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Uncertainty in IMs

Consider a system made up of n components, assumed binary (i.e., they have only two possible states 'working' and 'failed'), and s-independent.

The Birnbaum IM   B j
It of the j-th component of such system at time t is given by [START_REF] Aven | On the use of uncertainty importance measures in reliability and risk analysis[END_REF]:

        B j j Ut It Qt    Q (1) 
Simple analytical manipulation yields [START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF]      

B j j j I t U t U t    (2) 
       1, jj U t U Q t   Q
is the system failure probability when component j is in failed state. It represents the maximum risk achievement if component j is considered failed [START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF].

       0, jj U t U Q t   Q
is the system failure probability when component j is functioning. It represents the maximum reduction in risk if component j is considered working [START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF]. Consider, as an example, the system in Fig. 1, and assume to know the exact values of the component unreliabilities, Q A , Q B , Q C . The system unreliability is ( , , )

A B C A B C A B C U Q Q Q Q Q Q Q Q Q   
The Birnbaum IMs of the components are then obtained by using (1) as However, the exact values of the component failure probabilities

1 B A B B C BB B A A C B C A B I Q Q Q I Q Q Q I Q Q                I (3) 
          12 , ,..., n t t Q t Q t Q  Q are often
not precisely known in practical situations, e.g., because they are assigned by an expert, or estimated through statistical means. Then, our objective is to rank the components according to their Birnbaum IMs, taking into account the epistemic uncertainties in the component failure probabilities. In general, whichever is the framework adopted to represent the epistemic uncertainties, this entails three successive steps:

1. representation the uncertainties on the component"s failure probabilities, In the remaining part of this section, we will consider the example in Fig. 1 assuming that the uncertain unreliabilities j Q , j=A, B, C, are described by the Cumulative Distribution Functions (CDFs), ( ), j Qj Fq whose mean and standard deviations are reported in Table I. Notice that these distributions have been numerically obtained in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] by assuming that an expert is able to represent the uncertainties in the component failure rates using lognormal distributions, and by propagating these uncertainties onto the component unreliabilities. 

Components importance ranking, under a probabilistic representation of uncertainty

Here we recall the procedure propounded in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] to rank the components according to their Birnbaum importance considering the probabilistic uncertainty in their IMs.

Let us consider two generic components k and s; to establish which is the most important, the distribution of the random variable ( , ) Finally, the relation order between components k and s is obtained by comparing ks r to a threshold range

[ ,1 ] l l
T T  , symmetric around 0.5, and considering the following criteria.

 If 1 ks l r T  then k is more important than s.  If ks l rT  then s is more important than k.  If 1 l ks l
T r T    then k is equally important to s. In this case, different kinds of additional constraints or targets should guide the ranking order (costs, repair times, failure impacts on public opinion, etc.).

In practice, the attention is concentrated on component s if the decision maker judges "large" enough (e.g., >0.7) the probability that component s is more important than component k.

Notice that there may be some cases in which the comparison of the Birnbaum importance of three generic components, j, k, s, may lead to a contradictory ranking which does not obey the transitive property, 

Components importance ranking, under a possibilistic representation of uncertainty

Experts may not be willing to specify probability distributions of the parameters of the system model such as the component failure probabilities

          12 , ,..., n t t Q t Q t Q  Q
when the available information is incomplete, sparse, conflicting, vague, or non-specific [START_REF] Sentz | Probabilistic bounding analysis in the quantification of margins and uncertainties[END_REF]. Possibility theory has been proposed to deal with epistemic uncertainty in situations characterized by insufficient knowledge on parameter values. 

Possibilistic representation of uncertainty in component unreliabilities

Let us consider the generic variable Q; in PT, uncertainty in this variable is represented by means of a possibility function () Q q  , which expresses the degree of possibility of each value q of the variable Q in a set S of being the true (but unknown) value of Q. When ( ) 0 Q q   , it means that the outcome q is considered an impossible situation. When ( ) 1 Q q   , it means that the outcome q is possible, i.e., unsurprising, typical, usual [START_REF] Dubois | Possibility Theory and Statistical Reasoning[END_REF]. These values are mutually exclusive becaue the uncertain variable can assume one true value only. This result also gives the normalization condition : ( ) 1

Q q S q     , which
claims that at least one value is viewed as totally possible, a much weaker statement than when the probability is 1.0 [START_REF] Dubois | Possibility theory, probability theory and multiple valued-logics: A clarification[END_REF].

A possibility distribution may also be viewed as a nested set of confidence intervals, which are the α-cuts

[ , ] { | ( ) } Q q q q q    of  . The degree of certainty that [ , ] qq  contains Q is ([ , ] ) Q N q q  1   if Q  is
continuous [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF].

The possibility and necessity measures ()

Q ΠA , ( ) 
Q
NA for all subsets AS  are defined by the associated possibility distribution () Q q  through the following maximization and minimization relationships, respectively:

( ) sup{ ( )} Q Q qA Π A q    (4) 
( ) 1 ( ) 1 sup{ ( )} Q Q Q qA NA Π notA q       (5) 
Let P Q ( ) be a family of probability distributions such that for all events A,  

( ) ( ) Q Q Q N A P A ΠA   .
Then, ( ) inf ( )

QQ N A P A  and ( ) sup ( ) QQ A P A  (6) 
where inf and sup are taken with respect to all probability measures in P Q [START_REF] Baudrit | Representing parametric models tainted with imprecision[END_REF]. Hence, the necessity measure is interpreted as a lower limit for the probability, and the possibility measure is interpreted as an upper limit.

Referring to subjective probabilities, the bounds reflect that the analyst is not able or willing to precisely assign his or her probability, and the bounds are the best he or she can do given the information available; in other words, he or she can only describe a subset of P Q which contains his or her probability.

On this basis, we can define the upper () Q Fq and lower ()

Q Fq cumulative distribution functions such that , ( ) ( ) ( ) Q Q Q q S F q F q F q     , with ( ) (] , ]) QQ F q N q    , and 
( ) (] , ]) Q Q F q q    
(i.e., the generic set A in (4)-( 6) assumes here the form of ] , ] q  ). For the sake of brevity, in the present work the possibility, and necessity measures (] , ])

Q q    and (] , ]) Q Nq  are indicated with abuse of notation by () Q q  , and 
() Q Nq , respectively. For further theoretical details, the interested reader may refer to [START_REF] Baudrit | Representing parametric models tainted with imprecision[END_REF]- [START_REF] Dubois | Possibility theory, probability theory and multiple valued-logics: A clarification[END_REF].

Various approaches for constructing possibility distributions have been proposed depending on the available information [START_REF] Baudrit | Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment[END_REF], [START_REF] Baraldi | Monte Carlo and fuzzy interval propagation of hybrid uncertainties on a risk model for the design of a flood protection dike[END_REF], [START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF]. In this work, we assume that the only available knowledge on the uncertain variable Q j is constituted by its mean * j q , and standard deviation j  . In this case, the Chebyshev inequality can be used to build a possibility distribution [START_REF] Baraldi | A comparison between probabilistic and Dempster-Shafer Theory approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories[END_REF]. Such inequality defines a bracketing approximation on the confidence intervals around the known mean * j q of Q j knowing its standard deviation j  :

* * 2 1 ( [ , ]) 1 1 j j j j j P Q q a q a for a a         (7) 
The Chebyshev inequality defines a possibility distribution ()

j Qj q  by considering intervals * * [ , ] j j j j
q a q a   as α-cuts of ()

j Qj q
 , and letting

* * 2 ( ) ( ) 1/ j j Q j j Q j j q a q a a        
. This possibility distribution defines a probability family which has been proven to contain all distributions with mean * j q and standard deviation j  , s-independently from the type of probability distribution, i.e, normal, lognormal, gamma, symmetric or not, unimodal or not, etc. [START_REF] Baraldi | A comparison between probabilistic and Dempster-Shafer Theory approaches to Model Uncertainty Analysis in the Performance Assessment of Radioactive Waste Repositories[END_REF].

With regard to the three-components case study of Fig. 1, we now assume that the only available knowledge is constituted by the means and standard deviations of the component failure probabilities (Table I), without any information on the type of distribution. The possibility distributions obtained by using the Chebyshev inequality are shown in Fig. 4 a, b, andc. Π q, and ()

j Q j
N q obtained from the corresponding possibility distributions () j Qj q  of Fig. 4 a, b, and c by using (4), and ( 5) respectively. In details, for a given value j q of j Q , the possibility measure

() j Qj q 
takes the maximum value of ()

j Qj q  
for any jj qq   , whereas the necessity measure takes the minimum value of 1-() j Qj q   for any jj qq   . 

j j j Q j Q j Q j F q N q Πq  ,

Possibilistic representation of uncertainty in component Birnbaum IMs

To propagate the epistemic uncertainty from the component unreliabilities onto the component importance measures, the fuzzy extension principle is used [START_REF] Zadeh | Fuzzy Sets[END_REF]. In practice, the following steps are performed.

1. Select a value of α on [0,1], and take as the interval of possible values of the reliabilities of the

components the cut [ , ] { | ( ) } j j j j Q j Q Q q q     , j=A, B, C. For example, if α=1, then the 1-cut of the distributions () A QA q 
, and

) ( B Q q B  are 33 1 [ , ]
9.98e ,19.7e B j I j g  , respectively), when the elements of Q range within the intervals [ , ] 

AA QQ       ,
jj QQ  ; that is, calculate , [ , ] inf ( ) B j ll l I j j l q Q Q g g     Q (8) , [ , ] sup ( ) 
B j l l l I j j l q Q Q g g     Q (9) 
These results are the lower, and upper bounds, respectively, of the α-cut of the possibility distributions ()

B j B j I i  , j=A, B, C.
For example, with reference to the component C and (3), we have 

B C l l l A B I C C A B l q Q Q q q e g g Q Q e                                Q 33 1
B C ll l A B I C C A B l q Q Q q qe g sup g Q Q e                        Q 3.
Repeat steps 1-2 for another value of α. 

Components Importance Ranking

In this section, we present a procedure for ranking the possibility distributions representing the uncertainty in the Birnbaum IM of the system components. If, for example, we consider the possibility and necessity measures of components A, B, C, Figs. 3 a, b, andc show that the upper limit (possibility measure) of the probability that the importance of component C is smaller than 0.9 is 0, whereas the lower limit of the probabilities that the importance of components A and B are larger than 0.06 is 0. Thus, in this case one can conclude that component C is certainly more important than components A and B.

On the other side, ranking the IMs of components A and B is not straightforward, as their possibility and necessity measures overlap. This case calls for the development of a general procedure to rank the possibilistic IMs of the components. To this aim, the ranking procedure discussed in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] in the probabilistic framework is modified to take into account that the IMs are not represented by probability distributions but by families of probability distributions whose upper, and lower bounds are the possibility, and necessity measures, respectively. The procedure proposed in this work for the ranking of the IMs is based on the following steps. =1 for AC  ranging within the interval for every k, s, k≠s; in this regard, notice that (0)

1 1 1 1 [ , ] B B B B C A A C I I I I A C A C g g g g           =[
ks    if 0 B B s k I I k s g g     , and (1) 
ks    if 0 B B k s I I g g   
 . In the reference example, we can see that the possibility (0

) AC   that AC  =0 is 1, whereas (1) 0 AC    .
2. Considering the lower threshold l T defined in Section 2.1, the relation order between the IMs of components k and s is established on the basis of the following criteria.

i.

If (0) ks l T    , then component k is more important than s.
ii.

If ( 1)

ks l T    , then component s is more important than k.
iii.

Components k and s are equally important in the other cases.

These criteria are justified by the following considerations.

 ( ) 1 ks ks  
 for at least one out of the two values of ks  (i.e., 0 and 1), being the distributions ks   normalized (i.e., there must be at least one point of the Universe of Discourse (UoD) in which the distribution reaches 1). Thus, it is not possible that both the above conditions i and ii are contemporarily verified.

 Let us consider a case in which (0) 0. 

P P I I Π        .
To sum up, the probability that component k is more important than component s lies in the interval [0.8,1], whereas the probability of the opposite case is a value between 0 and 0.2. In this situation, in which we are confident of the relevance of k with respect to s, it is reasonable to decide in favor of component k.

According to the proposed criteria, the result of the comparison of the importance of two components, k and s, does not depend on the order in which they are considered because the possibility distributions The results of the application of the proposed procedure to the Birnbaum IMs of the three components A, B, and C of Fig. 1 are reported in Fig. 6. Fig. 6. Component C turns out to be the most important, whereas components A and B are equally important. This final ranking is different from that obtained in the probabilistic framework (Section 2.1), where component B is judged more important than component A. This result is due to the fact that in the probabilistic framework the analyst focuses on one out of the infinite probability distributions encompassed by a possibility distribution. Thus, as expected, the final ranking derived from the uncertain IMs depends on the information available: if the analyst believes that resorting to the probability theory framework is justified, then he or she will be capable of assessing that component B is more important than component A; whereas, in the opposite case, if the analyst is not able to specify a single probability distribution but prefers to use a possibility distribution, then he or she has not enough information to conclude that one component is more important than the other.

Analogously to the probabilistic case, if we consider the problem of ranking the importance of three generic components, j, k, s, one may obtain a contradictory ranking which does not obey the transitive In the case in which the system is made by several components, a sorting algorithm needs to be used to automatically order the components according to their importance. To this aim, a number of algorithms can be found in the literature, which have different computational complexities, memory usage strategies, etc.

[23], [START_REF] Knuth | The Art of Computer Programming[END_REF]. They usually sort the component IMs by performing a limited number of all the possible pairwise comparisons. However, whichever is the sorting algorithm chosen to arrange the components" IMs in ascending order, it needs to be modified to address the case, previously outlined, in which B For example, if the ranking algorithm compares j with k, and k with s, but it does not compare j with s, it will produce a ranking with . To avoid that the obtained final rank depends from which comparisons are made by the ranking algorithm, it is necessary to apply to the components ranking proposed by the sorting algorithm an additional control procedure which checks whether equally important components occupy different positions in the ranking. In this situation, the final ranking is correspondingly modified by assigning the same rank to all the involved components. The Appendix describes one of the most used sorting algorithm, i.e., the Quicksort algorithm [START_REF] Hoare | Quicksort[END_REF], and proposes a control procedure to verify whether equally important components occupy different positions in the ranking. 

Industrial case study: Auxiliary Feedwater System

Let us consider an AFWS of a Pressurized Water Reactor (PWR) whose simplified Reliability Block Diagram (RBD) is reported in Fig. 7. The case study is taken from [START_REF] Modarres | Risk Analysis in Engineering: Probabilistic Techniques, Tools and Trends[END_REF], where it is assumed that a) all components are in standby mode, b) all components are periodically tested, and c) the components" unavailabilities Q j are affected by epistemic uncertainties which are described by lognormal probability distributions.

In this work, instead of assumption c, we consider a case in which the only available knowledge on the Q j values is constituted by their mean and standard deviation values (Table ) without any information on the type of probability distributions. To allow a comparison with a probabilistic approach, the values in Table II correspond to the mean and standard deviations of the lognormal distributions used in [START_REF] Modarres | Risk Analysis in Engineering: Probabilistic Techniques, Tools and Trends[END_REF] to represent the uncertainty in the Q j values within a probabilistic approach. The uncertainties in the components" unavailabilities ,..., AN QQ are propagated by the procedure illustrated in Section 3.2, and the possibility and necessity measures of Birnbaum IMs of the components are obtained (Fig. 8). As expected, the largest Birnbaum IM is assigned to component N, which is a single point failure (i.e., its failure results in the loss of AWFS functionality), and thus the overall AWFS reliability is strongly sensitive to the improvement of the reliability of this component.

Because the AFWS has a large number of components, the Quicksort algorithm has been used to automatically order the components on the basis of their importance. Tables III and IV report two different rankings obtained by applying the Quicksort algorithm with two different initial settings. According to Table III, there is a first group of elements (FCDE) whose IMs are sensibly smaller than those of the components of the second group (ABIJM). Another group (GHK) of components with similar importance values has been identified; these are less important than L (the second most important component), which is sensibly less important than N. Differently, in the case of the Quicksort execution reported in Table IV, the direct comparison between the Birnbaum IMs of components K and I is performed, and the two components turn out to be equally important; this result leads to assigning the same importance to the components A B I J M G H K.

Table III

Ranking of the components' IMs obtained in the first execution of the Quicksort algorithm, and confirmed after applying the procedure to verify whether equally important components occupy different positions (possibilistic framework)

Ranking order 14-13-12-11 10-9-8-7-6 5-4-3 2 1

Components FDCE A B I J M G H K L N Table IV
Ranking of the components' IMs obtained in the second execution of the Quicksort algorithm (possibility theory framework)

Ranking order 14-13-12-11 10-9-8-7-6-5-4-3 2 1

Components

FDCE A B I J M G H K L N

To avoid such instability of the importance ranking, according to the procedure described in the Appendix, all the possible comparisons between the components of the system under study are performed (TableV). In the case of Table III, the components" ranking is modified to take into account that

B I B K I I  ,
and the final ranking becomes that of Table IV, whereas in the second run of the Quicksort algorithm (Table IV), the proposed ranking does not need to be modified. 

F D C E B A J M I G K H L N F = = = < < < < < < < < < < D = = < < < < < < < < < < C = < < < < < < < < < < E < < < < < < < < < < B = = < = < = < < < A = < = < = < < < J = = < = < < < M = > = > < < I < = < < < G = = < < K < < < H < < L < N
Table reports the results obtained in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF] applying the probabilistic approach to the same case study. The main difference is that the probabilistic approach results in fewer cases of components with the same importance because the CDFs of the components" important measures appear to be more clearly separated than are the necessity and possibility measures in the possibilistic approach. 

Table VI

Final ranking of the components' IMs (probabilistic framework).

Ranking order 14-13 12-11 10-9 8-7 6-5 4 3 2 1

Components C E D F A B I J M K G H L N
With regards to the computational times, when the epistemic uncertainties are described by means of possibility distributions, then the application of the propagation technique, the Quicksort algorithm, and the procedure to verify whether equally important components occupy different positions in the ranking take few seconds. On the contrary, the time required to carry out the same analysis within the probability theory framework is around 20 minutes, with most of the time dedicated to the uncertainty propagation step. This result is due to the fact that uncertainty propagation is performed in the possibilistic case by using the fuzzy extension principle which requires only to apply simple rules of interval algebra, whereas in the probabilistic case it is necessary to resort to MC simulation because analytical approaches are impracticable.

Conclusions

In this work, a procedure has been proposed for ranking system components in order of importance when their failure probabilities are poorly known, and the related uncertainties are described by possibility distributions. The ranking procedure is based on: i) the use of the fuzzy extension principle to propagate epistemic uncertainty from the system parameters to the component importance measures, ii) pairwise comparisons of the obtained component importance measures, and iii) the application of the Quicksort algorithm. Because the method used to compare the Birnbaum importance of three generic components, k, s, j may lead to a ranking which can be partially contradictory ( According to de Morgan"s laws,

B B B B B B B B B B B C B B A C B B A C B A P I I I I P I I P I I P I I I           ( , ) 1 ( ) ( ) ( ) 
Notice that because both () 

Contradictory ranking (possibilistic framework)

Suppose that (0) 

sk l T    , and (0) 

Ranking algorithm

Quicksort is a divide-and-conquer algorithm which relies on a partition of the elements based on a quantitative indicator of their "size". To partition the elements, it is required to choose one of them as a pivot, a reference for moving all elements of size smaller before the pivot, and all elements of size larger after it. In the resulting iterative partition procedure, the sublists of smaller and larger elements are recursively sorted.

The pseudo-code of the algorithm can be found in [START_REF] Baraldi | A method for ranking components importance in presence of epistemic uncertainties[END_REF], and [START_REF] Hoare | Quicksort[END_REF]. Notice that the pairwise comparisons also show that H is equally important than G, although the algorithm leaves G in its current position. The sublist of more important components is then sorted. The comparison between N and L shows that the former is more important than the latter.

The less important elements branch contains ABCDEFGMIJK; its middle element, F, is chosen as pivot.

The components ABCDEFIJM are more or equally important than F. In particular, this latter component is equally important as E, C, and D. With reference to the right sublist (more important components), G is the pivot element, and it swaps its position with J; that is, the importance of J is smaller than that of G. The algorithm proceeds as illustrated in Fig. 9.

Once the Quicksort algorithm has been executed, we have to run the control algorithm to verify whether different rank orders have been assigned to equally important components. This need is due to the fact that the algorithm does not perform all the possible direct comparisons.

In details, we consider the l-length vector X of sorted components (i.e., the output of the Quicksort algorithm), and the vector R of the ranking position initially associated to the components (i.e., from 1 to l).

In the case considered in this appendix X=FDCEBAJMIGKHLN.

The rationale of the code is that to have a difference in components importance ranking there must be a column of the comparison matrix whose entries are all "<".

We start from setting the ranking order r=1, and our first objective is to find the set of the least important components (i.e., all those components with rank r=1). Notice that the first component of the list provided by the sorting algorithm which does not belong to this class is the first component of the list characterized by a column of the comparison matrix Comp (TableV) containing only "<", because this is the only condition guaranteeing that all the previous components of the Quicksort list are less important. To identify this component, we set i=2, and check whether the i-th column of the comparison matrix Comp (TableV) contains only "<". In the affirmative case, the rank of the components of X from position 1 to i-1 is set to 1, and the rank of component X(i) is set to i. On the contrary, if column i contains ">" or "=", then X(i) and X [START_REF] Aven | On the ontological status of the concept of risk[END_REF] must be considered of the same importance, and thus of rank 1, because in this case X(i) is equally important to at least one of the previous components. The variable i is updated to i+1, and the procedure is iteratively repeated by considering the new column i of the comparison matrix Comp.

The pseudo-code of the proposed algorithm follows.

r=1; i=2; while i<=l Col=i-th column of Comp V=all(Col=='<'); If V==1 R([j:i-1])=r; r=i; end i=i+1; End For example, consider i=1; then X(1)=F. Flowing over X, we find that the Boolean variable V=1 when i=5.

Then the first group is made up of the components r:i-1=1:4 of X (that is FDCE), which are of rank r=1.

Then r is set to i=5. The algorithm proceeds up to i=l, and the final result is R = [1 1 1 1 5 5 5 5 5 5 5 5 13 14]. His main research efforts are currently devoted to the development of methods and techniques for system health monitoring, fault diagnosis, prognosis, and maintenance optimization. He is a co-author of 41 papers in international journals, and 48 in proceedings of international conferences; and he serves as referee of 5 international journals. 
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Fig. 3

 3 Fig.3shows the CDF of the random variables sk  , with s, k=A, B, C obtained by applying the probabilistic

Fig. 2 .Fig. 3 .

 23 Fig. 2. Possibility measure, necessity measure, and CDF of the IMs of the components.

Section 3 .

 3 1 briefly introduces PT, and shows how to obtain a possibility distribution in practical cases; Section 3.2 deals with the propagation of the uncertainty from the component failure probability to the component Birnbaum importance; finally, Section 3.3 illustrates the proposed novel procedure for ranking the component Birnbaum importance.

Fig. 4 d

 4 Fig. 4 d, e, and f show the possibility, and necessity measures () j Q j

Fig. 4 a

 4 Fig. 4 a, b, and c also report the CDFs

  for every j=A, B, C.

Fig. 4 .

 4 Fig. 4. a,b,c: possibility distributions of the unreliabilities of the components A,B, and C, respectively. d,e,f: possibility (dashed lines), and necessity (dotted lines) measures of the corresponding component unreliabilities. The continuous lines refers to the CDF of the component unreliability obtained in Section 2 in the probabilistic framework. The scales of the abscissas of a and b are different from that used in c.

  , respectively (Fig.4 a, and b).

2 .

 2 For every component of the vector I B , compute the smallest, and largest values of the function () j g Q encoding the relationships between the failure probabilities and the Birnbaum IM of the j-th component

4 .

 4 Build the possibility, and necessity measures ()

Fig. 3 a

 3 Fig. 3 a, b, and c show the obtained possibility and necessity measures in the considered example.

  0.00320-0.99995,0.01420-0.99970]=[-0.9950,-0.9860] (in Fig. 3, these values are the smallest values of AC  in which ( ) 1 AC AC    , and the largest in which (

Fig. 5 .

 5 Fig. 5. Possibility distributions of the IMs of two generic components k and s, and corresponding possibility distributions of the variables BB sk s k II    and B B ks k s II    .

  . However, as in the probabilistic framework, setting T l smaller than 1/3 allows avoiding the contradictory ranking with B Appendix for the mathematical details). These situations are addressed by assuming that the three components have the same ranking. i.e.,

  may lead to different rankings depending on which pairwise comparisons are performed.

  if it compares j with k, and j with s, but not k with s, it will rank

Fig. 6 .

 6 Fig. 6. Comparison of the Importance measures: possibility distributions of the variables Ξ kj k, j=A, B, C, and k≠j.

Fig. 7 .

 7 Fig. 7. RBD of the AFWS system [18].

Fig. 8 .

 8 Fig. 8. Possibility, and necessity measures of the components' Birnbaum IMs (reported in different scales.). The continuous line refers to the CDFs obtained in the probabilistic case [14].

  whether equally important components occupy different positions in the ranking has been proposed.The application of the proposed procedure has shown several results. . According to the decision criterion of Section 2., to prove that the contradictory inequality is not possible, we have to show that () on the right-hand side of the equation only introduces an additional constraint on B B I , which is not considered in the left-hand side.

  On this basis, according to the criterion propounded in Section 3.3 we can state that B the probabilistic interpretation of the possibility distributions[START_REF] Kuo | Relations and generalizations of importance measures in reliability[END_REF], from our hypotheses the results showed earlier in this Appendix, we can guarantee that( ) 

Fig 9

 9 Fig 9 illustrates the application of the Quicksort algorithm in the case study of Section 5, when the

Fig. 9 .

 9 Fig. 9. steps of the Quicksort algorithm.

Table I Component unreliabilities, and IMs (taken from [19]).

 I 

		Unreliability:	Unreliability:
		Mean	Standard Deviation
	A	0.015	0.005
	B	0.010	0.005
	C	0.095	0.044

  [START_REF] Zio | Computational Methods for Reliability and Risk Analysis[END_REF] 

													 	ks		, and	 	ks	(1) 1  . Equations (4) and (5) allow stating that
	o	N 	ks	(0) 0 	and	(0) 0 2 Π.  ks 	, which can be probabilistically interpreted as
		0		P 	ks	(0)		( P I	BB ks I 	)		(0) 0 2 Π. ks  	; and
	o	N 	ks	(1) 0.8 	, and	Π 	ks	(1) 1  , which can be probabilistically interpreted as
		0.8					ks	(1)	(	BB ks	)	ks	(1) 1

Table II Failure data for the components of the AFWS [18]

 II 

	Component Name	Mean unavailability	q	* j	Standard deviation j 
	A	9,963E-05			1,787E-05
	B	9,963E-05			1,7875E-05
	C	70.22E-05			17.750E-05
	D	70.22E-05			17.750E-05
	E	70.22E-05			17.750E-05
	F	70.22E-05			17.750E-05
	G	5,129E-05			1,762E-05
	H	4,080E-05			1,740E-05
	I	0,07088			0,01705
	J	0,07088			0,01705
	K	0,02458			0,001735
	L	23.72E-05			8,875e-05
	M	0,10858			0,053250
	N	3,9778E-05			1,7875E-05
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 We find the relevance of taking into account uncertainties in the computation of the IMs, and the fact that the possibility distributions allow to represent the uncertainties in a way less committed than that offered by the probability theory.

 The final ranking may depend on the investigation framework used to carry out the analysis, which is mainly established on the basis of the quality and quantity of available data. In general, the probabilistic representation and propagation of the uncertainty allows one to get a more refined final ranking, but it calls for a larger amount of available data and more accurate information (which may be lacking in real industrial applications).

The proposed procedure has been applied in this work to rank the components on the basis of their Birnbaum IMs, but it can be easily extended to other IMs (e.g., the Risk Reduction Worth, RRW, Risk Achievement Worth, RAW, Fussel-Vesely, FV). Notice, however, that the propagation of the epistemic uncertainty from the system parameters to the components" importance measure by using the fuzzy extension principle can become computationally more challenging when the importance measure is defined through relationships more complex than those of Birnbaum IM, and which require one to perform divisions between uncertain quantities. Furthermore, the larger the complexity of the system and the associated number of basic events, the larger is expected to be the computational time required to perform the ranking.

Appendix Contradictory ranking (probabilistic framework)

Let us consider a case in which we have to rank the importance of three components: A, B, and C. We have ( ) 1