Valentina Ciriello 
email: valentina.ciriello3@unibo.it
  
Vittorio Di Federico 
  
Monica Riva 
  
Francesco Cadini 
  
Jacopo De Sanctis 
  
Enrico Zio 
  
Alberto Guadagnini 
  
Polynomial Chaos Expansion for Global Sensitivity Analysis applied to a model of radionuclide migration in randomly heterogeneous aquifers

Keywords: Performance assessment, radionuclide migration, heterogeneous aquifers, Global Sensitivity Analysis, Sobol indices, Polynomial Chaos Expansion

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Performance assessment of radioactive waste repositories aims at evaluating the risk of groundwater contamination due to potential release of radionuclides. Modeling the whole chain of processes involved in this analysis is extremely challenging and requires employing highly complex theoretical and numerical models to couple radionuclide migration within the repository and in the groundwater environment. Uncertainty associated with, e.g., incomplete knowledge of initial and boundary conditions, nature and structure of the groundwater system and related key parameters must be added to the list of difficulties (e.g., [START_REF] Tartakovsky | Probabilistic risk analysis in subsurface hydrology[END_REF][START_REF] Winter | Normalized Mahalanobis distance for comparing process-based stochastic models[END_REF]Volkova et al. 2008 and references therein).

We consider the analysis of the uncertainty associated with the first two (statistical) moments of the peak solute concentration detected at a given location and time. The source of uncertainty is incomplete/imprecise knowledge of the values of the hydrogeological parameters characterizing the system [START_REF] Rubin | Applied Stochastic Hydrogeology[END_REF][START_REF] Zhang | Stochastic methods for flow in porous media: copying with uncertainties[END_REF]. For a rational management of the uncertainty analysis, we use Global Sensitivity Analysis (GSA) to obtain information on the relative effects of the uncertain input parameters on the model outputs [START_REF] Saltelli | Sensitivity analysis[END_REF]. In particular, we resort to variance-based methods, which can provide a comprehensive view on the uncertainty and allow identifying the relative and joint contributions of the uncertain input parameters to the uncertainty (variance) of the model outputs [START_REF] Archer | Sensitivity measures, ANOVA like techniques and the use of bootstrap[END_REF].

Within variance-based GSA, the Sobol indices are widely used as sensitivity metrics [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF], because they do not require any assumption of linearity in the interpretive model adopted. Their estimation is traditionally performed by Monte Carlo (MC) sampling [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. The sample size needed to attain statistical convergence of the Monte Carlo estimates can be rather large, depending on the complexity and dimension (number of uncertain input parameters) of the problem (e.g., [START_REF] Ballio | Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology[END_REF]Guadagnini 2004, Zhang et al. 2010, andreferences therein). This might result in a serious and sometimes unsustainable computational burden in cases where repeated high-resolution simulations of the model are required [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF].

Techniques based on advanced sampling strategies can be introduced to reduce the computational cost associated with Monte Carlo simulations. Among these, the Stochastic Finite Element Method (SFEM) [START_REF] Ghanem | Stochastic finite elements-a spectral approach[END_REF] is based on a spectral analysis that allows the expansion of the model output into the probabilistic space, called Polynomial Chaos (PC) [START_REF] Wiener | The homogeneous chaos[END_REF]. The Polynomial Chaos Expansion (PCE) of the model can be used to build a surrogate model such that the variability of the output is represented in the ensemble of the expansion coefficients [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. Once the 

Theoretical Background and Methodology

Variance-based approaches for GSA

In this context, the ANOVA (ANalysis Of VAriance) representation of a model output [START_REF] Archer | Sensitivity measures, ANOVA like techniques and the use of bootstrap[END_REF]) is a useful tool for the definition of the Sobol indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Archer | Sensitivity measures, ANOVA like techniques and the use of bootstrap[END_REF]).

Consider a model function

) (x f y 
, y being a target random response of the model at a prescribed space-time location. This response depends on the vector x of n independent random model parameters defined in the n -dimensional unit hypercube, n I .

If

) (x f is integrable, the following representation holds:
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are the indices specifying the parameters upon which each term depends and the n 2 summands in (1) are orthogonal functions that can be expressed as integrals of
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and so on. Therefore condition (2) renders representation (1), which is typically termed ANOVA decomposition, unique. When ) (x f belongs to the space of square-integrable functions, then the total variance, V , of the model due to the uncertainty of its parameters is: is defined as [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]):
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The sum of the indices defined in (4) is unity. The first-order or principal sensitivity indices, i S , describe the significance of each parameter individually considered. Higher-order indices describe the effects of interactions among parameters.

The overall effect of a given parameter i x is described by the total sensitivity index i T S , defined as:
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A complete GSA requires the estimation of n 2 integrals of the kind in (3). This is usually done by Monte Carlo simulation [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]), but the computational cost becomes prohibitive when the model is complex and the number of uncertain parameters is large [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF].

Polynomial Chaos Expansion representation of a stochastic model

We focus on the identification of a surrogate model (or metamodel) of a high complexity model (which is hereafter termed full system model) by the Polynomial Chaos Expansion (PCE) technique. This involves the projection of the model equation into a probabilistic space, termed Polynomial Chaos, to construct an approximation of the model response surface. [START_REF] Wiener | The homogeneous chaos[END_REF] showed that the expansion performed by adopting Hermite Polynomials as a basis converges, in 2 L -sense, for any random process characterized by finite second-order moments. While the Hermite basis is suitable for Gaussian processes, different types of orthogonal polynomials are required for optimum convergence rate in the case of non-Gaussian processes [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF].

In this framework, one starts by noting that any square-integrable random model response, S , admits the following expansion, or chaos representation [START_REF] Soize | Physical systems with random uncertainties: Chaos representations with arbitrary probability measures[END_REF]):
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Here, j  denotes the j -order multivariate orthogonal polynomial,    1 n n



is the set of independent random variables whose distribution is linked to the choice of the polynomial basis [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF], and j s are the polynomial coefficients.

In various engineering fields one typically considers stochastic models associated with a finite number M of input random variables. The PCE of the random model output can be derived by approximating (6) to polynomials of degree not exceeding p as
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where P is the number of (unknown) polynomial coefficients.

The distribution of the input random variables of the model, included in vector x , does not affect the applicability of the method. Note that in cases where this distribution is not interpreted by the one required by the chosen polynomial basis, an isoprobabilistic transformation is required to relate x and
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. Correlation amongst random input model parameters can be accommodated in the methodology by applying the Nataf transformation [START_REF] Nataf | Détermination des distributions dont les marges sont données[END_REF], for which the knowledge of the marginal probability density functions of the parameters and the associated correlation matrix is required.

Assessment of the coefficients j s in ( 7) can be performed by regression, upon minimization of the variance of a residual defined as the difference between the surrogate model response, S ~, and the exact solution given by the original model [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF])
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Minimization with respect to the vector of the unknown coefficients ς renders
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where N is the number of regression points, ' S is the vector denoting the model response at these points, while the product Ψ Ψ T defines the so-called information matrix.

The choice of the optimum set of regression points is performed following the same criterion adopted in the context of integral estimation by Gaussian quadrature [START_REF] Huang | Collocation-based stochastic finite element analysis for random field problems[END_REF]. Solving (10) requires a minimum of P N  regression points. One typically selects P N  to avoid singularity in the information matrix.

Polynomial Chaos Expansion and Global Sensitivity Analysis

Polynomial Chaos Expansion can be considered as a powerful tool for Global Sensitivity Analysis because the entire variability of the original model is conserved in the set of PCE coefficients [START_REF] Ghanem | Stochastic finite elements-a spectral approach[END_REF]. The Sobol indices can be analytically calculated from these coefficients without additional computational cost [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. Manipulating S ~ by appropriate grouping of terms allows isolating the contributions of the different (random) parameters to the system response:
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where  denotes a general term depending only on the variables specified by the subscript.

In this sense, a PCE is similar to the ANOVA representation of the model.

Orthogonality of the polynomial basis allows recognizing that the mean of the model response coincides with the coefficient of the zero-order term, 0 s , in (11) while the total variance of the response is
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The Sobol indices can then be derived as
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can be performed, e.g., according to [START_REF] Abramowitz | Handbook of mathematical functions[END_REF].

Application to a model of radionuclide migration in a randomly heterogeneous aquifer

We exemplify our approach by considering an environmental problem related to the performance assessment of a radioactive waste repository. We use a Monte Carlo simulation model to describe radionuclide release at the repository scale. This model of release of radionuclides, i.e., Pu

239

, from the repository is linked to a groundwater flow and transport numerical model to simulate radionuclide migration within a heterogeneous aquifer.

The aquifer hydraulic conductivity is modeled as a second-order stationary stochastic process in space. We take the first two (statistical) moments (i.e., mean and variance) of the peak concentration detected at a given control location in the aquifer, as the target model responses. Uncertainty in these variables is considered to be a consequence of incomplete knowledge of (a) the correlation scale of the variogram of the log-conductivity field (b) the partition coefficient associated with the migrating radionuclide, and (c) the effective dispersivity at the scale of interest.

Repository representation and modeling of radionuclide release history

The conceptual repository design considered in the performance assessment illustrated in this study has been proposed by ENEA (Marseguerra et al. 2001a, b) and has similarities with the currently operative disposal facility of El Cabril in Spain (Zuolaga 2006).

We model the repository as a one-dimensional (along the vertical direction) system [START_REF] Cadini | An integrated simulation framework for the performance assessment of radioactive waste repositories[END_REF]. The major containment structures of the disposal facility are the waste packages, the modules or containers, the cells and the disposal units. These constitute a multiple-barrier system designed to limit water infiltration and subsequent radionuclide migration. Figure 1a depicts a typical waste package consisting in a steel drum containing the radioactive waste and immobilized in a concrete matrix. The diameter and the height of the waste package have been set respectively to 0.791 m and 1.1 m, for a total volumetric capacity of around 400 l. Figure 1b shows a cross-section of the containment module adopted in this study, i.e., a concrete box-shaped structure which contains 6 waste packages and is sealed with a concrete top cover. The empty spaces between the packages are filled by bentonite. The external length of the module is 3.05 m, with a width and height of 2.09 m and 1.7 m, respectively. The corresponding internal dimensions are 2.75 m, 1.79 m and 1.37 m. The modules are arranged in 5 × 6 × 8 arrays within concrete structure cells built below the natural ground level.

Figure 2 depicts the modules arrangement and the typical repository placement at a given site. The disposal unit is a concrete structure embedding a row of 6 to 10 cells.

The disposal facility comprises several units, which are typically arranged into parallel rows. Each unit can be modeled as an independent system which can be built and operated without interfering with the remaining units.

In agreement with typical engineering scenarios we consider that (Marseguerra et al. 2001a, b): (i) the modules are identical; (ii) the mass transport occurs chiefly along the vertical direction; and (iii) lateral diffusive spreading is symmetric. Under these assumptions, estimating the probability of radionuclide release into the groundwater system below the repository can be reduced to the one-dimensional problem of estimating the release from a column of five identical vertically stacked modules, i.e., the repository column may be envisioned as a one-dimensional array of compartments, each corresponding to a module.

The radionuclides transition across the compartments is described stochastically.

Under the assumption that solute displacement can be modeled as a Markovian process, the transition rates can be identified from the classical advection/dispersion equation.

Non-Fickian transport can be modeled according to existing conceptual schemes (Berkowitz et al. 2006 and references therein) where the relevant transport parameters could be estimated by detailed data analysis at the temporal and spatial scales at which the processes of interest occur.

For the purpose of our example we adopt the following criteria, which can be considered as conservative in a performance assessment protocol: (i) the protection offered by the concrete cell roof and ceiling and the backfill layers fails; (ii) the whole column, which is formed by 5 modules, is saturated and a constant water head of 0.15 m is applied at the top of the highest module, i.e., the water head at the top of the column is 

Radionuclide migration in the groundwater system

For simplicity and for the purpose of our illustration we disregard the radionuclide transfer time within the partially saturated zone and analyze only contaminant residence time within the fully saturated medium. This assumption may be regarded as conservative because it leads to overestimating the radionuclide concentration detected downstream of the repository. This can also be considered as a viable working assumption in the presence of shallow reservoirs. The effect of processes occurring within the partially saturated region may require an additional analysis, which is outside the scope of this work.

Groundwater flow and contaminant transport are modeled within a twodimensional system. The (natural) log-transformed hydraulic conductivity, Y(x) (x denoting the space coordinates vector), is modeled as a second-order stationary spatial random function. For our example, the parameters of the variogram of Y have been selected as representative of a field case study, which we do not specifically report for confidentiality reasons. We note, however, that the particular choice of these values does not affect the generality of the methodology. Log-conductivity is characterized by an isotropic variogram of the exponential type, with sill We consider a two-dimensional domain of uniform lateral side equal to 2000 m.

As an example, a selected realization of the log-conductivity distribution is depicted in 

Global Sensitivity Analysis of the (ensemble) moments of radionuclide peak concentration

The three random parameters selected for our demonstration are assumed to be uniformly distributed within the intervals reported in Table 1. The ranges of variability of The procedure illustrated is rather cumbersome when considering the solution of the full system model, because of the large number of simulations required, so that a GSA might become impractical. Therefore, we adopt the PCE technique presented in Section 2 and derive expansions of order p = 2, 3 and 4, for both We start by noting that T S and V are not dramatically influenced by the degree of polynomial expansion selected for both moments. The good agreement obtained between Total and Principal Sensitivity Indices (not shown) implies that the effects of parameters interactions can be neglected in this example. . According to this criterion, Figure 8 suggests that the best results for our example appear to be provided by the PCE of order p = 2.

To complement these results, Table 2 reports the mean and standard deviation of p c calculated on the basis of the N s =100 sampling points in the random parameters space for each model (standard Monte Carlo and surrogate models of different order). 

Conclusions

In this work we proposed an approach for performing a Global Sensitivity Our results support the relevance of adopting the proposed model reduction technique for complex numerical models. This methodology allows performing in-depth analyses which would be otherwise unfeasible, thus severely limiting our capability to represent the relevant processes involved in a target environmental scenario. 

  surrogate model has been derived, the calculation of the Sobol indices does not add significant extra computational costs. The formulation of a surrogate model in a polynomial form has the additional advantage of allowing performing Monte Carlo simulations with negligible computational effort, as compared to the original, highcomplexity model. In this work, we rely on PCE to analyze the uncertainty affecting the outputs of a numerical model of radionuclide migration in an aquifer, following a release from a near surface repository. The outflow from the repository is modeled within the Monte Carlo framework proposed by Cadini et al. (2012). Radionuclide migration in the aquifer is modeled through an Advection-Dispersion-Reaction-Equation (ADRE). The aquifer hydraulic conductivity constitutes a (second-order stationary) randomly heterogeneous field. In this context, the model outputs of interest are the first two (statistical) moments (i.e., mean and variance) of the peak concentration at a given control location in the aquifer. We study how the incomplete/imprecise knowledge of (a) the correlation scale, , of the variogram of the log-conductivity field, (b) the partition coefficient associated with the migrating radionuclide, k d , and (c) the effective longitudinal dispersivity at the scale of interest,  L , propagates to the selected (ensemble) moments of the output distribution. GSA is performed jointly with PCE to compute the Sobol indices associated with the three uncertain parameters (, k d ,  L ), which are treated as random variables. The PCEbased surrogate model is then employed to perform an exhaustive set of Monte Carlo (MC) simulations to attain convergence for the target moments of interest. Given the prohibitive computational costs involved in performing a large number of MC simulations on the original flow and transport model, the goodness of PCE-based results is then assessed on the basis of a limited number of simulations, obtained upon sampling the selected random parameter space.
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  h(z = 5  1.7 m) = 8.65 m; (iii) the water head at the bottom of the column is zero; (iv) each module is subject to constant head gradient h/z = 1.018, where h = 8.65 m and z = 5  1.7 m = 8.5 m is the column height; (v) the Pu 239 radioactive decay and the subsequent generation of other radionuclides from the decay chains are neglected within the repository; (vi) the migration of Pu 239 occurs at linear isothermal equilibrium.The numerical code MASCOT(Marseguerra and Zio 2001;[START_REF] Marseguerra | Monte Carlo simulation of contaminant release from a radioactive waste deposit[END_REF][START_REF] Cadini | An integrated simulation framework for the performance assessment of radioactive waste repositories[END_REF]) has been adopted to compute the probability density function of the release of Pu 239 from the modules. Details of the computations and the resulting temporal dynamics of the radionuclide release history are presented in[START_REF] Cadini | An integrated simulation framework for the performance assessment of radioactive waste repositories[END_REF].

  purpose of our illustrative example, we set the variogram sill and consider its correlation scale as an uncertain parameter (see Section 4) because of its poor identifiability due to typical horizontal spacing of available field-scale measuring locations. Monte Carlo realizations of Y(x) have been performed by employing the sequential Gaussian scheme implemented in the code GCOSIM3D (Gómez-Hernández and Journel 1993).

Figure 3 .

 3 Figure 3 together with the repository projection (R), with sides equal to 50 m and 80 m, and the target control point (W), located 960 m downstream of the repository fence line. The domain is discretized into square cells with uniform side of 10 m, ensuring that there are at least five log-conductivity generation points per correlation scale (see Section 4 for additional details). Each of the 8  5 cells located under the repository projection area receives the release of a cluster of 4 × 3 columns of 5 modules. These cells are modeled through a recharge boundary condition so that a time-dependent influx solute mass is injected in the porous medium according to a suitable discretization in time of the Monte Carlo-based outflow from the repository. As in Cadini et al. (2012), we set the incoming water flow [m 3 /y] from the repository at a constant value equal to , S q d in   2 . 21  d q

L

  are compatible with the selected domain size, and consistent with the lack of a sufficiently large number of closely spaced Y measuring points. The degree of variability of k d has been chosen according toENEA (1997) and[START_REF] Nair | Probabilistic safety assessment model for near surface radioactive waste disposal facilities[END_REF].The model response, i.e., the radionuclide peak concentration, p c , at the control point is then, in turn, a random variable. As introduced in Section 3, we perform our analysis in a numerical Monte Carlo framework according to the following steps: (agenerated by GCOSIM for given values of the random parameters sampled within the intervals presented in Table1;(b) groundwater flow and transport are solved and (ensemble) mean, ; (c) steps (a) and (b) are repeated for different sampling points in the random parameters space; and (d) GSA is performed to discriminate the relative contribution of the random parameters to uncertainty of random nature of Y(x), we propose to perform GSA on the (ensemble) moments of p c rather than on its actual value calculated at the selected control location for each random realization. Conceptually, this is equivalent to performing a GSA of the results stemming from the solution of transport equations satisfied by the ensemble moments of the evolving concentrations (e.g., Guadagnini and Neuman (2001) and Morales-Casique et al. (2006 a,b) for conservative solutes).

  respectively for p = 2, 3, 4) sampling points in the space of the three selected uncertain parameters. In our example, this corresponds to  MC N 1000, 3800, 7800 runs of the full model of groundwater flow and transport. Calculation of the Sobol indices is then performed with negligible additional computational requirements.

Figure

  Figure 4 reports the Total Sensitivity Indices,

Figure

  Figure 4 reveals that

Figure 8

 8 Figure 8 reports the relative fraction, F (%), of the mean concentration values,

  PCE of order p = 4 are candidates to provide the best indications for a GSA, as one might expect. Finally, it can be noted that the PCE of order p = 3 best approximates the mean and standard deviation of p c  calculated with the full model on the basis of the simulations performed.

  Analysis (GSA) of a high-complexity theoretical and numerical model descriptive of the potential release of radionuclides from a near surface radioactive waste repository and their subsequent migration in the groundwater system. We considered uncertainty stemming from incomplete knowledge of the variogram and transport parameters (i.e., the correlation length of the variogram of log-conductivity, the partition coefficient associated with the migrating radionuclide and the effective dispersivity at the scale of interest) and, due to the random nature of the hydraulic conductivity field. We identified as target system responses the first two (ensemble) moments of the peak concentration at a given control point. GSA has been performed through the Polynomial Chaos Expansion (PCE) technique, leading to the following key results: (a) the analysis of the Sobol indices has revealed that the (ensemble) mean of the peak concentration is strongly influenced by the uncertainty in the partition coefficient and the longitudinal dispersivity, and the effects of these parameters shadow the impact of the spatial coherence of the logconductivity field at the scale analyzed; (b) on the other hand, the log-conductivity correlation scale is the most influential factor affecting the uncertainty of the standard deviation of the peak concentration in our example; and (c) the PCE surrogate models allow extending, with negligible computational cost and acceptable accuracy, the number of Monte Carlo iterations to attain convergence of the selected target moments.
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 2 Fig.2Sketch of the 5  6  8 array of modules considered in a repository cell(ENEA 1987; Marseguerra et al. 2001a, b).

Fig. 3

 3 Fig.3Sketch of the adopted two-dimensional groundwater flow domain, including the repository projection (R) and the selected control point (W), for a selected realization of the logconductivity field.
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 4 Fig. 4 Total Sensitivity Indices ( T S (Ω), Ω =  , L  ,
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  Fig. 5 Total Sensitivity Indices (
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 6 Fig. 6 Dependence of the (a) mean and (b) standard deviation of
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 7 Fig. 7 Dependence of the (a) mean and (b) standard deviation of
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 8 Fig. 8 Relative fraction, F (%), of the mean concentration values,

Table 3

 3 The limited number of simulations does not allow to attain convergence of the target moments. However, it is possible to observe that the PCE of order p = 4 provides the best approximation of both the mean and standard deviation of

	reports the corresponding results for

p c  .
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Table 1 Intervals of variability of the selected uniformly distributed random model parameters.

Random Variable Distribution

Partition Coefficient, d k