty is uncertainty about the true value of X.  

2.2 Dealing with Model Uncertainty, in view of the Objectives of the Assessment   

Starting from the concept of uncertainty about the model error, we address the issue on how to 
deal with it, in relation to the objectives of the assessment and the causes of uncertainty. In the 
following we discuss this in detail using the above three examples as illustrations. 
We take the understanding of accredit as the objective of reaching a required quality level of a 
model by validation, for its certified use. Clearly, this requires that model output uncertainty be 
sufficiently small, for confidence in the use of the outputs produced by the model. What is 
sufficiently small is of course dependent on the purpose for which the model is to be used. In 
practice, model accreditation stands on the evaluation of the comparison of the model predictions 
G(X) with the corresponding true values of Z, for establishing the level of confidence in the model 
predictive capability needed for the intended use of the model: the accreditation must demonstrate 
that in correspondence of values of X the model produces predictions of the true values of Z with 
the sufficient level of accuracy and the confidence required for taking related decisions. In the 
case of accreditation, then, the evaluation of the model output uncertainty serves the purpose of 
verifying the level of accuracy achieved so as to have the confidence required to make decisions 
informed by the outcomes of the model.   
In the case that experimental data are available, there exists a wide range of statistical methods 
that can be used for validation in order to accredit a model. These methods include both traditional 
statistical analysis and Bayesian procedures [e.g. 6,15,17,21,37, 38]. However, these methods are 
not within the scope of the present paper, in which we consider situations with lack of data. In 
such cases, the validation task takes a different form, the main tool that can be used being 
analyst/expert argumentation based on established scientific theories and specific knowledge 
about the system/activity which the model being assessed intends to describe.  
Model validation is often linked to model verification (and is often referred to as Verification and 
Validation, or simply “V&V.”), which is commonly understood as the process of comparing the 
model with specified requirements [18,20,25,34,36. The verification part is obviously important in 
many contexts to produce a model that meets the specifications; however, for the purpose of the 
present paper we will not discuss the issue in more detail, as our analysis is concerned about the 
fundamental thinking that precedes the specification process.     
To exemplify the situation described above within the risk assessment context of interest in this 
paper, consider the probability model of Example 1. To assess the model output uncertainty for 
purposes of accreditation of the model, amounts to justifying the model hypotheses through a set 
of arguments, the important ones being in this case those supporting the assumption that the 
probability of an event occurring in any small interval of time is the same, independent of the 
history of previous occurrences.    
Depending on the situation, such type of arguments can be considered sufficient to conclude that 
the model output uncertainty is sufficiently small  for the intended uses of the model. On the 



contrary, questions could be raised, for example, about the assumption that the occurrence rate is 
not dependent on time. In absence of data, it is not possible to perform a statistical analysis to 
study this issue any further: the risk analysts need to argue the issue and make their judgments, 
which may very well lead to a suggestion for an adjusted model, for example a Poisson model 
with time dependent occurrence rate, and a repetition of the analysis process before the related 
decision is taken, in a sort of sensitivity analysis “attitude”. For some uses, it may be decided that 
the model can be accredited even if the analyst knows that the errors could be large, as long as the 
analysts can justify that the model is able to reflect the key features of the phenomena studied, of 
interest for its use.  
In the end, the results of the assessment are communicated as conditional on the model, and must 
be understood as dependent on the model.       
Say that the analysts conclude that the assumption of a homogenous Poisson model is reasonable 
in the considered situation. This means that the structural model uncertainty is judged sufficiently 
small for the purpose of the analysis. The parameter uncertainty of the event occurrence rate λ is 
expressed by a subjective probability or any other measure of epistemic uncertainty, for example 
imprecise probabilities. The validation is completed and the model is accredited “good for use”, in 
the sense that the model output uncertainties are acceptable.  
On the contrary, say that the Poisson assumption is hard to justify. Then, the analysts are faced 
with the choice of arguing for another model or still using the Poisson model as a crude 
approximation. Suppose the analysts decide for the latter choice, e.g. because they fail to find a 
rationale for a specific alternative model at this point of the analysis. Then, the model output 
uncertainty issue is one related to the structural model uncertainty.  
To accredit the model, judgments have to made on the magnitude of the error introduced by using 
the Poisson model.  The parameter λ is understood as the average number of events per unit of 
time. If we know the value of λ, what will be the difference in the true probability distribution of 
the number of events and in the Poisson distribution, and specifically the difference between the 
95% quantilen95 corresponding to the true distribution and that of the Poisson distribution? In 
theory, the analysts can assign a subjective probability distribution reflecting the structural model 
uncertainty (for different values of λ), but the knowledge that this distribution is based on could be 
poor and hence the distribution would not provide much insights for concluding on the model 
being valid or not.  Nonetheless, for the sake of example a crude analysis may be conducted to 
guide the decision on whether or not to accept the model.  
To illustrate the analysis consider a case where nM =10.  As explained in Section 2.1, the model 
error can be written as ΔG(λ) =  G(λ) - n95 = n95(λ) - n95, where G(λ) is the 95thquantileof the 
Poisson distribution which we refer to as n95(λ). The structural model uncertainty relates to 
uncertainty about the value of ΔG(λ0)  =  G(λ0) - n95 =  n95(λ0) - n95, where λ0represents the 
average number of events occurring in [0,t] when considering the infinite population of situations 
similar to the one studied.  Table 1 provides the assigned probabilities for ΔG(λ0):  

Table 1: Assigned Probabilities for ΔG(λ0): 

(-7.5, -2.5] (-2.5, 2.5] (2.5, 7.5] 
obability Interval  25% 50% 25% 

Whether the results in Table 1 would lead to a recommendation of accreditation or not of the 
model depends on the situation, i.e., the objective of the analysis for which the model is used and 
the decision making associated to its outcomes. We would say that in most cases a probability of 
25% of an error in the range 2.5-7.5 would be too large relative to the guidance value nM =10 to 
justify acceptance.   
An alternative approach is to perform qualitative judgments, with the aim of assessing the 
importance of the structural model error, reflecting how sensitive the produced 95% quantile is 
with respect to deviations from the underlying distribution and how large the analysts consider the 



 

structural model uncertainties. A qualitative score system along these lines can be used, as shown 
in Flage and Aven [12].       
Consider now Example 2 and the model for the number of fatalities N, 
G(X)  = 5 X0 (1- X1) X2 X3 + 10 X0 (1- X1) X2 (1-X3),  
This is a physical model of a not yet built plant, and data are not available to check the precision 
of the model.  The suitability of the model has to be determined based on arguments and relevant 
sub-models. As mentioned above the model is accredited if the analysts find the model producing 
sufficiently accurate predictions, and to make this assessment the analyst may produce a judgment 
about the uncertainties on the error G(X)-N.  
Different types of judgments may be used, as mentioned for the Poisson example. For example, 
the analysts may express a subjective probability distribution,  based on the available knowledge, 
of the values of ΔG or simply an uncertainty interval (e.g. 90%) for ΔG expressing the degree of 
confidence of the analysts (e.g. 90%) on the error being within this interval. Depending on the 
result of this analysis, and the overall purpose of the risk assessment, it may be decided to adjust 
the model to better reflect the phenomena studied. This adjustment could for example lead to 
considering the number of fatalities in case of scenarios 2 and 3, to be unknown quantities instead 
of fixed numbers (5 and 10, respectively).  The basis for this model output analysis would of 
course be an analysis of the structural model uncertainties and the parameter uncertainties. The 
structural model uncertainty analysis reflects on the accuracy of the number of fatalities predicted 
by G(X) for specific choices of X (assuming we know the true value of X).   
Again qualitative analyses of the importance of the assumptions made should be added to provide 
a broader basis for making a judgment of the validity of the model.    
Similarly, in the Example 3 above concerning the modelling of the groundwater flow in the far 
field region of a radioactive waste repository site, the four different hypotheses mentioned were 
considered and accreditation of the models sought using expert evaluation. For each of these four 
models uncertainty judgments were made on the error ΔG, using intervals as described above for 
Example 2.  In addition an integrated model were considered [39], based on weights to the four 
models according to a confidence assignment (the confidence the experts have in the various 
models for making accurate predictions). The actual weights were 1%, 4%, 35% and 60%.  Also 
uncertainty judgments were made on the error ΔG for this integrated model.  
From the above discussion, it is evident that the issue of accreditation is linked to the question of 
how to assess the uncertainties about the model difference ΔG. If multiple experts are engaged in 
the evaluation and there is no consensus on the hypotheses for modeling the specific phenomena 
or events of interest, and/or there exist different plausible models, the result could be a wide model 
difference distribution or interval, which cannot justify model accreditation. For instance, consider 
the Example 3 above concerning the modelling of the groundwater flow in the far field region of a 
radioactive waste repository site. Four different hypotheses have been considered and 
accreditation of the models has been sought by way of their evaluation by experts.  
In Zio and Apostolakis [39]  and Baraldi and Zio [5], it is shown that the way of handling and 
aggregating the uncertainties about the difference ΔG can lead to more or less “spread out” results. 
Only, if the resulting distribution is judged “sufficiently peaked” or the interval “sufficiently 
small”, the model can beaccredited. Here again it is clear that arbitrariness in the judgment of the 
accuracy of the model is a most critical point for the accreditation. The distributions and intervals 
resulting from the model uncertainty analysis could be judged sufficiently narrow to justify 
accreditation, in spite that the available evidence is rather vague. Such judgments resulting in 
over-confidence in the model accuracy can have serious consequences at the decision-making 
level. For example, the assessment of the hydraulic field in a site proposed to host a radioactive 
waste repository could be judged adequate based on the results of a porous medium model 
analysis given few core-boring tests, whereas a fractured medium model would have requested 
further investigations.  



In the strive for accreditation it can be crucial to understand the influence of uncertainties on the 
results of the analysis, so as to be able to rank their importance for guiding additional efforts 
(measurements, research, etc.) of uncertainty reduction. This objective is clearly driven by the 
need of accrediting the model, and enables to build confidence in the model results; but it is a 
valuable objective to pursue also in cases where model accreditation is not sought. For example, 
assuming that multiple models are plausible to describe the reality of a situation, given the 
information available, one may use all models to get insights in the phenomena that govern the 
situation, within a kind of what–if analysis. Accepting the hypothesis of one particular model, we 
can study what are the most important uncertainty contributors in this case, and make comparisons 
among the models. The result is a better understanding of the phenomena and an improved basis 
for making a decision on the situation at hand, with the required confidence.  
If after further understanding and assessment of the assumptions, and possibly a consensus-
seeking deliberative process among the multiple experts, the model can still not be accredited, 
remodelling is required.  
In the end, with an accredited model it is possible to perform risk analyses to inform the decision 
making processes of selection and compliance. To select means to compare performances of 
alternative system designs, operation modes and maintenance policies, for “optimal" choices. It 
obviously applies only on accredited models, as confidence is needed for selection. The results of 
the uncertainty assessments may be expressed in relative, comparative terms on the alternatives 
under consideration. The confidence needed for this decision task clearly depends on the object of 
the selection. On the other hand, while the compliance of a system, process and procedure to 
regulatory criteria applies only to accredited models, the level of confidence needed is absolute. 
As for selection, it depends on the object of the decision.  
For the select and comply objectives, quantification of model output uncertainty is not directly 
appropriate but there will always be a need for qualitative assessments of model uncertainties as 
the accredited models will always have limitations and weaknesses, as illustrated by the three 
examples, and these need to be an integrated part of the results of the risk assessment. A possible 
way of how to do this qualitative analysis was outlined above for Example 1.  

3. Conclusions 

The developments of modern science and engineering are strongly reliant on the use of complex 
models, with increasing demand of sophistication and complexity at all scales. Model predictions 
are often used to support high-consequence decisions, since simulations are often much less 
expensive to run than full-scale tests, and in many cases, full-scale tests are not possible at all 
which is the situation addressed in the present paper.   
Given the importance placed on modeling and simulation, a satisfactory level of assurance must be 
provided that the results obtained from such models are trustworthy for the decision-making 
purposes for which they are employed. For this, the amount of error and uncertainty that is 
associated with model predictions must be assessed.  
The aim of the present paper has been to contribute to the discussion on how this assessment 
should be framed and conducted. We believe that new insights have been gained by distinguishing 
between model output uncertainty, structural model uncertainty and parameter (model input 
quantities) uncertainty, and making links between the different purposes of modelling and risk 
assessment.  Risk assessments typically address parameter uncertainties but do not cover 
judgments about the structural model uncertainties. Using some simple examples we have argued 
that in risk assessment, the issues of analysis of model output uncertainty arise for purposes of 
accreditation of the models used (verifying that the uncertainties are within limits acceptable for 
the models’ intended use), whose outcomes inform the decision making about option selection (of 
system designs, operation modes, etc.) and demonstration of criteria compliance. Through the 
examples we have pointed to the type of logic and argumentation that can lead to accreditation.   



 

For the select and comply objectives, the two last paragraphs of the previous Section provide a 
summary of our conclusions.   
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