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ABSTRACT - Birnbaum Importance Measure (IM) allows ranking the components of a system with respect 

to the impact that their failures have on the system‟s performance, e.g., its reliability or availability. Such 

ranking is done in industry to efficiently manage Operation and Maintenance (O&M) activities, and to 

optimize plant design. In the computation of the Birnbaum IM of the components, uncertainty in the 

parameters of the system model is often neglected. This neglect may lead to erroneous, possibly non-

conservative ranking. In this work, we develop a method based on Possibility Theory (PT) for giving due 

account to epistemic uncertainties in Birnbaum IMs. An example is given with reference to the components 

of the Auxiliary FeedWater System (AFWS) of a Nuclear Power Plant (NPP). 

Acronyms 

AFWS Auxiliary FeedWater System 
CDF Cumulative Distribution Function 
DSTE Dempster-Shafer Theory of Evidence 
IM Importance Measure 
NPP Nuclear Power Plant 
O&M Operation and Maintenance  
PT Possibility Theory 
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PWR Pressurized Water Reactor 
RBD Reliability Block Diagram 
UIM Uncertainty Importance Measure 
UoD Universe of Discourse 
 

Notation 

n Number of components in the system 

Qj Failure probability associated to the j-th component 

Q  Vector containing the variables 1( ,..., )nQ Q  

qj The generic value taken by jQ  

( )
jQ jf q

 Probability density function (pdf) of the variable Qj 

( )
jQ jF q  CDF of the variable Qj 

( )
jQN A  

Necessity measure associated to the subset A of the domain of the variable Qj 

( )
jQΠ A  Possibility measure associated to the subset A of the domain of the variable Qj 

( )
jQ jq  Possibility function of the variable Qj 

B
jI

 Birnbaum IM of the j-th component 

BI
 

Vector containing the components‟ IMs 1( ,..., )B B
nI I  

( )jg 
 

Function linking the components failure probabilities Q  to the Birnbaum IM B
jI   

U(t) System failure probability at time t 

 

1 Introduction 

The notion of risk involves some kind of loss or damage that might be received by a target, and the 

uncertainty of its transformation in an actual loss or damage [1]. A relevant outcome of a risk analysis of a 

complex industrial system is the quantification of the importance of the component failure events with 

respect to the system overall risk. To this aim, various Importance Measures (IMs) have been proposed [2]-



[16] . The importance of a component failure depends on its role in the failure logic structure of the system 

and its probability of occurrence, which captures the (aleatory) uncertainty due to the inherent variability of 

the failure behaviors. In practice, IMs are useful because they allow one to compare the importance of the 

different component (random) failure events.  

The IM considered in this work is the Birnbaum IM, which was originally introduced to assess the 

contributions to the system failure probability due to the failure probabilities of the various system 

components. In particular, components for which a variation in this probability results in the largest variation 

of the system reliability have the highest importance [2], [8]. Then, Birnbaum IM allows ranking the 

components of a system on the basis of the influence of their stochastic behaviors on the system reliability 

performance. Nowadays, it is widely used in industry for different purposes such as rationalizing or 

optimizing O&M [9]- [12], performing Probabilistic Risk Assessment studies (e.g., in the nuclear field) [13] 

even when failure events are not s-independent [14] or the system is not coherent [15], addressing the 

component assignment problem [16], etc.  

In the computation of IM, it is generally assumed that the values of the parameters governing the 

probabilistic distributions of the failure event occurrences are perfectly known (e.g., the failure rates). 

However, imprecise knowledge of these values is typically encountered in practical applications. This 

uncertainty is usually referred to as epistemic or reducible uncertainty [17]. 

In [18] and [19], it has been shown that disregarding the epistemic uncertainties in the component failure 

probabilities can lead to biased IMs values and ranking. To quantify the effect of epistemic uncertainties in 

IMs, Uncertainty IMs (UIMs) have been propounded [20]-[22]. According to [22], the main uncertainty 

contributors (i.e., with highest UIMs) tend to be different from the main risk contributors (i.e., with highest 

IMs). Thus, UIMs alone do not allow tackling the issue of ranking the importance of the components 

accounting for the epistemic uncertainty affecting their behaviors. In this respect, Aven and Nøkland have 

proposed a ranking method based on the couple (IM, UIM) [20]. 

A different approach to rank component IMs taking into account the epistemic uncertainty in the failure 

probabilities of the components has been proposed in [18], and applied to an industrial case study in [13]. 



This is a global sensitivity-based method based on a probabilistic exceedance measure that enables 

comparing the importance of two components. This method has been further investigated in [19], where the 

authors have used the Quicksort algorithm [23] for effectively ranking the component IMs. 

These approaches handle epistemic uncertainty within the probability theory framework. Recently, 

resorting to probability distributions to represent insufficient knowledge has been questioned in risk 

assessment [24] because it forces assumptions which may not be justified by the available information, and 

may lose generality of the results. For example, ignoring whether a value of a parameter is more or less 

probable than any other value within a given range does not justify assuming a uniform probability 

distribution, which is the less informative probability distribution according to both the Laplace principle of 

insufficient reason and the maximum entropy criterion [24]. 

Recently, set-valued representations have been used to represent the epistemic uncertainty in situations 

where all that is known is that the parameter value belongs to a certain range [25]. Techniques based on 

Dempster-Shafer Theory of Evidence (DSTE), PT, Interval Analysis, and Fuzzy Set Theory have been 

proposed to represent the epistemic uncertainties associated to this type of information, in a way less 

committed to assumptions than that offered by the probability theory framework (e.g., see [25]-[38] for 

surveys and comparisons of these techniques).  

In this context, the objective of this work is to propose a procedure for ranking the component IM in the 

case in which the epistemic uncertainty in the parameters of the component failure models is described using 

PT. This procedure is applied to a case study concerning the AFWS of a nuclear pressurized water reactor. 

The presentation of the work is organized as follows. In Section 2, the Birnbaum IM and its calculation 

are recalled, the problem of uncertainty is stated, and a simple example of reference is worked out within the 

probability theory framework. The same case study is re-considered in Section 3 within the PT framework of 

representation. The AFWS case study is worked out in Section 4. Concluding remarks on the findings of the 

paper are provided in Section 5. 



2 Uncertainty in IMs 

Consider a system made up of n components, assumed binary (i.e., they have only two possible states 

‘working’ and ‘failed’), and s-independent. 

The Birnbaum IM  B
jI t  of the j-th component of such system at time t is given by [20]: 

     B
j

j

U t
I t

Q t

 
Q

            (1) 

Simple analytical manipulation yields [2] 

     B
j j jI t U t U t               (2) 

     1,j jU t U Q t   Q  is the system failure probability when component j is in failed state. It 

represents the maximum risk achievement if component j is considered failed [2]. 

     0,j jU t U Q t   Q
 is the system failure probability when component j is functioning. It 

represents the maximum reduction in risk if component j is considered working [2].  

Consider, as an example, the system in Fig. 1, and assume to know the exact values of the component 

unreliabilities, QA, QB, QC. The system unreliability is  

( , , )A B C A B C A B CU Q Q Q Q Q Q Q Q Q    

The Birnbaum IMs of the components are then obtained by using (1) as  

1

B
A B B C

B B
B A A C

B
C A B

I Q Q Q

I Q Q Q

I Q Q

                
I

         

(3) 



 

Fig. 1. System Reliability Block Diagram. 

However, the exact values of the component failure probabilities         1 2
, ,...,

n
t t Q t Q tQQ  are often 

not precisely known in practical situations, e.g., because they are assigned by an expert, or estimated through 

statistical means. Then, our objective is to rank the components according to their Birnbaum IMs, taking into 

account the epistemic uncertainties in the component failure probabilities. In general, whichever is the 

framework adopted to represent the epistemic uncertainties, this entails three successive steps: 

1. representation the uncertainties on the component‟s failure probabilities,  

2. propagation these uncertainties onto the component‟s IM values 1 ,...,B B
nI I , and  

3. ranking the component‟s IMs 1 ,...,B B
nI I  taking into account the uncertainties obtained in the previous 

step. 

Table I 

Component unreliabilities, and IMs (taken from [19]). 

 
Unreliability: 

Mean 

Unreliability: 

Standard Deviation 

A 0.015 0.005 

B 0.010 0.005 

C 0.095 0.044 

 



In the remaining part of this section, we will consider the example in Fig. 1 assuming that the uncertain 

unreliabilities jQ , j=A, B, C, are described by the Cumulative Distribution Functions (CDFs), ( ),
jQ jF q  

whose mean and standard deviations are reported in Table I. Notice that these distributions have been 

numerically obtained in [19] by assuming that an expert is able to represent the uncertainties in the 

component failure rates using lognormal distributions, and by propagating these uncertainties onto the 

component unreliabilities. 

Fig. 2 (continuous line) shows the Birnbaum IMs distributions ( )B
j

B
jI

F i  obtained by propagating the 

uncertainties in the component unreliabilities jQ  onto the Birnbaum IMs B
jI , j=A, B, C. 

2.1 Components importance ranking, under a probabilistic representation of 

uncertainty 

Here we recall the procedure propounded in [19] to rank the components according to their Birnbaum 

importance considering the probabilistic uncertainty in their IMs. 

Let us consider two generic components k and s; to establish which is the most important, the 

distribution of the random variable ( , )B B B B
ks ks k s k sI I I I      is considered. Then, we compute the 

probability that B
kI  is larger than B

sI , referred to as „exceedance measure‟ and given by 1 (0)
ksksr F  . 

Finally, the relation order between components k and s is obtained by comparing ksr  to a threshold range 

[ ,1 ]l lT T , symmetric around 0.5, and considering the following criteria.  

 If 1ks lr T   then k is more important than s. 

 If ks lr T  then s is more important than k. 

 If 1l ks lT r T    then k is equally important to s. In this case, different kinds of additional constraints or 

targets should guide the ranking order (costs, repair times, failure impacts on public opinion, etc.). 

In practice, the attention is concentrated on component s if the decision maker judges „large‟ enough 

(e.g., >0.7) the probability that component s is more important than component k.  



Notice that there may be some cases in which the comparison of the Birnbaum importance of three 

generic components, j, k, s, may lead to a contradictory ranking which does not obey the transitive property, 

i.e., B B
j kI I  and B B

k sI I , but B
j

B
s II  . However, the demonstration in the Appendix shows that by setting 

Tl lower than 1/3, this contradictory ranking is avoided, and at worst it can happen that B B
j kI I , B B

k sI I , 

and B
j

B
s II  , which can be interpreted  as a condition in which the three components are equally important. 

Fig. 3 shows the CDF of the random variables sk , with s, k=A, B, C obtained by applying the probabilistic 

ranking procedure to the case study of Fig. 1. Because 1 (0) ( ) 0
AC

B B
AC A Cr F P I I     , and 

1 (0) ( ) 1
CB

B B
CB C Br F P I I     , one can conclude that component C is certainty more important than 

components A and B. With respect to the comparison between components A and B being the exceedance 

measure 1 (0) 0.23
ABABr F   , the ranking of the two components depends from the threshold ranges 

[ ,1 ]l lT T . Assuming, for example, that Tl=0.3, component B turns out to be more important than component 

A. 

 

Fig. 2. Possibility measure, necessity measure, and CDF of the IMs of the components. 

 



 

Fig. 3. Comparison of the possibility measure, necessity measure, and CDF of the variables Δkj k, j=A, B, C and k≠j. 

3 Components importance ranking, under a possibilistic representation 

of uncertainty 

Experts may not be willing to specify probability distributions of the parameters of the system model such as 

the component failure probabilities         1 2
, ,...,

n
t t Q t Q tQQ

 when the available information is 

incomplete, sparse, conflicting, vague, or non-specific [39]. Possibility theory has been proposed to deal with 

epistemic uncertainty in situations characterized by insufficient knowledge on parameter values. 

Section 3.1 briefly introduces PT, and shows how to obtain a possibility distribution in practical cases; 

Section 3.2 deals with the propagation of the uncertainty from the component failure probability to the 

component Birnbaum importance; finally, Section 3.3 illustrates the proposed novel procedure for ranking 

the component Birnbaum importance. 

3.1  Possibilistic representation of uncertainty in component unreliabilities 

Let us consider the generic variable Q; in PT, uncertainty in this variable is represented by means of a 

possibility function ( )Q q , which expresses the degree of possibility of each value q of the variable Q  in a 

set S  of being the true (but unknown) value of Q. When ( ) 0Q q  , it means that the outcome q is 

considered an impossible situation. When ( ) 1Q q  , it means that the outcome q is possible, i.e., 
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unsurprising, typical, usual [32]. These values are mutually exclusive becaue the uncertain variable can 

assume one true value only. This result also gives the normalization condition : ( ) 1Qq S q   , which 

claims that at least one value is viewed as totally possible, a much weaker statement than when the 

probability is 1.0 [33]. 

A possibility distribution may also be viewed as a nested set of confidence intervals, which are the α–cuts 

[ , ] { | ( ) }Qq q q q     of  . The degree of certainty that [ , ]q q   contains Q  is ([ , ] )QN q q  1    if Q  
is 

continuous [25]. 

The possibility and necessity measures ( )QΠ A , ( )QN A  for all subsets A S  are defined by the 

associated possibility distribution ( )Q q  through the following maximization and minimization 

relationships, respectively: 

( ) sup{ ( )}Q Q
q A

Π A q


            (4) 

( ) 1 ( ) 1 sup{ ( )}Q Q Q
q A

N A Π notA q


             (5) 

Let PQ( ) be a family of probability distributions such that for all events A ,   ( ) ( )Q Q QN A P A Π A  . 

Then, 

( ) inf ( )Q QN A P A  and ( ) sup ( )Q QA P A          (6) 

where inf and sup are taken with respect to all probability measures in PQ [30]. Hence, the necessity measure 

is interpreted as a lower limit for the probability, and the possibility measure is interpreted as an upper limit. 

Referring to subjective probabilities, the bounds reflect that the analyst is not able or willing to precisely 

assign his or her probability, and the bounds are the best he or she can do given the information available; in 

other words, he or she can only describe a subset of PQ which contains his or her probability. 

On this basis, we can define the upper ( )QF q  and lower ( )QF q  cumulative distribution functions such that 

, ( ) ( ) ( )Q Q Qq S F q F q F q    , with ( ) (] , ])Q QF q N q  , and ( ) (] , ])Q QF q q   (i.e., the generic set A 



in (4)-(6) assumes here the form of ] , ]q ). For the sake of brevity, in the present work the possibility, and 

necessity measures (] , ])Q q   and (] , ])QN q  are indicated with abuse of notation by ( )Q q , and 

( )QN q , respectively. For further theoretical details, the interested reader may refer to [30]-[33]. 

Various approaches for constructing possibility distributions have been proposed depending on the available 

information [25], [40], [41]. In this work, we assume that the only available knowledge on the uncertain 

variable Qj is constituted by its mean *jq , and standard deviationj . In this case, the Chebyshev inequality 

can be used to build a possibility distribution [42]. Such inequality defines a bracketing approximation on the 

confidence intervals around the known mean *
jq  of Qj  knowing its standard deviation 

j :  

* *

2

1
( [ , ]) 1 1j j j j jP Q q a q a for a

a
      

       
(7) 

The Chebyshev inequality defines a possibility distribution ( )
jQ jq  by considering intervals 

* *[ , ]j j j jq a q a  
 
as α-cuts of ( )

jQ jq , and letting * * 2( ) ( ) 1/
j jQ j j Q j jq a q a a       . This possibility 

distribution defines a probability family which has been proven to contain all distributions with mean *
jq  and 

standard deviation j , s-independently from the type of probability distribution, i.e, normal, lognormal, 

gamma, symmetric or not, unimodal or not, etc. [42].  

With regard to the three-components case study of Fig. 1, we now assume that the only available 

knowledge is constituted by the means and standard deviations of the component failure probabilities (Table 

I), without any information on the type of distribution. The possibility distributions obtained by using the 

Chebyshev inequality are shown in Fig. 4 a, b, and c.  

Fig. 4 d, e, and f show the possibility, and necessity measures ( )
jQ jΠ q , and ( )

jQ jN q  obtained from the 

corresponding possibility distributions ( )
jQ jq  of Fig. 4 a, b, and c by using (4), and (5) respectively. In 

details, for a given value jq  of jQ , the possibility measure ( )
jQ jq  takes the maximum value of ( )

jQ jq   

for any j jq q  , whereas the necessity measure takes the minimum value of 1-( )
jQ jq   for any j jq q  .  



Fig. 4 a, b, and c also report the CDFs ( )
jQ jF q

 
of the component unreliabilities considered in Section 2, 

for j=A, B, C. In this respect, notice that ( ) [ ( ), ( )]
j j jQ j Q j Q jF q N q Π q , for every j=A, B, C. This result 

confirms that the CDFs ( )
jQ jF q  belong to the corresponding family ( )

jQP  of all the probability 

distributions that are upper bounded by the possibility measure ( )
jQ jΠ q , and lower bounded by the 

necessity measure ( )
jQ jN q . 

 

Fig. 4. a,b,c: possibility distributions of the unreliabilities of the components A,B, and C, respectively. d,e,f: possibility (dashed 

lines), and necessity (dotted lines) measures of the corresponding component unreliabilities. The continuous lines refers to the 

CDF of the component unreliability obtained in Section 2 in the probabilistic framework. The scales of the abscissas of a and b 

are different from that used in c. 

3.2 Possibilistic representation of uncertainty in component Birnbaum IMs 

To propagate the epistemic uncertainty from the component unreliabilities onto the component importance 

measures, the fuzzy extension principle is used [29]. In practice, the following steps are performed.  



1. Select a value of α on [0,1], and take as the interval of possible values of the reliabilities of the 

components the cut [ , ] { | ( ) }
jj j j Q jQ Q q q    , j=A, B, C. For example, if α=1, then the 1-cut of the 

distributions ( )
AQ Aq , and )( BQ q

B
  are 3 3

1[ , ] 9.98e ,19.7eA AQ Q   
     , and 

3 3
1[ , ] 5.00e ,14.8eB BQ Q   
     , respectively (Fig. 4 a, and b).  

2. For every component of the vector IB , compute the smallest, and largest values of the function ( )jg Q  

encoding the relationships between the failure probabilities and the Birnbaum IM of the j-th component 

(denoted by 
B
jI

jg  , and 
B
jI

jg  , respectively), when the elements of Q  range within the intervals [ , ]j jQ Q  ; 

that is, calculate  

, [ , ]
inf ( )

B
j

l l l

I

j j
l q Q Q

g g
  Q           (8) 

, [ , ]

sup ( )
B
j

l l l

I

j j
l q Q Q

g g
 

 Q           (9) 

These results are the lower, and upper bounds, respectively, of the α-cut of the possibility 

distributions ( )B
j

B
jI

i , j=A, B, C.  

For example, with reference to the component C and (3), we have  

3 3
1

3 3

6

1 , [ , ] 9.98e ,19.7e

5.00e ,14.8

inf ( ) inf 1 1 19.7 14.8 0.99970
B
C

l l l A

B

I

C C A B
l q Q Q q

q e

g g Q Q e
  

 


        

      Q   

3 3
1

3 3

6
1

, [ , ] 9.98e ,19.7e

5.00e ,14.8

( ) sup 1 1 9.98 5.00 0.99995
B
C

l l l A

B

I

C C A B
l q Q Q q

q e

g sup g Q Q e


  
 


        

      Q

 

3. Repeat steps 1-2 for another value of α. 

4. Build the possibility, and necessity measures ( )B
j

B
jI

Π i , and ( )B
j

B
jI

N i  of the IMs 
B
jI  using (4), and (5). 

Fig. 3 a, b, and c show the obtained possibility and necessity measures in the considered example. 



3.3 Components Importance Ranking 

In this section, we present a procedure for ranking the possibility distributions representing the 

uncertainty in the Birnbaum IM of the system components. If, for example, we consider the possibility and 

necessity measures of components A, B, C, Figs. 3 a, b, and c show that the upper limit (possibility measure) 

of the probability that the importance of component C is smaller than 0.9 is 0, whereas the lower limit of the 

probabilities that the importance of components A and B are larger than 0.06 is 0. Thus, in this case one can 

conclude that component C is certainly more important than components A and B. 

On the other side, ranking the IMs of components A and B is not straightforward, as their possibility and 

necessity measures overlap. This case calls for the development of a general procedure to rank the 

possibilistic IMs of the components. To this aim, the ranking procedure discussed in [19] in the probabilistic 

framework is modified to take into account that the IMs are not represented by probability distributions but 

by families of probability distributions whose upper, and lower bounds are the possibility, and necessity 

measures, respectively. The procedure proposed in this work for the ranking of the IMs is based on the 

following steps.  

1. Compute the possibility distributions ( )
ks ks   

of the variable ( , )B B
ks ks k sI I   , defined as  

1 0
( , )

0

B B
B B k s

ks k s

if I I
I I

otherwise

              (10) 

This calculation requires one to repeat the following steps for different values of α in the range [0,1].  

1.1. Select a value of α, and identify the bounds of the α-cut of the possibility distributions ( )
ks ks  , 

k≠s, of the variables B B
ks k sI I    which represent the differences between the IMs of the 

components. These values are given by [ , ]
B BB Bs kk s

I II I

k s k sg g g g    . In the example of Fig. 1, if k=A, 

and s=C, then ( )
AC AC  =1 for AC  ranging within the interval 

111 1
[ , ]

B BB BC AA C
I II I

A C A Cg g g g   
=[0.00320-0.99995,0.01420-0.99970]=[-0.9950,-0.9860] (in Fig. 3, these values are the smallest 

values of AC  in which ( ) 1
AC AC  , and the largest in which ( ) 0

AC ACN   , respectively). 



1.2. Identify the α-cut of ( )
ks ks   for every k, s, k≠s; in this regard, notice that (0)

ks
    if 

0
BB sk

II

k sg g    , and (1)
ks

    if 0
B Bk s

I Ig g   . In the reference example, we can see that the 

possibility (0)
AC

   that AC =0 is 1, whereas (1) 0
AC

  . 

2. Considering the lower threshold lT  defined in Section 2.1, the relation order between the IMs of 

components k and s is established on the basis of the following criteria. 

i. If (0)
ks lT  , then component k is more important than s.  

ii. If (1)
ks lT  , then component s is more important than k.  

iii.  Components k and s are equally important in the other cases. 

These criteria are justified by the following considerations.  

 ( ) 1
ks ks    for at least one out of the two values of ks  (i.e., 0 and 1), being the distributions 

ks
   

normalized (i.e., there must be at least one point of the Universe of Discourse (UoD) in which the 

distribution reaches 1). Thus, it is not possible that both the above conditions i and ii are 

contemporarily verified. 

 Let us consider a case in which (0) 0.2
ks

  , and (1) 1
ks

  . Equations (4) and (5) allow stating that  

o  (0) 0
ks

N   and (0) 0 2
ks

Π .  , which can be probabilistically interpreted as 

0 (0) ( ) (0) 0 2
ks ks

B B
k sP P I I Π .      ; and  

o (1) 0.8
ks

N  , and (1) 1
ks

Π  , which can be probabilistically interpreted as 

0.8 (1) ( ) (1) 1
ks ks

B B
k sP P I I Π      . 

To sum up, the probability that component k is more important than component s lies in the interval 

[0.8,1], whereas the probability of the opposite case is a value between 0 and 0.2. In this situation, in 

which we are confident of the relevance of k with respect to s, it is reasonable to decide in favor of 

component k.  

According to the proposed criteria, the result of the comparison of the importance of two components, k 

and s, does not depend on the order in which they are considered because the possibility distributions 



( )
ks

   of the variable B B
ks k sI I    corresponds to the possibility distribution 

sk
   of B B

sk s kI I    

evaluated in  , i.e., 
ks

   and 
sk

   are symmetric with respect to the ordinate axis [44]. Thus, as it is shown 

in Fig. 5, if component k results more important than component s computing the distribution of 

B B
ks k sI I   , then component s always results less important than component k computing the distribution 

of B
k

B
ssk IIΞ  . 

 

Fig. 5. Possibility distributions of the IMs of two generic components k and s, and corresponding possibility distributions of the 

variables 
B B

sk s kI I    and B B
ks k sI I   . 

The results of the application of the proposed procedure to the Birnbaum IMs of the three components 

A, B, and C of Fig. 1 are reported in Fig. 6. Fig. 6. Component C turns out to be the most important, whereas 

components A and B are equally important. This final ranking is different from that obtained in the 

probabilistic framework (Section 2.1), where component B is judged more important than component A. This 

result is due to the fact that in the probabilistic framework the analyst focuses on one out of the infinite 

probability distributions encompassed by a possibility distribution. Thus, as expected, the final ranking 

derived from the uncertain IMs depends on the information available: if the analyst believes that resorting to 

the probability theory framework is justified, then he or she will be capable of assessing that component B is 

more important than component A; whereas, in the opposite case, if the analyst is not able to specify a single 



probability distribution but prefers to use a possibility distribution, then he or she has not enough information 

to conclude that one component is more important than the other. 

Analogously to the probabilistic case, if we consider the problem of ranking the importance of three 

generic components, j, k, s, one may obtain a contradictory ranking which does not obey the transitive 

property „if B B
j kI I  and B B

k sI I , then B
s

B
j II  ‟. However, as in the probabilistic framework, setting Tl 

smaller than 1/3 allows avoiding the contradictory ranking with B B
j kI I , B B

k sI I , and B B
s jI I , but can lead 

to undesirable situations in which B B
j kI I , B B

k sI I , and B B
j sI I , or similarly, B B

j kI I , B B
k sI I , and 

B B
j sI I  (see the Appendix for the mathematical details). These situations are addressed by assuming that the 

three components have the same ranking. i.e., B
k

B
s

B
j III  . 

In the case in which the system is made by several components, a sorting algorithm needs to be used to 

automatically order the components according to their importance. To this aim, a number of algorithms can 

be found in the literature, which have different computational complexities, memory usage strategies, etc. 

[23], [45]. They usually sort the component IMs by performing a limited number of all the possible pairwise 

comparisons. However, whichever is the sorting algorithm chosen to arrange the components‟ IMs in 

ascending order, it needs to be modified to address the case, previously outlined, in which B B
j kI I , B B

k sI I , 

and B B
j sI I , which may lead to different rankings depending on which pairwise comparisons are performed. 

For example, if the ranking algorithm compares j with k, and k with s, but it does not compare j with s, it will 

produce a ranking with B
s

B
k

B
j III  ; whereas, if it compares j with k, and j with s, but not k with s, it will 

rank B
k

B
s

B
j III  . To avoid that the obtained final rank depends from which comparisons are made by the 

ranking algorithm, it is necessary to apply to the components ranking proposed by the sorting algorithm an 

additional control procedure which checks whether equally important components occupy different positions 

in the ranking. In this situation, the final ranking is correspondingly modified by assigning the same rank to 

all the involved components. The Appendix describes one of the most used sorting algorithm, i.e., the 

Quicksort algorithm [23], and proposes a control procedure to verify whether equally important components 

occupy different positions in the ranking. 



 

Fig. 6. Comparison of the Importance measures: possibility distributions of the variables Ξkj k, j=A, B, C, and k≠j. 

 

4 Industrial case study: Auxiliary Feedwater System  

Let us consider an AFWS of a Pressurized Water Reactor (PWR) whose simplified Reliability Block 

Diagram (RBD) is reported in Fig. 7. The case study is taken from [18], where it is assumed that  

a) all components are in standby mode,   

b) all components are periodically tested, and  

c) the components‟ unavailabilities Qj are affected by epistemic uncertainties which are described by 

lognormal probability distributions. 

In this work, instead of assumption c, we consider a case in which the only available knowledge on the Qj  

values is constituted by their mean and standard deviation values (Table ) without any information on the 

type of probability distributions. To allow a comparison with a probabilistic approach, the values in Table II 

correspond to the mean and standard deviations of the lognormal distributions used in [18] to represent the 

uncertainty in the Qj values within a probabilistic approach. 

 

Fig. 7. RBD of the AFWS system [18]. 
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Table II 

Failure data for the components of the AFWS [18] 

Component  

Name 
Mean unavailability 

*

jq  Standard deviation j  

A 9,963E-05 1,787E-05 

B 9,963E-05 1,7875E-05 

C 70.22E-05 17.750E-05 

D 70.22E-05 17.750E-05 

E 70.22E-05 17.750E-05 

F 70.22E-05 17.750E-05 

G 5,129E-05 1,762E-05 

H 4,080E-05 1,740E-05 

I 0,07088 0,01705 

J 0,07088 0,01705 

K 0,02458 0,001735 

L 23.72E-05 8,875e-05 

M 0,10858 0,053250 

N 3,9778E-05 1,7875E-05 

 

The uncertainties in the components‟ unavailabilities ,...,A NQ Q  are propagated by the procedure 

illustrated in Section 3.2, and the possibility and necessity measures of Birnbaum IMs of the components are 

obtained (Fig. 8). As expected, the largest Birnbaum IM is assigned to component N, which is a single point 

failure (i.e., its failure results in the loss of AWFS functionality), and thus the overall AWFS reliability is 

strongly sensitive to the improvement of the reliability of this component. 

Because the AFWS has a large number of components, the Quicksort algorithm has been used to 

automatically order the components on the basis of their importance. Tables III and IV report two different 

rankings obtained by applying the Quicksort algorithm with two different initial settings. According to Table 

III, there is a first group of elements (FCDE) whose IMs are sensibly smaller than those of the components 

of the second group (ABIJM). Another group (GHK) of components with similar importance values has been 

identified; these are less important than L (the second most important component), which is sensibly less 

important than N. Differently, in the case of the Quicksort execution reported in Table IV , the direct 

comparison between the Birnbaum IMs of components K and I is performed, and the two components turn 



out to be equally important; this result leads to assigning the same importance to the components A B I J M G 

H K. 

Table III 

Ranking of the components' IMs obtained in the first execution of the Quicksort algorithm, and confirmed after applying the 

procedure to verify whether equally important components occupy different positions (possibilistic framework) 

Ranking order 14-13-12-11 10-9-8-7-6 5-4-3 2 1 

Components FDCE A B I J M G H K L N 

Table IV 

Ranking of the components' IMs obtained in the second execution of the Quicksort algorithm (possibility theory framework) 

Ranking order 14-13-12-11 10-9-8-7-6-5-4-3 2 1 

Components FDCE A B I J M G H K L N 

 

To avoid such instability of the importance ranking, according to the procedure described in the 

Appendix, all the possible comparisons between the components of the system under study are performed 

(TableV). In the case of Table III , the components‟ ranking is modified to take into account that B
I

B
K II  , 

and the final ranking becomes that of Table IV , whereas in the second run of the Quicksort algorithm (Table 

IV), the proposed ranking does not need to be modified. 



 

Fig. 8. Possibility, and necessity measures of the components' Birnbaum IMs (reported in different scales.). The continuous line 

refers to the CDFs obtained in the probabilistic case [14]. 

TableV 

Results of the comparisons between the Birnbaum IMs of the components of the AFWS, according to the ranking criterion 

discussed in Section 3.3. The symbols in the matrix describe the relation order between the elements in the rows and those in 

the columns. For example, the < symbol in the first row, fifth column states that component F is less important than component 

B. 

 F D C E B A J M I G K H L N 

F  = = = < < < < < < < < < < 

D   = = < < < < < < < < < < 

C    = < < < < < < < < < < 

E     < < < < < < < < < < 

B      = = < = < = < < < 

A       = < = < = < < < 

J        = = < = < < < 

M         = > = > < < 

I          < = < < < 

G           = = < < 

K            < < < 

H             < < 

L              < 

N               

 

Table  reports the results obtained in [19] applying the probabilistic approach to the same case study. The 
main difference is that the probabilistic approach results in fewer cases of components with the same 
importance because the CDFs of the components‟ important measures appear to be more clearly separated 
than are the necessity and possibility measures in the possibilistic approach. 
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Table VI 

Final ranking of the components' IMs (probabilistic framework). 

Ranking order 14-13 12-11 10-9 8-7 6-5 4 3 2 1 

Components C E D F A B  I J M K  G H  L N 

With regards to the computational times, when the epistemic uncertainties are described by means of 

possibility distributions, then the application of the propagation technique, the Quicksort algorithm, and the 

procedure to verify whether equally important components occupy different positions in the ranking take few 

seconds. On the contrary, the time required to carry out the same analysis within the probability theory 

framework is around 20 minutes, with most of the time dedicated to the uncertainty propagation step. This 

result is due to the fact that uncertainty propagation is performed in the possibilistic case by using the fuzzy 

extension principle which requires only to apply simple rules of interval algebra, whereas in the probabilistic 

case it is necessary to resort to MC simulation because analytical approaches are impracticable. 

5 Conclusions 

In this work, a procedure has been proposed for ranking system components in order of importance 

when their failure probabilities are poorly known, and the related uncertainties are described by possibility 

distributions. The ranking procedure is based on: i) the use of the fuzzy extension principle to propagate 

epistemic uncertainty from the system parameters to the component importance measures, ii) pairwise 

comparisons of the obtained component importance measures, and ii i) the application of the Quicksort 

algorithm. Because the method used to compare the Birnbaum importance of three generic components, k, s, 

j may lead to a ranking which can be partially contradictory ( B
k

B
j II   and B

s
B
k II  , but B

s
B
j II  ) a 

procedure to verify whether equally important components occupy different positions in the ranking has been 

proposed. 

The application of the proposed procedure has shown several results.  



 We find the relevance of taking into account uncertainties in the computation of the IMs, and 

the fact that the possibility distributions allow to represent the uncertainties in a way less 

committed than that offered by the probability theory. 

 The final ranking may depend on the investigation framework used to carry out the analysis, 

which is mainly established on the basis of the quality and quantity of available data. In general, 

the probabilistic representation and propagation of the uncertainty allows one to get a more 

refined final ranking, but it calls for a larger amount of available data and more accurate 

information (which may be lacking in real industrial applications). 

The proposed procedure has been applied in this work to rank the components on the basis of their 

Birnbaum IMs, but it can be easily extended to other IMs (e.g., the Risk Reduction Worth, RRW, Risk 

Achievement Worth, RAW, Fussel-Vesely, FV). Notice, however, that the propagation of the epistemic 

uncertainty from the system parameters to the components‟ importance measure by using the fuzzy extension 

principle can become computationally more challenging when the importance measure is defined through 

relationships more complex than those of Birnbaum IM, and which require one to perform divisions between 

uncertain quantities. Furthermore, the larger the complexity of the system and the associated number of basic 

events, the larger is expected to be the computational time required to perform the ranking. 
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Appendix  

Contradictory ranking (probabilistic framework) 

Let us consider a case in which we have to rank the importance of three components: A, B, and C. We have 

( ) 1B B
A B lP I I T   , and ( ) 1B B

B C lP I I T   . According to the decision criterion of Section 2.1, these 



inequalities entail B B
A BI I , and B B

B CI I . To avoid the contradictory inequality B B
C AI I , we have to prove 

that ( ) 1B B
C A lP I I T   . 

To this aim, notice that ( ) 1 1 ( ) 1 ( )B B B B B B
C A l A C l A C lP I I T P I I T P I I T           . Then, to prove that 

the contradictory inequality is not possible, we have to show that ( )B B
A C lP I I T  . Notice also that  

( ) ( , )B B B B B B
C A C B B AP I I P I I I I            (11)

 

because the event on the right-hand side of the equation only introduces an additional constraint on B
BI , 

which is not considered in the left-hand side. 

According to de Morgan‟s laws,  

( , ) 1 ( ) ( ) ( )B B B B B B B B B B B
C B B A C B B A C B AP I I I I P I I P I I P I I I         

     (12) 

Notice that because both ( )B B
C BP I I  and ( )B B

B AP I I  are smaller than lT  (by hypothesis), we obtain that  

( ) 1 2 ( )B B B B B
C A l C B AP I I T P I I I               (13) 

To verify that the condition 1 2 ( )B B B
l C B A lT P I I I T     , which avoids the contradictory sequence B B

A BI I ,

B B
B CI I , and B B

C AI I  is verified, it is required that 1/ 3lT  , whatever is the value of ( )B B B
C B AP I I I   (in 

[0,1]). 

Contradictory ranking (possibilistic framework) 

Suppose that (0)
sk lT  , and (0)

kj lT   , which entail (0)
sk lT  , and (0)

kj lT   (from (4) and (5) 

respectively). On this basis, according to the criterion propounded in Section 3.3 we can state that BsI  is 

larger than B
kI , and B

kI  is larger than B
jI . To avoid the inequality B B

j sI I , in this case we have to show that 

(0)
js lT   . 

Considering the probabilistic interpretation of the possibility distributions (6), from our hypotheses 

(0)
sk lT  , and (0)

kj lT   , we can derive   



0 ( ) (0) (0)
sk sk

B B
s k lP I I P T      

  

0 ( ) (0) (0)
kj kj

B B
k j lP I I P T     

   

Then, given the results showed earlier in this Appendix, we can guarantee that ( )B B
s j lP I I T  , if we 

consider a value of 1/ 3lT  ). This result entails that ( ) (0) (0)
js js

B B
l j sT P I I      , and thus that 

(0)
js lT   . 

Ranking algorithm 

Quicksort is a divide-and-conquer algorithm which relies on a partition of the elements based on a 

quantitative indicator of their „size‟. To partition the elements, it is required to choose one of them as a pivot, 

a reference for moving all elements of size smaller before the pivot, and all elements of size larger after it. In 

the resulting iterative partition procedure, the sublists of smaller and larger elements are recursively sorted. 

The pseudo-code of the algorithm can be found in [19], and [23]. 

Fig 9 illustrates the application of the Quicksort algorithm in the case study of Section 5, when the 

components are initially arranged in alphabetical order, and the pivot is chosen as the central element of each 

sublist. At the first iteration, the pivot is H, and two sublists are created: one containing the components that 

are equally or more important than the pivot (right branch, in this case it contains L and N), and the other 

with the less or equally important components (left branch, in this case it includes ABCDEFGIJK). Thus, H 

takes the third place instead of L, which currently occupies the second position being more important than H. 

Notice that the pairwise comparisons also show that H is equally important than G, although the algorithm 

leaves G in its current position. The sublist of more important components is then sorted. The comparison 

between N and L shows that the former is more important than the latter.  

The less important elements branch contains ABCDEFGMIJK; its middle element, F, is chosen as pivot. 

The components ABCDEFIJM are more or equally important than F. In particular, this latter component is 

equally important as E, C, and D. With reference to the right sublist (more important components), G is the 

pivot element, and it swaps its position with J; that is, the importance of J is smaller than that of G. The 

algorithm proceeds as illustrated in Fig. 9. 

http://en.wikipedia.org/wiki/Algorithm


Once the Quicksort algorithm has been executed, we have to run the control algorithm to verify whether 

different rank orders have been assigned to equally important components. This need is due to the fact that 

the algorithm does not perform all the possible direct comparisons. 

In details, we consider the l-length vector X of sorted components (i.e., the output of the Quicksort 

algorithm), and the vector R of the ranking position initially associated to the components (i.e., from 1 to l). 

In the case considered in this appendix X=FDCEBAJMIGKHLN. 

The rationale of the code is that to have a difference in components importance ranking there must be a 

column of the comparison matrix whose entries are all „<‟. 

We start from setting the ranking order r=1, and our first objective is to find the set of the least important 

components (i.e., all those components with rank r=1). Notice that the first component of the list provided by 

the sorting algorithm which does not belong to this class is the first component of the list characterized by a 

column of the comparison matrix Comp (TableV) containing only „<‟, because this is the only condition 

guaranteeing that all the previous components of the Quicksort list are less important. To identify this 

component, we set i=2, and check whether the i-th column of the comparison matrix Comp (TableV) 

contains only „<‟. In the affirmative case, the rank of the components of X from position 1 to i-1 is set to 1, 

and the rank of component X(i) is set to i. On the contrary, if column i contains „>‟ or „=‟, then X(i) and X(1) 

must be considered of the same importance, and thus of rank 1, because in this case X(i) is equally important 

to at least one of the previous components. The variable i is updated to i+1, and the procedure is iteratively 

repeated by considering the new column i of the comparison matrix Comp.  

The pseudo-code of the proposed algorithm follows.  

r=1; 
i=2; 
while i<=l 
 Col=i-th column of Comp 
 V=all(Col==’<’); 
 If V==1 

R([j:i-1])=r; 
r=i; 

end 
i=i+1; 

End 

For example, consider i=1; then X(1)=F. Flowing over X, we find that the Boolean variable V=1 when i=5. 

Then the first group is made up of the components r:i-1=1:4 of X (that is FDCE), which are of rank r=1. 

Then r is set to i=5. The algorithm proceeds up to i=l, and the final result is R = [1 1 1 1 5 5 5 5 5 5 5 5 13 

14]. 
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