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Abstract 21 

We perform Global Sensitivity Analysis (GSA) through Polynomial Chaos Expansion (PCE) on a 22 
contaminant transport model for the assessment of radionuclide concentration at a given control 23 
location in a heterogeneous aquifer, following a release from a near surface repository of 24 
radioactive waste. The aquifer hydraulic conductivity is modeled as a stationary stochastic process 25 
in space. We examine the uncertainty in the first two (ensemble) moments of the peak 26 
concentration, as a consequence of incomplete knowledge of (a) the parameters characterizing the 27 
variogram of hydraulic conductivity, (b) the partition coefficient associated with the migrating 28 
radionuclide, (c) the effective dispersivity at the scale of interest. These quantities are treated as 29 
random variables and a variance-based GSA is performed in a numerical Monte Carlo framework. 30 
This entails solving groundwater flow and transport processes within an ensemble of hydraulic 31 
conductivity realizations generated upon sampling the space of the considered random variables. 32 
The Sobol indices are adopted as sensitivity measures to provide an estimate of the role of 33 
uncertain parameters on the (ensemble) target moments of the variable of interest. The calculation 34 
of the indices is performed by employing PCE as a surrogate model of the migration process to 35 
reduce the computational burden. We show that the proposed methodology (a) allows identifying 36 
the influence of uncertain parameters on key statistical moments of the peak concentration (b) 37 
enables extending the number of Monte Carlo iterations to attain convergence of the (ensemble) 38 
target moments and (c) leads to considerable saving of computational time while keeping 39 
acceptable accuracy. 40 

 41 
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1. Introduction 45 

Performance assessment of radioactive waste repositories aims at evaluating the risk 46 

of groundwater contamination due to potential release of radionuclides. Modeling the 47 

whole chain of processes involved in this analysis is extremely challenging and requires 48 

employing highly complex theoretical and numerical models to couple radionuclide 49 

migration within the repository and in the groundwater environment. Uncertainty 50 

associated with, e.g., incomplete knowledge of initial and boundary conditions, nature 51 

and structure of the groundwater system and related key parameters must be added to the 52 

list of difficulties (e.g., Tartakovsky 2007; Winter 2010; Volkova et al. 2008 and 53 

references therein). 54 

We consider the analysis of the uncertainty associated with the first two (statistical) 55 

moments of the peak solute concentration detected at a given location and time. The 56 

source of uncertainty is incomplete/imprecise knowledge of the values of the 57 

hydrogeological parameters characterizing the system (Rubin 2003; Zhang 2002). For a 58 

rational management of the uncertainty analysis, we use Global Sensitivity Analysis 59 

(GSA) to obtain information on the relative effects of the uncertain input parameters on 60 

the model outputs (Saltelli et al. 2000). In particular, we resort to variance-based 61 

methods, which can provide a comprehensive view on the uncertainty and allow 62 

identifying the relative and joint contributions of the uncertain input parameters to the 63 

uncertainty (variance) of the model outputs (Archer et al. 1997). 64 

Within variance-based GSA, the Sobol indices are widely used as sensitivity metrics 65 

(Sobol 1993), because they do not require any assumption of linearity in the interpretive 66 

model adopted. Their estimation is traditionally performed by Monte Carlo (MC) 67 

sampling (Sobol 2001). The sample size needed to attain statistical convergence of the 68 

Monte Carlo estimates can be rather large, depending on the complexity and dimension 69 

(number of uncertain input parameters) of the problem (e.g., Ballio and Guadagnini 2004, 70 

Zhang et al. 2010, and references therein). This might result in a serious and sometimes 71 

unsustainable computational burden in cases where repeated high-resolution simulations 72 

of the model are required (Sudret 2008). 73 

Techniques based on advanced sampling strategies can be introduced to reduce the 74 

computational cost associated with Monte Carlo simulations. Among these, the Stochastic 75 

Finite Element Method (SFEM) (Ghanem and Spanos 1991) is based on a spectral 76 

analysis  that allows the expansion of the model output into the probabilistic space, called 77 

Polynomial Chaos (PC) (Wiener 1938). The Polynomial Chaos Expansion (PCE) of the 78 

model can be used to build a surrogate model such that the variability of the output is 79 

represented in the ensemble of the expansion coefficients (Sudret 2008). Once the 80 
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surrogate model has been derived, the calculation of the Sobol indices does not add 81 

significant extra computational costs. The formulation of a surrogate model in a 82 

polynomial form has the additional advantage of allowing performing Monte Carlo 83 

simulations with negligible computational effort, as compared to the original, high-84 

complexity model. 85 

In this work, we rely on PCE to analyze the uncertainty affecting the outputs of a 86 

numerical model of radionuclide migration in an aquifer, following a release from a near 87 

surface repository. The outflow from the repository is modeled within the Monte Carlo 88 

framework proposed by Cadini et al. (2012). Radionuclide migration in the aquifer is 89 

modeled through an Advection-Dispersion-Reaction-Equation (ADRE). The aquifer 90 

hydraulic conductivity constitutes a (second-order stationary) randomly heterogeneous 91 

field. In this context, the model outputs of interest are the first two (statistical) moments 92 

(i.e., mean and variance) of the peak concentration at a given control location in the 93 

aquifer. We study how the incomplete/imprecise knowledge of (a) the correlation scale, 94 

, of the variogram of the log-conductivity field, (b) the partition coefficient associated 95 

with the migrating radionuclide, kd, and (c) the effective longitudinal dispersivity at the 96 

scale of interest, L, propagates to the selected (ensemble) moments of the output 97 

distribution. 98 

GSA is performed jointly with PCE to compute the Sobol indices associated with the 99 

three uncertain parameters (, kd, L), which are treated as random variables. The PCE – 100 

based surrogate model is then employed to perform an exhaustive set of Monte Carlo 101 

(MC) simulations to attain convergence for the target moments of interest. Given the 102 

prohibitive computational costs involved in performing a large number of MC 103 

simulations on the original flow and transport model, the goodness of PCE-based results 104 

is then assessed on the basis of a limited number of simulations, obtained upon sampling 105 

the selected random parameter space. 106 

2. Theoretical Background and Methodology 107 

2.1 Variance-based approaches for GSA 108 

In this context, the ANOVA (ANalysis Of VAriance) representation of a model 109 

output (Archer et al. 1997) is a useful tool for the definition of the Sobol indices (Sobol 110 

1993; Archer et al. 1997).  111 

Consider a model function )(xfy  , y  being a target random response of the 112 

model at a prescribed space-time location. This response depends on the vector x  of n  113 

independent random model parameters defined in the n -dimensional unit hypercube, nI . 114 

If )(xf is integrable, the following representation holds: 115 
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where nii s  ...1 1  ns ,...,1  are the indices specifying the parameters upon which 118 

each term depends and the n2  summands in (1) are orthogonal functions that can be 119 

expressed as integrals of )(xf , e.g.  xx dff )(0  is the mean of the model, 120 
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kii xx  and so on. Therefore condition (2) renders representation (1), 121 

which is typically termed ANOVA decomposition, unique. 122 

When )(xf  belongs to the space of square-integrable functions, then the total 123 

variance, V , of the model due to the uncertainty of its parameters is: 124 
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siiV ,...1
 being the partial variance, expressing the contribution to V due to the interaction of 126 

the set of model parameters  
sii xx ,...

1
. The generic s -order Sobol index 

siiS ,...1
 is defined 127 

as (Sobol 1993): 128 

VVS
ss iiii ,...,... 11

        (4) 129 

The sum of the indices defined in (4) is unity. The first-order or principal 130 

sensitivity indices, iS , describe the significance of each parameter individually 131 

considered. Higher-order indices describe the effects of interactions among parameters. 132 

The overall effect of a given parameter ix  is described by the total sensitivity index 
iTS , 133 

defined as: 134 
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A complete GSA requires the estimation of n2  integrals of the kind in (3). This is 136 

usually done by Monte Carlo simulation (Sobol 2001), but the computational cost 137 

becomes prohibitive when the model is complex and the number of uncertain parameters 138 

is large (Sudret 2008). 139 

2.2 Polynomial Chaos Expansion representation of a stochastic 140 

model 141 

We focus on the identification of a surrogate model (or metamodel) of a high 142 

complexity model (which is hereafter termed full system model) by the Polynomial 143 

Chaos Expansion (PCE) technique. This involves the projection of the model equation 144 
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into a probabilistic space, termed Polynomial Chaos, to construct an approximation of the 145 

model response surface. Wiener (1938) showed that the expansion performed by adopting 146 

Hermite Polynomials as a basis converges, in 2L -sense, for any random process 147 

characterized by finite second-order moments. While the Hermite basis is suitable for 148 

Gaussian processes, different types of orthogonal polynomials are required for optimum 149 

convergence rate in the case of non-Gaussian processes (Xiu and Karniadakis 2002). 150 

In this framework, one starts by noting that any square-integrable random model 151 

response, S , admits the following expansion, or chaos representation (Soize and Ghanem 152 

2004): 153 
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Here, j  denotes the j -order multivariate orthogonal polynomial,  
1nn  is the set of 155 

independent random variables whose distribution is linked to the choice of the 156 

polynomial basis (Xiu and Karniadakis, 2002), and js  are the polynomial coefficients. 157 

In various engineering fields one typically considers stochastic models associated 158 

with a finite number M of input random variables. The PCE of the random model output 159 

can be derived by approximating (6) to polynomials of degree not exceeding p as 160 
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where P  is the number of (unknown) polynomial coefficients. 162 

The distribution of the input random variables of the model, included in vector x , 163 

does not affect the applicability of the method. Note that in cases where this distribution 164 

is not interpreted by the one required by the chosen polynomial basis, an isoprobabilistic 165 

transformation is required to relate x  and  M ,...,1ζ . Correlation amongst random 166 

input model parameters can be accommodated in the methodology by applying the Nataf 167 

transformation (Nataf 1962), for which the knowledge of the marginal probability density 168 

functions of the parameters and the associated correlation matrix is required. 169 

Assessment of the coefficients js  in (7) can be performed by regression, upon 170 

minimization of the variance of a residual defined as the difference between the surrogate 171 

model response, S
~

, and the exact solution given by the original model (Sudret 2008) 172 

       






1

0

~
P

j

jjsSSS ζxζx      (8) 173 

Minimization with respect to the vector of the unknown coefficients ς  renders 174 
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with E[·] denoting expected value. It is useful to rewrite (9) as 176 
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where N  is the number of regression points, 'S  is the vector denoting the model response 178 

at these points, while the product ΨΨ
T  defines the so-called information matrix.  179 

The choice of the optimum set of regression points is performed following the 180 

same criterion adopted in the context of integral estimation by Gaussian quadrature 181 

(Huang et al. 2007). Solving (10) requires a minimum of PN   regression points. One 182 

typically selects PN   to avoid singularity in the information matrix. 183 

2.3 Polynomial Chaos Expansion and Global Sensitivity Analysis 184 

Polynomial Chaos Expansion can be considered as a powerful tool for Global 185 

Sensitivity Analysis because the entire variability of the original model is conserved in 186 

the set of PCE coefficients (Ghanem and Spanos 1991). The Sobol indices can be 187 

analytically calculated from these coefficients without additional computational cost 188 

(Sudret 2008). Manipulating S
~

 by appropriate grouping of terms allows isolating the 189 

contributions of the different (random) parameters to the system response: 190 
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where   denotes a general term depending only on the variables specified by the 192 

subscript. 193 

In this sense, a PCE is similar to the ANOVA representation of the model. 194 

Orthogonality of the polynomial basis allows recognizing that the mean of the model 195 

response coincides with the coefficient of the zero-order term, 0s , in (11) while the total 196 

variance of the response is 197 
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The Sobol indices can then be derived as 199 
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calculation of  2
E  can be performed, e.g., according to Abramowitz and Stegun (1970). 201 
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3. Application to a model of radionuclide 202 

migration in a randomly heterogeneous aquifer 203 

We exemplify our approach by considering an environmental problem related to 204 

the performance assessment of a radioactive waste repository. We use a Monte Carlo 205 

simulation model to describe radionuclide release at the repository scale. This model of 206 

release of radionuclides, i.e., Pu239 , from the repository is linked to a groundwater flow 207 

and transport numerical model to simulate radionuclide migration within a heterogeneous 208 

aquifer. 209 

The aquifer hydraulic conductivity is modeled as a second-order stationary 210 

stochastic process in space. We take the first two (statistical) moments (i.e., mean and 211 

variance) of the peak concentration detected at a given control location in the aquifer, as 212 

the target model responses. Uncertainty in these variables is considered to be a 213 

consequence of incomplete knowledge of (a) the correlation scale of the variogram of the 214 

log-conductivity field (b) the partition coefficient associated with the migrating 215 

radionuclide, and (c) the effective dispersivity at the scale of interest. 216 

3.1 Repository representation and modeling of radionuclide 217 

release history 218 

The conceptual repository design considered in the performance assessment 219 

illustrated in this study has been proposed by ENEA (Marseguerra et al. 2001a, b) and has 220 

similarities with the currently operative disposal facility of El Cabril in Spain (Zuolaga 221 

2006). 222 

We model the repository as a one-dimensional (along the vertical direction) 223 

system (Cadini et al. 2012). The major containment structures of the disposal facility are 224 

the waste packages, the modules or containers, the cells and the disposal units. These 225 

constitute a multiple-barrier system designed to limit water infiltration and subsequent 226 

radionuclide migration. Figure 1a depicts a typical waste package consisting in a steel 227 

drum containing the radioactive waste and immobilized in a concrete matrix. The 228 

diameter and the height of the waste package have been set respectively to 0.791 m and 229 

1.1 m, for a total volumetric capacity of around 400 l. Figure 1b shows a cross-section of 230 

the containment module adopted in this study, i.e., a concrete box-shaped structure which 231 

contains 6 waste packages and is sealed with a concrete top cover. The empty spaces 232 

between the packages are filled by bentonite. The external length of the module is 3.05 m, 233 

with a width and height of 2.09 m and 1.7 m, respectively. The corresponding internal 234 

dimensions are 2.75 m, 1.79 m and 1.37 m. The modules are arranged in 5 × 6 × 8 arrays 235 

within concrete structure cells built below the natural ground level. 236 
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Figure 2 depicts the modules arrangement and the typical repository placement at 237 

a given site. The disposal unit is a concrete structure embedding a row of 6 to 10 cells. 238 

The disposal facility comprises several units, which are typically arranged into parallel 239 

rows. Each unit can be modeled as an independent system which can be built and 240 

operated without interfering with the remaining units. 241 

In agreement with typical engineering scenarios we consider that (Marseguerra et 242 

al. 2001a, b): (i) the modules are identical; (ii) the mass transport occurs chiefly along the 243 

vertical direction; and (iii) lateral diffusive spreading is symmetric. Under these 244 

assumptions, estimating the probability of radionuclide release into the groundwater 245 

system below the repository can be reduced to the one-dimensional problem of estimating 246 

the release from a column of five identical vertically stacked modules, i.e., the repository 247 

column may be envisioned as a one-dimensional array of compartments, each 248 

corresponding to a module. 249 

The radionuclides transition across the compartments is described stochastically. 250 

Under the assumption that solute displacement can be modeled as a Markovian process, 251 

the transition rates can be identified from the classical advection/dispersion equation. 252 

Non-Fickian transport can be modeled according to existing conceptual schemes 253 

(Berkowitz et al. 2006 and references therein) where the relevant transport parameters 254 

could be estimated by detailed data analysis at the temporal and spatial scales at which 255 

the processes of interest occur. 256 

For the purpose of our example we adopt the following criteria, which can be 257 

considered as conservative in a performance assessment protocol: (i) the protection 258 

offered by the concrete cell roof and ceiling and the backfill layers fails; (ii) the whole 259 

column, which is formed by 5 modules, is saturated and a constant water head of 0.15 m 260 

is applied at the top of the highest module, i.e., the water head at the top of the column is 261 

h(z = 5  1.7 m) = 8.65 m; (iii) the water head at the bottom of the column is zero; (iv) 262 

each module is subject to constant head gradient h/z = 1.018, where h = 8.65 m and 263 

z = 5  1.7 m = 8.5 m is the column height; (v) the Pu239  radioactive decay and the 264 

subsequent generation of other radionuclides from the decay chains are neglected within 265 

the repository; (vi) the migration of Pu239 occurs at linear isothermal equilibrium. 266 

The numerical code MASCOT (Marseguerra and Zio 2001; Marseguerra et al. 267 

2003; Cadini et al. 2012) has been adopted to compute the probability density function of 268 

the release of Pu239  from the modules. Details of the computations and the resulting 269 

temporal dynamics of the radionuclide release history are presented in Cadini et al. 270 

(2012). 271 
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3.2 Radionuclide migration in the groundwater system 272 

 For simplicity and for the purpose of our illustration we disregard the 273 

radionuclide transfer time within the partially saturated zone and analyze only 274 

contaminant residence time within the fully saturated medium. This assumption may be 275 

regarded as conservative because it leads to overestimating the radionuclide concentration 276 

detected downstream of the repository. This can also be considered as a viable working 277 

assumption in the presence of shallow reservoirs. The effect of processes occurring within 278 

the partially saturated region may require an additional analysis, which is outside the 279 

scope of this work. 280 

Groundwater flow and contaminant transport are modeled within a two-281 

dimensional system. The (natural) log-transformed hydraulic conductivity, Y(x) (x 282 

denoting the space coordinates vector), is modeled as a second-order stationary spatial 283 

random function. For our example, the parameters of the variogram of Y have been 284 

selected as representative of a field case study, which we do not specifically report for 285 

confidentiality reasons. We note, however, that the particular choice of these values does 286 

not affect the generality of the methodology. Log-conductivity is characterized by an 287 

isotropic variogram of the exponential type, with sill 21.12  . For the purpose of our 288 

illustrative example, we set the variogram sill and consider its correlation scale as an 289 

uncertain parameter (see Section 4) because of its poor identifiability due to typical 290 

horizontal spacing of available field-scale measuring locations. Monte Carlo realizations 291 

of Y(x) have been performed by employing the sequential Gaussian scheme implemented 292 

in the code GCOSIM3D (Gómez-Hernández and Journel 1993). 293 

We consider a two-dimensional domain of uniform lateral side equal to 2000 m. 294 

As an example, a selected realization of the log-conductivity distribution is depicted in 295 

Figure 3 together with the repository projection (R), with sides equal to 50 m and 80 m, 296 

and the target control point (W), located 960 m downstream of the repository fence line. 297 

The domain is discretized into square cells with uniform side of 10 m, ensuring 298 

that there are at least five log-conductivity generation points per correlation scale (see 299 

Section 4 for additional details). Each of the 8  5 cells located under the repository 300 

projection area receives the release of a cluster of 4 × 3 columns of 5 modules. These 301 

cells are modeled through a recharge boundary condition so that a time-dependent influx 302 

solute mass is injected in the porous medium according to a suitable discretization in time 303 

of the Monte Carlo-based outflow from the repository. As in Cadini et al. (2012), we set 304 

the incoming water flow [m
3
/y] from the repository at a constant value equal to 305 

,Sqdin   2.21dq [m/y] being the water Darcy flux at the bottom of the 5 modules 306 

column and S [m
2
] being the area of the source cells. The associated radionuclide 307 

concentration [Bq/m
3
] released to the aquifer is then: 308 
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where A0 = 1.6  10
6
 [Bq] is the total activity of Pu239  (which we assumed to be 310 

uniformly distributed) in the repository at a reference time t = 0 and )(tpdfout  [y
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] is the 311 

release probability density function from the four compartment domain (i.e., the five 312 

module column). The adopted Pu239  activity level corresponds to the Italian inventory 313 

(Enea 2000) and justifies the assumption of disregarding solubility-limited release. In our 314 

example, the concentration of Pu239  within the repository is 315 
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3
], where 

41028761.0 r [y
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] is 316 

the Pu239  constant decay, AN  is the Avogadro constant, repV  is the total volume of the 317 

repository and 
239Pu

slC  is the solubility limit of Pu239 . Additional details are presented in 318 

Cadini et al. (2012). 319 

Base groundwater flow in the aquifer is driven by a constant hydraulic head drop 320 

between the East and West boundaries, resulting in a unit average head gradient. No-flow 321 

conditions are assigned to the North and South boundaries. 322 

Simulations of the steady state flow problem for each conductivity realization are 323 

performed with the widely used and thoroughly tested finite difference code 324 

MODFLOW2000 (McDonald and Harbaugh 1988). Radionuclide migration in the 325 

groundwater system is then modeled by means of the classical Advection-Dispersion 326 

Equation (ADE), where the partition coefficient, dk , governing sorption of the 327 

contaminant onto the host solid matrix and the effective longitudinal dispersivity, L  (for 328 

simplicity, transverse dispersivity is assumed to be equal to 0.1 L ), are considered to be 329 

random variables, as described in Section 4. A uniform effective porosity of 0.15 is 330 

considered. 331 

4. Global Sensitivity Analysis of the (ensemble) 332 

moments of radionuclide peak concentration 333 

The three random parameters selected for our demonstration are assumed to be 334 

uniformly distributed within the intervals reported in Table 1. The ranges of variability of 335 

 and αL are compatible with the selected domain size, and consistent with the lack of a 336 

sufficiently large number of closely spaced Y measuring points. The degree of variability 337 

of kd has been chosen according to ENEA (1997) and Nair and Krishnamoorthy (1999).  338 

The model response, i.e., the radionuclide peak concentration, pc , at the control 339 

point is then, in turn, a random variable. As introduced in Section 3, we perform our 340 

analysis in a numerical Monte Carlo framework according to the following steps: (a) a set 341 
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of 100fN  Y fields are generated by GCOSIM for given values of the random 342 

parameters sampled within the intervals presented in Table 1; (b) groundwater flow and 343 

transport are solved and (ensemble) mean, pc , and standard deviation, 
pc , of the peak 344 

concentration are computed; (c) steps (a) and (b) are repeated for different sampling 345 

points in the random parameters space; and (d) GSA is performed to discriminate the 346 

relative contribution of the random parameters to uncertainty of pc  and 
pc . Note that 347 

due to the random nature of Y(x), we propose to perform GSA on the (ensemble) 348 

moments of pc  rather than on its actual value calculated at the selected control location 349 

for each random realization. Conceptually, this is equivalent to performing a GSA of the 350 

results stemming from the solution of transport equations satisfied by the ensemble 351 

moments of the evolving concentrations (e.g., Guadagnini and Neuman (2001) and 352 

Morales-Casique et al. (2006 a,b) for conservative solutes). 353 

The procedure illustrated is rather cumbersome when considering the solution of 354 

the full system model, because of the large number of simulations required, so that a GSA 355 

might become impractical. Therefore, we adopt the PCE technique presented in Section 2 356 

and derive expansions of order p = 2, 3 and 4, for both pc  and 
pc . We resort to the 357 

Legendre Chaos space, because the uncertain input parameters are associated with 358 

uniform distributions. 359 

The calibration of the coefficients of the surrogate models requires RN 10, 38 360 

and 78 (respectively for p = 2, 3, 4) sampling points in the space of the three selected 361 

uncertain parameters. In our example, this corresponds to MCN 1000, 3800, 7800 runs 362 

of the full model of groundwater flow and transport. Calculation of the Sobol indices is 363 

then performed with negligible additional computational requirements. 364 

Figure 4 reports the Total Sensitivity Indices, TS  (left), and variances, V  (right), 365 

of pc
 
 versus the degree of polynomial expansion, p. Figure 5 reports the corresponding 366 

results for 
pc . 367 

We start by noting that TS  and V  are not dramatically influenced by the degree 368 

of polynomial expansion selected for both moments. The good agreement obtained 369 

between Total and Principal Sensitivity Indices (not shown) implies that the effects of 370 

parameters interactions can be neglected in this example. 371 

Figure 4 reveals that dk  and L  are the parameters which are most influential to 372 

pc , regardless of the degree of expansion adopted. On the other hand, the log-373 

conductivity correlation scale,  , and (to a lesser degree) the dispersivity, L , strongly 374 
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influence 
pc , while dk  does not have a significant impact for the specific values adopted 375 

in the case study. The uncertainty associated with the mean peak concentration is thus 376 

related mostly to the spatial structure of heterogeneity and to the strength of the 377 

dispersion phenomena, and less to the considered geochemical scenario.  378 

The calibrated surrogate models allow extending with negligible computational 379 

cost the number of Monte Carlo simulation runs required for computing mean and 380 

standard deviation of pc  and 
pc , as illustrated in Section 2.2. Figures 6 and 7 381 

respectively depict the dependence of the mean and the standard deviation of pc  and 382 

pc  on the number of Monte Carlo runs performed with the calibrated surrogate models. 383 

The high number ( 410 ) of simulations required to attain convergence denotes the 384 

complexity of the case study and supports the adoption of a surrogate model to assess the 385 

uncertainty associated with the model response at reasonable computational costs. 386 

The reliability of the results obtained through the PCE-based surrogate model has 387 

been analyzed by comparison against a number of full model runs performed by uniform 388 

sampling of Ns = 100 points in the random parameters space, corresponding to a total of 389 

410  random realizations of Y(x). The limited amount of sampling points selected is due to 390 

the excessive computational cost associated with the full model run (about 4 min for each 391 

simulation on a standard computer with a 3.16 GHz processor). 392 

Figure 8 reports the relative fraction, F (%), of the mean concentration values, 393 

SM

p l
c  (l = 1, 2, …, Ns), calculated with the PCE at different orders (p = 2, 3, 4) and 394 

comprised within intervals of width w = ±  
p

FM

c
l

 , ± 2  
p

FM

c
l

 , and ± 3  
p

FM

c
l

  centered 395 

around 
FM

p l
c , 

FM

p l
c  and  

p

FM

c
l

  respectively being the mean and standard deviation 396 

of the peak concentration computed by means of the full system model. The latter is 397 

based on a standard Monte Carlo solution of radionuclide migration within NMC = 100 398 

log-conductivity realizations for each 1  l  Ns. It can be seen that at least 40% of the 399 

values calculated with the surrogate models of different orders are comprised within the 400 

intervals of width ± 
FM

pc , while about 75% of the results are included within intervals 401 

not exceeding ± 2
FM

pc . According to this criterion, Figure 8 suggests that the best 402 

results for our example appear to be provided by the PCE of order p = 2.  403 

To complement these results, Table 2 reports the mean and standard deviation of 404 

pc  calculated on the basis of the Ns =100 sampling points in the random parameters 405 

space for each model (standard Monte Carlo and surrogate models of different order). 406 
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Table 3 reports the corresponding results for 
pc . The limited number of simulations does 407 

not allow to attain convergence of the target moments. However, it is possible to observe 408 

that the PCE of order p = 4 provides the best approximation of both the mean and 409 

standard deviation of pc  calculated with the full model. In other words, the Total 410 

Sensitivity Indices for pc  calculated with the PCE of order p = 4 are candidates to 411 

provide the best indications for a GSA, as one might expect. Finally, it can be noted that 412 

the PCE of order p = 3 best approximates the mean and standard deviation of 
pc  413 

calculated with the full model on the basis of the simulations performed. 414 

5. Conclusions 415 

In this work we proposed an approach for performing a Global Sensitivity 416 

Analysis (GSA) of a high-complexity theoretical and numerical model descriptive of the 417 

potential release of radionuclides from a near surface radioactive waste repository and 418 

their subsequent migration in the groundwater system. We considered uncertainty 419 

stemming from incomplete knowledge of the variogram and transport parameters (i.e., the 420 

correlation length of the variogram of log-conductivity, the partition coefficient 421 

associated with the migrating radionuclide and the effective dispersivity at the scale of 422 

interest) and, due to the random nature of the hydraulic conductivity field. We identified 423 

as target system responses the first two (ensemble) moments of the peak concentration at 424 

a given control point. GSA has been performed through the Polynomial Chaos Expansion 425 

(PCE) technique, leading to the following key results: (a) the analysis of the Sobol indices 426 

has revealed that the (ensemble) mean of the peak concentration is strongly influenced by 427 

the uncertainty in the partition coefficient and the longitudinal dispersivity, and the 428 

effects of these parameters shadow the impact of the spatial coherence of the log-429 

conductivity field at the scale analyzed; (b) on the other hand, the log-conductivity 430 

correlation scale is the most influential factor affecting the uncertainty of the standard 431 

deviation of the peak concentration in our example; and (c) the PCE surrogate models 432 

allow extending, with negligible computational cost and acceptable accuracy, the number 433 

of Monte Carlo iterations to attain convergence of the selected target moments. 434 

Our results support the relevance of adopting the proposed model reduction 435 

technique for complex numerical models. This methodology allows performing in-depth 436 

analyses which would be otherwise unfeasible, thus severely limiting our capability to 437 

represent the relevant processes involved in a target environmental scenario.  438 

 439 
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Figure Captions 558 

 559 

Fig. 1 Conceptual design of: (a) a waste package, (b) a containment module (ENEA 1987). 560 

Fig. 2 Sketch of the 5  6  8 array of modules considered in a repository cell (ENEA 1987; 561 
Marseguerra et al. 2001a, b). 562 

Fig. 3 Sketch of the adopted two-dimensional groundwater flow domain, including the 563 
repository projection (R) and the selected control point (W), for a selected realization of the log-564 
conductivity field. 565 

Fig. 4 Total Sensitivity Indices ( TS (Ω),  Ω = , L , dk ), Total Variance (V ) and Partial 566 

Variances (V (Ω),  Ω = , L , dk ) calculated for pc  and p=2, 3, 4. 567 

Fig. 5 Total Sensitivity Indices ( TS (Ω),  Ω = , L , dk ), Total Variance (V ) and Partial 568 

Variances (V (Ω),  Ω = , L , dk ) calculated for 
pc  and p=2, 3, 4. 569 

Fig. 6 Dependence of the (a) mean and (b) standard deviation of pc  on the number of Monte 570 

Carlo iterations performed with the calibrated surrogate models. 571 

Fig. 7 Dependence of the (a) mean and (b) standard deviation of 
pc  on the number of Monte 572 

Carlo iterations performed with the calibrated surrogate models. 573 

Fig. 8 Relative fraction, F (%), of the mean concentration values, 
SM

p l
c  (l = 1, 2, …, Ns) 574 

calculated with the PCE at different orders (p = 2, 3, 4) which are comprised within intervals of 575 

width w = ±  
p

FM

c
l

 , ± 2  
p

FM

c
l

 , and ± 3  
p

FM

c
l

  centered around 
FM

p l
c ; 

FM

p l
c  and 576 

 
p

FM

c
l

  respectively are the mean and standard deviation of the peak concentration computed 577 

through the full system model on the basis of a standard Monte Carlo analysis of radionuclide 578 
migration within NMC = 100 log-conductivity realizations for each l. 579 

580 
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Table 1 Intervals of variability of the selected uniformly distributed random model parameters. 581 
 582 

Random Variable Distribution 

Partition Coefficient, dk  








g

l

g

l
U 3;1  

Longitudinal Dispersivity, L   mmU 70;50  

Correlation length of log-conductivity,    mmU 100;40  

 583 

Table 2 Values of the mean and standard deviation of pc  calculated with the full model and the 584 

surrogate models on the basis of 100 sampling points in the random parameter space. 585 
 586 

Model Mean of pc  Standard Deviation of pc  

Full system model 2.738E-06 3.241E-07 

Surrogate model p = 2 2.407E-06 7.175E-08 

Surrogate model p = 3 3.190E-06 1.887E-07 

Surrogate model p = 4 2.538E-06 3.462E-07 

 587 

Table 3 Values of the mean and standard deviation of 
pc  calculated with the full system model 588 

and the surrogate models on the basis of 100 sampling points in the random parameter space. 589 
 590 

Model Mean of 
pc  Standard Deviation of 

pc  

Full system model 4.061E-07 8.169E-08 

Surrogate model p = 2 4.708E-07 3.310E-08 

Surrogate model p = 3 4.278E-07 5.719E-08 

Surrogate model p = 4 4.530E-07 1.321E-07 

 591 
 592 


