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Abstract 

The purpose of this work is the analysis of the uncertainties affecting an electric transmission network with wind power 

generation and their impact on its reliability. A stochastic model was developed to simulate the operations and the line 

disconnection and reconnection events of the electric network due to overloads beyond the rated capacity. We represent 

and propagate the uncertainties related to consumption variability, ambient temperature variability, wind speed 

variability and wind power generation variability. The model is applied to a case study of literature. Conclusions are 

drawn on the impact that different sources of variability have on the reliability of the network and on the seamless 

electric power supply. Finally, the analysis enables identifying possible system states, in terms of power request and 

supply, that are critical for network vulnerability and may induce a cascade of line disconnections leading to massive 

network blackout. 

 

1. Introduction 

Systems of electric power generation, supply and transmission play an extremely important role in modern 

societies. Consumers have grown to expect electricity to be available instantaneously ―with a flick of a 

switch‖, because their lives depend on seamless electric power supply as an essential resource for 

communication, transportation, heating and cooling systems, lighting, and the powering of computers and 

electronics. 

Providing electricity in a reliable fashion is a complicated and technically challenging task. It involves real-

time assessment, coordination and control of thousands of generating units, the transfer of electric power 

over networks of transmission lines and, finally, the delivery of electric power to the consumers. The high 

degree of inter- and intra-connectedness of networks for energy supply makes them vulnerable to global 

disruptions when exposed to hazards of various nature, from random/mechanical/physical/material failures to 

natural events, intentional malevolent attacks, and human errors [1]. 
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The assessment of power system reliability is generally divided into two aspects: system adequacy and 

system security [2]. System adequacy deals with steady-state operation and planning of the power system, 

i.e., it gauges the ability of a power system to supply and deliver electric energy to satisfy customer demand. 

System security gauges the ability of a power system to respond to sudden changes or disturbances such as 

the loss of generators or transmission lines. Power system security involves two aspects. The first is related 

to the ability of the system to withstand internal failures and sudden natural disturbances, including network 

overload, voltage problems, and instability problems. The second aspect is related to the ability of the system 

to avoid external interference, attack, or coordinated physical assault on the system. Traditionally system 

planners deal only with the former security aspect, i.e., problems arising from system operation, random 

failures of system equipment and natural disturbances [3].  

The overarching goal of electric resource planning is therefore to ensure that sufficient resources, delivery 

capacity, and reliability characteristics exist to meet future demand requirements in a reliable and economic 

manner [4]. All resource planners allow some percentage reserve margin of capacity above their demand 

requirements to ensure reliability following unexpected system conditions and to meet state regulatory and 

regional requirements. Reserve margins are determined by calculating the capacity of supply resources, 

discounted to reflect the potential unavailability of the resources at high risk times [3]. 

The analytical processes used by resource planners range from relatively simple calculations of planning 

reserve margins to rigorous reliability simulations that quantify system Loss of Load Expectation (LOLE) or 

Loss of Load Probability (LOLP) values. In the latter case, planners periodically check resource adequacy 

indicated by the evaluated reserve margins through detailed reliability simulations that compare expected 

demand profiles against forced outage rates of generating units and maintenance schedules to yield LOLE or 

LOLP values [2, 5]. Moreover, reliability calculations typically include probabilistic production cost 

simulations for meeting a specified demand (or chronological) curve from a specified generation fleet while 

incorporating the forced and unforced outage rates over the simulation period. 

Deterministic approaches to power system security usually consider worst-case scenarios. The result of the 

analysis is most often qualitative and therefore difficult to use in a decision-making process. Deterministic 

methods also impose a hard limit on system operations. As a result, systems are often designed, planned or 

operated to withstand severe problems that have a low probability of occurrence.  

Deterministic methods alone cannot adequately address the various transmission challenges such as the 

available transfer capability (ATC), long transmission and related voltage/reactive and security (stability) 

problems, transmission project ranking, transmission congestion alleviation, uncertainty of weather, 

environmental constraints and the competitive environment, uncertainty of customer load demand, 

uncertainty of equipment failure and operation. 

Probabilistic approaches consider factors that may affect the performance of the system and provide a 

quantified risk assessment using performance indices such as probability and frequency of occurrence of an 



3 

 

unacceptable event, its duration and severity. These performance indices are sensitive to factors that affect 

system reliability. Quantified descriptions of the system performance, together with external relevant factors 

such as environmental impact, social and economic benefits etc., enter into the decision-making process and 

have an impact on operations, short-term planning and long-range planning [3]. These assessments are 

traditionally carried out by Monte Carlo simulation techniques [6, 7, 8], and by analytical methods [9]. 

Uncertainty and fast fluctuation of wind speeds strongly affect system planning and operation and call for 

effective reliability-based reserve expansion. With respect to this key issue, analytical methods are applied in 

[9], where universal generating functions are employed to quantify the impact of high wind power 

penetration on the system reserve and reliability from long-term planning point of view. The impact of 

transmission network on customers’ reliabilities is also considered. 

In this paper, the reliability of a power transmission network is addressed in the face of uncertainties related 

to consumption variability, ambient temperature variability, wind speed variability and the integration of 

large shares of electricity produced by wind energy. The proposed simulation framework combines classical 

DC power flow, sequential Monte Carlo sampling of the possible uncertain system parameters, and a model 

for power line disconnection and reconnection due to line overloading beyond the rated capacity. Within this 

simulation framework, the uncertainties related to consumption, wind power generation, ambient 

temperature and wind cooling of lines are identified, and they are quantitatively propagated to assess their 

impact on level II system adequacy [2] in terms of expected energy not served (EENS) and expected demand 

not supplied (EDNS). Based on the aforementioned modeling, it can be anticipated that the parameters 

whose uncertainty affects power system operations to a large extent, will have to be paid special attention 

during the design and management of power systems. Finally, critical system states of wind power 

generation and load request that may lead to a cascade of line disconnection and a large system blackout are 

pointed out. 

The paper is organized as follows. In Section 2, the power grid DC load flow, the wind turbine and the line 

overload models which enter the stochastic simulation framework are detailed. In Section 3, the uncertainties 

related to power system operations are identified and quantitatively represented. In Section 4, the developed 

framework is exemplified with respect to a modified version of the IEEE RTS 96 test network system [10], 

and reliability and vulnerability considerations about network operations are provided. Conclusions are 

drawn in Section 5. 

2. Stochastic Modeling Framework of a Power Transmission System 

In order to study the effects of the uncertainties (related to the load and the renewable generation forecasts on 

one side, and to weather parameters on the other side) that introduce disturbances in the grid and may cause 

line outages due to overloads, an event-based stochastic framework which simulates the operations of the 

electric network under variable conditions was developed. The proposed approach, inspired by the model 

introduced in [11, 4, 12, 13], combines: 1) a DC load flow algorithm that computes the distribution of power 
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flow using a linear load flow approximation, 2) the contribution of wind generation power in a transmission 

power grid, 3) a strategy for generation dispatch in order to balance the power production and consumption 

throughout the network, 4) the dynamics of line temperatures as function of the power flow and 

environmental conditions (wind speed and ambient temperature), 5) the event of automatic line 

disconnection when the rated line temperature is reached, and 6) the event of line reconnection. 

The evolution of cascading events in their slow initiating stages is represented by transmission lines failures, 

caused by overheating due to excessive power flows. To describe this effect, the evolution of the line 

temperature and its dependence on electric flow redistributions was modeled using the model of heat 

conduction in rods of small cross section in which an electric current of constant intensity flows [12]. Further 

contributing to the evolution of cascades is a line restoration model which prevents a damaged line to be put 

back in service before a fixed restoration time has passed. Random failures of transmission lines during 

normal operations may also contribute to the evolution of cascading events. The occurrence of a random 

failure can be straightforwardly introduced in the developed event-based stochastic model. However, given 

the small value of random failure rates for transmission equipment, multiple, independent line failures 

scarcely affect the evolution of the cascade process. At the same time, single line failures due to random 

events have little impact in an N-1 compliant transmission system. With no loss of generality, random 

failures of transmission lines during normal operations are not included in the model at its current stage for 

the sake of a clearer quantification of the other sources of uncertainty in the system.  

The model of transmission line failure due to loading over their transmission capacity and following 

restoration, is part of the developed event-based stochastic framework which has also the ability to represent 

daily hourly changes in power requests at customer side of the system, ambient temperature and wind speed 

variations. 

The stochastic framework is based on sequential Monte Carlo Simulation (MCS) in which the combination 

of load requests, ambient temperature, wind power generation, wind speed and network topology is a system 

realization. Due to the yearly periodicity of the load request and the room temperature average values, each 

year is considered to be statistically equivalent to one another and the results are provided on the basis of 

yearly averages. The simulation begins by establishing the load demand, the room temperature and wind 

speed values. If no line disconnection due to excessive heating occurs, the next event corresponds to the 

occurrence of the next hourly time step (―next hour‖ event) with updated load demand, ambient temperature 

and wind speed conditions. If the temperature of a line exceeds the critical temperature set for that line, a 

―line disconnection‖ event may occur before the scheduled ―next hour‖ event. A DC load flow is performed 

following the occurrence of each event. The ―line reconnection‖ event occurs after a time chosen a priori for 

each line that is disconnected.  

After each event, we solve the DC load flow equations in order to determine the line temperatures and the 

type of the next event. The change time to the next event is computed as the minimum between the time to 
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the next hour change, the minimum failure time among all lines and the minimum time to reconnection of all 

lines. 

A. Formulation of the DC power flow 

The electrical transmission system is assumed to operate through steady-state conditions, also during the 

evolution of major disturbances in the system. This approximation does not hold during the late stages of 

major disturbance events and it can be relaxed if voltage dependent phenomena are modeled during these 

events. 

In order to determine the steady-state operating conditions of the power grid, the full nonlinear power flow 

equations that provide information about the voltage magnitudes and phases and the active and reactive 

power flows along each transmission line should be solved. Unfortunately, since the simulations involve 

numerous power flow solutions for a power grid system that evolves in time, solving repeatedly the full non-

linear power flow equations becomes computationally prohibitive. Moreover, the full nonlinear equations 

pose very difficult nonlinear optimization problems. Therefore, the power-flow equations are linearized into 

the so-called DC power flow equations that connect the flow of real power to the voltage phases of the 

system buses, which results in a completely linear, non iterative, power flow algorithm [14].  

The DC power flow can only calculate real (MW) flows on transmission lines but it gives no answers to what 

happens to voltage magnitudes or reactive (MVAR) flows. Assuming that all bus voltages phasors are 1.0 

per unit in magnitude, and defining the matrix B by ij ijB b   and ii ijj
B b , where ijb  is the susceptance 

of the transmission line joining buses i and j and the summation is over all nodes j connected to node i, the 

voltage phases i  are the solution of the linear power flow equation P = BΘ . Here, P is the vector whose N – 

1 components are the real powers injected at each node, except a reference node (slack node) for which the 

injected real power is computed from the power balance between total generation and total load. The vector 

  is the vector whose components are the voltage phases at each node in the network except the slack node 

which has phase zero. After solving the power flow equation for the vector  , the flow of real power along 

each transmission line is computed from  ij ij i jP b    [15]. 

B. Line temperature model and overloaded-line failure 

In order to model the failure of transmission lines due to loading beyond the rated transmission capacity, the 

problem of heat conduction is analyzed for rods of small cross-section [16] in which an electric current of 

constant intensity flows. For simplicity, the transmission line is assumed to be so thin that the temperature at 

all points of its cross-section is uniform. The transmission line is supposed to have constant cross-section 

area  , perimeter p, thermal conductivity K, electrical conductivity  , density  , specific heat c, diffusivity 

 . It is also assumed that the heat flux across the surface of the line is proportional to the temperature 

difference between the surface and the surrounding medium and is given by H(T−T0), where T is the 
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temperature of the line, T0 is the temperature of the medium and H is the surface conductance. The problem 

of heat conduction, then, becomes one of linear heat flow in which the temperature is specified by the time t 

and the distance x measured along the transmission line. Balancing the total heat generation in an element of 

volume bounded by the cross sections at x and x+dx and the heat in flow across the surface minus the heat 

loss at the surface, we write the following heat equation, 
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where  /Hp c   ,  20.239 / c    ,  /K c    and I = P/V is the current in the line measured in 

Amperes [16]. In order to estimate the surface conductance H, it is assumed that the loss of heat across the 

surface of the line is due to forced convection. When fluid (gas or liquid) at temperature T0 is forced rapidly 

past the surface of the line, it is found experimentally that the rate of loss of heat from the surface is given by 

H(T − T0), with a value of the coefficient H which depends on the velocity and the nature of the fluid and the 

shape of the surface [16]. For turbulent flow of air with velocity u perpendicular to a circular cylinder of 

diameter d, H = 8 × 10−5(u/d)
1/2

 cal/(cm
2
secK).  

Assuming that fluctuations in power flows along the transmission lines propagate much faster than any heat 

flow transients, and since the heat source is equally distributed along the line, we can neglect the spatial 

variation in temperature along the line in order to get this simple equation describing the time evolution in 

the temperature of the line with the time evolution of the power flowing through the line: 
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If the line is initially at temperature T(0) and the power flowing through the line has the constant value P, the 

line temperature evolves according to this simple equation: 
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is the equilibrium temperature that the line reaches at t . If at some moment the power flow changes, we 

reset the clock and the initial temperature, and use the same equation to describe the evolution of line 

temperature starting from this moment on. 

A transmission line failure due to excessive heating, followed by line sagging and tripping, will occur if the 

power flow through it exceeds the maximum line rating. For each line l, we denote by Tcl the equilibrium 

temperature corresponding to a constant power flow equal to the line rating 
max

lP , i. e. Tcl = Te(
max

lP ). When 

the power flow Pl through the line changes up to exceeding 
max

lP , the line will start heating, with the 
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temperature increasing towards the equilibrium temperature corresponding to the new power flow. Since this 

equilibrium temperature exceeds Tcl, at some time tcl the line temperature will reach Tcl and the line will fail. 

The failure time, tcl, measured from the moment when the grid topology and the line flow has changed, can 

be easily deduced from Eq. (2.5) and is given by 
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Finally, in order to keep the heat equation linear, we have omitted on the right-hand side of Eq. (2.3) a 

cooling term that takes into account that each element of the surface of the road loses heat by radiation to the 

surrounding medium — and provides cooling when the wind is absent.  

Figure 1 shows the dynamics of the power flows (thin curve) and temperatures (thick curve) for one 

transmission lines during the simulated operations of a power grid. We can see that line temperature reaches 

its threshold value at about t = 8467 hours due to excessive line flow (beyond scale in Figure 1). When the 

threshold temperature is reached, the line is isolated and the electric flow rapidly drops to 0 MW, followed 

by line temperature decay to the room temperature by heat convection through the line surface. The line is 

assumed to be put back in service after 10 hours and the electric flow is restored. 

 

Figure 1. Dynamics of power flow and temperature for a transmission line during network operations 

 

 

C. Wind turbine model 

The power output from a wind turbine generator (WTG) is determined using the functional relationships 

linking the characteristics of a WTG and the wind speed field [13]. This function is described by the 

operational parameters of the WTG. The parameters commonly used are the cut-in wind speed 
ci

V (at which 

8455 8460 8465 8470 8475 8480 8485
0

10

20

30

40

50

60

70

80

Time [hours]

 

 

Line flow [MW]

Line temperature [C]

Threshold temperature



8 

 

the WTG starts to generate power), the rated wind speed 
r

V (at which the WTG generates its rated power) 

and the cut-out wind speed 
co

V (at which the WTG is shut down for safety reasons). Equation (2.1) [13] is 

used to obtain the power output of a WTG from wind speed (SWt): 
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The constants A, B, C depend on  
ci

V , 
r

V  and 
co

V as expressed in eq. 2.2: 
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Figure 1 presents the output power of a WTG: 

 

Figure 2. Power curve of a WTG with the following parameters: rated power Pr of  3 MW, cut-in speed, Vci, of 3ms-1, rated speed, 

Vr, of 12 ms-1 and cut-out wind speed, Vco, of 25 ms-1 
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The wind turbine generating unit operates in four phases: a first standby phase in which wind speed is lower 

than 
ci

V = 3 ms
-1

 and there is no power production; a second phase in which power production increases with 

a nonlinear trend in the wind speed range from 
ci

V = 3 ms
-1

 to 
r

V = 12ms
-1

; wind turbines usually reach the 

rated power at a wind speed between 12 ms
-1

 and 16 ms
-1

, depending on the design of the individual turbine; 

finally, when the wind speed exceeds the rated wind speed, the wind generator is disconnected for protection 

purposes and the power production stops (cut-off phase). Hence, a wind turbine produces its maximum 

power, i.e. the rated power, within a certain interval that has its upper limit at the cut-out wind speed. Typical 

values of the cut-out wind speed range between 20 ms
-1

 and 25 ms
-1

[17]. 

 

3. Identifying and Classifying Uncertainties in Power Transmission Systems 

One of the main purposes of a power system is to satisfy the demands of customer loads in a reliable and 

economical manner. Failing to properly address planning problems and constraints will eventually yield 

operation problems and, therefore, will affect power system reliability. Variability in demand, transmission 

and generation parameters, line ratings, extreme weather, and other environmental factors, introduce 

uncertainty in operation and planning of electric networks. In general, the degree of uncertainty increases 

significantly from a shorter time frame in system planning to a longer time frame in system operation. 

Failing to incorporate uncertainties in system planning may lead to an overestimation of safety margins and 

of system capabilities to maintain acceptable levels of reliability. Therefore, it is of paramount importance to 

identify and quantify the sources of uncertainty in electric networks. 

Indeed, the appropriate incorporation of the uncertainty and the presentation of its implications are widely 

recognized as fundamental components in the analyses of complex electric systems [18]. There are two 

different forms of uncertainty in power system reliability assessment [19]. On the one hand, aleatory 

uncertainty arises because the system can stochastically behave in different ways. Components’ failures and 

repair processes are random and are sources of aleatory uncertainty. On the other hand, uncertainty enters the 

system reliability assessment due to incomplete knowledge and information on the system and its related 

phenomena, which leads to imprecision in the model representation of the system and in the evaluation of the 

system parameters. This latter type of uncertainty is often referred to as subjective, epistemic, state-of-

knowledge [20]. For example, in the field of power system research, epistemic uncertainty has been dealt 

within the fuzzy power flow analysis [21; 22], where the power injections of all loads and generations are 

regarded as fuzzy variables. 

Table I summarizes the uncertainties identified in the electrical transmission system. In this study, we 

represent and propagate the uncertainties related to (I) consumption variability, (II) ambient temperature 

variability, (III) wind speed variability and (IV) wind power generation.  
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Element Parameter 
Source of 

uncertainty 

Type of available 

information 

Uncertainty 

representation 

Load bus Load value 
Consumption 

variability 
Historical data 

Probabilistic 

(Normal pdf) 

Wind generating 

unit 

Output 

power 

Wind speed 
Wind speed 

variability 
Historical data 

Probabilistic 
(Weibull pdf) 

Operation 

parameters 

Wind power 

variability 
Experimental data 

Probabilistic 

(Normal pdf) 

Weather 

Wind speed 
Wind speed 

variability 
Historical data 

Probabilistic 
(Weibull pdf) 

Ambient temperature 
Temperature 

variability 
Historical data 

Probabilistic 

(Normal pdf) 

Transmission Line Line temperature 

Material properties 

incomplete 

knowledge 

Experts’ judgment Possibilistic 

Table I. Uncertainty sources and their representation in the electrical transmission system 

When the uncertainty in the variables is mainly due to their inherent randomness (aleatory uncertainty) and 

there is sufficient information to assign probability distributions and estimate their parameters, probabilistic 

modeling is embraced. The model output is represented by a function of n random variables,  

 
ni

XXXfY ,...,,...,
1

 , where Xi denotes the i-th probabilistic input variable with PDF  xp
iX

. The 

probabilistic model defines the probability distribution of the output random variable Y as a function of the 

probability distribution of the inputs. Such distribution is evaluated analytically in simple cases, or by Monte 

Carlo Simulation (MCS) for more realistic settings. 

In power system studies, the MCS is typically embraced, given the large number of variables involved and 

their complex relationships, which make analytical models difficult or even impossible to derive [23; 24]. 

The operative procedure of MCS calls for a large number m of iterations: at each e-th iteration, an input 

vector of values  e

n

ee xxx ,...,,
21

 is sampled from the probabilistic density functions (PDFs) of the input 

variables and a realization of the output value y
e
 is computed solving the system model. After m repetitions, 

an empirical estimate of the distribution of the system output is obtained. 

3.1 Uncertainty representation of the power demand at load buses 

The average hourly peak power demand follows the hourly load curve based on data from [10]. The curve 

accounts for customer power need variations from day to night and from season to season. An example of a 

daily load peak curve, in different days and seasons, is given in Figure 3. 
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Figure 3. 24-hours load curve [10]. First hour corresponds to 12 a.m. – 1 a.m. interval of each day 

 

Variability in the hourly peak power demand arise because power consumption by users is not exactly 

uniform and simultaneous, i.e. it is assumed that the power needed at the customers side may experience 

stochastic fluctuation from the average hourly peak power demand. Following [2], it is assumed that load 

uncertainty is well described by a normal distribution. Therefore, the load hourly values are sampled from a 

normal distribution  2,N  with mean  equal to the hourly peak load considered in the deterministic case 

(Fig.3) and standard deviation   assigned according to the perceived load forecast uncertainty, such as 10% 

of the mean value,  1.0  [2].  

3.2 Uncertainty representation of the ambient temperature 

In order to compute the annual ambient temperature curve (Fig.4), the daily minimum and maximum values 

during one year in a specific location of the United States were collected and analyzed. A linear variation of 

the temperature values between the daily minimum and maximum values is assumed, with the minimum and 

maximum peak registered at 5 a.m. and 4 p.m., respectively. 
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Figure 4 Ambient temperature curve used in the deterministic case. The maximum and minimum data values have been collected at 

the location of Bakersfield, CA, USA. 

 

The uncertainty associated with the ambient temperature is assumed to be well described by a normal 

distribution. Therefore, the temperature hourly values are sampled from a normal distribution  2,N  with 

mean equal to the hourly value from the annual ambient temperature curve (Fig. 4) considered in the 

deterministic case and standard deviation  equal to 5% of the mean value,  05.0 . This value has been 

identified by computing the standard deviations of the minimum of the median and of the maximum 

temperature values that are recorded within each month of the year by choosing the maximum among them.  

3.3 Uncertainty representation of the wind speed 

In order to compute the annual wind speed curve, the hourly values during a year in a specific location were 

collected and analyzed. In the deterministic case it is assumed, for each day of the year, that the wind speed 

is constant throughout the day and it is equal to the daily average value.  

Following [25; 26], the Weibull distribution has been used to represent the wind speed variability within a 

yearly time frame. It is shown that data collected at many locations around the world can be reasonably well 

described by the Weibull PDF if the collection time frame is not too short, i.e. longer than several weeks. 

Figure 5 shows the distribution of the hourly wind speed collected at Bakersfield, CA, USA, and the Weibull 

distribution whose parameters are calculated by maximum likely estimation [25] based on the hourly values. 

From the collected data, it can be noticed that either the used anemometer has a lower bound of measuring at 

about roughly 6 ms
-1

, or a wind speed below 6 ms
-1

 is an unlikely event at the considered location. Moreover, 

it can be noticed that the Weibull approximations holds beyond the maximum of the distribution while it is a 

rough approximation for lower speed values [27]. Therefore, it may be expected that the wind speed values 
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sampled from the Weibull distribution will be biased towards lower values if compared to the collected data. 

Nonetheless, this bias does not affect the modeling framework that is the main objective of the work. 

 

Figure 5. Distribution of the wind speed values collected at Bakersfield, USA, and the corresponding Weibull distribution evaluated 

through maximum likelihood estimation of the distribution parameters. 

3.3 Uncertainty representation of the wind power generation 

Finally, the variability of wind speed propagates to the power output of wind generators. The power 

output of a WTG depends strongly on the wind regime as well as on the performance characteristics and the 

efficiency of the generator. A fundamental assumption is made when considering the deterministic power 

curve (Figure 2): the relationship between the wind speed and the output power is fixed, given the same type 

of WTG systems. In other words, the output power of the WTG is always the same at a specific wind speed. 

In reality, the output power for a fleet WTG of the same type always exhibits considerable variations even 

when they are operating at the same wind speed [28]. Moreover, Thiringer and Linders [29] analyzed the 

relationship between the wind speed and the output power based on a group of wind turbines. They found 

that the powers generated from individual wind turbines of the same type actually vary even at the same 

wind speed. These research findings suggest that a probabilistic model incorporating the power variations 

may be more appropriate to characterize the relationship between the wind speed and the actual output 

powers. Following [30], the actual output power Pd is proposed as a random variable, which is characterized 

by the mean power output and its standard deviation: 

 

                                                               xPxP
d

                               (2.8) 
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where  xP
d

 represents the actual WTG power output,  xP  represents the deterministic output governed by 

the equation (2.1) and   represents the variation of the power output with  2,0~


 N . Following [30], 

0.1 rP   , i.e. 10% of the rated power output. Since the uncertainty in wind speed is also modeled, the 

function for power curve actually contains two random parameters: the wind speed Weibullx ~ and the 

variation of the power output  2,0~


 N . 

 

 

Figure 6. Power output realizations for the wind regime described by the Weibull distribution of Figure 5, and the performance 

characteristic and efficiency of the generator.  

 

Figure 6 shows the power output realizations (grey points) of the WTG of Figure 2 for the wind regime 

described by the Weibull distribution of Figure 5, and the performance characteristics and efficiency of the 

generator described by  2,0~


N  [29]. The wind turbine starts producing power when wind speed equals 

the cut-in speed of 3 ms
-1

: the majority of wind power generation concentrates during the nonlinear part of 

the output curve. This effect is consistent with the uncertainty in wind speed distribution. 

 

4. Application to a modified version of IEEE RTS 96 [10] 

The composite test system IEEE-RTS (Fig. 7) was modified to exemplify the stochastic framework in 

Section 2 with respect to a test system that reproduces the general conditions that exist in actual power 

systems. The original RTS has a very strong transmission network and a weak generation system. Following 

[31], in this paper the original RTS is modified to create a more practical system with a relatively weaker 
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transmission network and a relatively stronger generation system with respect to the original IEEE-RTS test 

system. 

 

Figure 7. The single line diagram of the IEEE RTS 96/MRTS scheme [10; 31] 

 

The total installed capacity in the original RTS is 3405 MW in 32 generating units and the peak load is 2850 

MW. In the modified version of RTS, henceforth designated as the MRTS, the lengths of all the 138-kV lines 

(lower part of the system in Figure 7) are doubled except for line 10 which is 25.6-km cable. The 230-kV 

lines (the upper part of the system in Figure 7) are extended as follows: the lengths of lines L21, L22, L31, 

L38 are increased by a factor of three; the lengths of lines L18 to L20, L23, L25 to L27 are increased by a 

factor of four; the lengths of lines L24, L28 to L30, and L32 to L37 are increased by a factor of six. To 

increase the utilization of the transmission network, the load levels at all delivery points were increased from 

1.3 p.u. to 1.5 p.u. of the original values. The increase of the load levels is balanced by doubling the 

generating systems capabilities at Buses 16, 18, 21, 22 and 23. The total number of generating units is now 

44. The total system capacity is 5320 MW and the peak load for the different load levels is given in Table II. 
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Load level (p.u.) Peak load [MW] 

1.3 3705 

1.4 3990 

1.5 4275 

Table II. Load levels and corresponding peak loads for the modified power grid MRTS. 

 

The single line diagram of the MRTS is the same as that of the unmodified version of RTS shown in Figure 

7. Following the aforementioned modifications, the transmission utilization in the MRTS is significant, as a 

considerable amount of power is transferred from the northern to the southern portion of the system. The 

modified system is used as a test bed to examine also the effects of uncertainties introduced by adding wind 

energy conversion systems (WECS) in two points of the transmission network: two additional 300 MW 

WECS are added through transmission lines at Buses 1 and 3 in the southern portion (138 kV) of the MRTS 

(Fig. 8).  

 

 

Figure 8. The two 300 MW WECs at Buses 1 and 3 in the MRTS [31]. 

 

For each load level in Table II, four different scenarios are assessed in order to observe the effects of 

uncertainties, and compared to the deterministic base case scenario in which uncertainty is neglected. In 

order to keep the comparisons consistent, the deterministic base case scenario is characterized by hourly 

variability of load, hourly variable ambient temperature, and a mean wind speed value which follows the 
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hourly average values, with no associated uncertainty; the additional generators of 300 MW each, are 

supposed to have no uncertainty associated to their power production.  

Following the uncertaintiy models described in Section 3, the first three scenarios deal separately one 

uncertainty at a time, with uncertainties in load demand (scenario I), uncertainty in ambient temperature 

(scenario II), and uncertainties in wind speed and power generation (scenario III). The fourth scenario 

combines the effects of all the uncertainties (scenario IV). The sensitivity of the annual energy loss with 

respect to customers power requests, ambient temperature, wind speed, and wind power generation were 

quantified and reported in Table III.  

The annual energy loss is quantified by the Expected Energy Not Supplied, i.e. the average EENS index. The 

EENS index is an adequacy index for the transmission level of the electric infrastructure [2]. It quantifies the 

annual electric energy that could have been provided by the generating system but that could not reach the 

customers due to bottlenecks in the transmission network.  

Load Level = 1.3 (p.u.) Annual Energy Loss EENS[MWh] 

 Mean Standard deviation 

Base Case - - 

Uncertainty in load demand 85.217 11.523 

Uncertainty in ambient temperature 61.574 5.779 

Uncertainty in wind speed and power 393.50 19.57 

Uncertainty 438.99 17.52 

 

Load Level = 1.4 (p.u.) Annual Energy Loss EENS[MWh] 

 Mean Standard deviation 

Base Case 2.0872e+003 - 

Uncertainty in load demand 2.6895e+004 3.7602e+003 

Uncertainty in ambient temperature 3.6079e+003 3.9286e+001 

Uncertainty in wind speed and power 1.0116e+004 8.6805e+001 

Uncertainty 9.8776e+003 7.4779+001 

 

Load Level = 1.5 (p.u.) Annual Energy Loss EENS [MWh] 

 Mean Standard deviation 

Base Case 2.6769e+004 - 

Uncertainty in load demand 1.4636e+005 1.5323e+004 

Uncertainty in ambient temperature 4.8056e+004 2.2806e+003 

Uncertainty in wind speed and power 6.5395e+004 1.9002e+002 

Uncertainty 6.6566e+004 6.7159e+002 

Table III. Mean and standard deviation of the EENS for the deterministic base case and the four uncertain scenarios for the three 

load levels in Table II.  
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Table III shows that the increase of the load level produces an increase in the system annual energy losses, 

both for the deterministic base case scenario and for scenarios that include uncertainties. When the load level 

is less than or equal to 1.3 p.u., the system experiences no power loss in the deterministic base case scenario. 

In particular, when the system assumes the lowest load level (1.3 p.u.), the major contribution to the annual 

power losses is determined by uncertainties in wind speed and wind power production. For larger load level 

values, i.e. 1.4 p.u and 1.5 p.u., uncertainties in the load demand cause the largest losses. Since stochastic 

simulations are considered over 100 years, it can be expected that the size of the energy losses that are 

registered in each year may vary consistently. Nonetheless, in all the scenarios, the standard deviation value 

of the EENS is one to two orders of magnitude smaller than its mean value. It is worth noting that scenario 

IV, that combines the effects of all the uncertainties, experiences an average EENS smaller than the average 

EENS of scenarios in which the different uncertainties are propagated separately. This is an effect of 

compensation of the uncertainties that lowers the average energy not served to the customers when 

considering the simultaneous impact of all the different sources of uncertainty. 

In the following analysis, attention is focused on the largest load level value (1.5 p.u) because it is a good 

paradigm for systems with a high degree of utilization which operate in stress conditions, and represents the 

worst-case scenario in terms of energy not supplied. Figure 9 shows the impact that all the identified 

uncertainties have on the power grid when load level is 1.5 p.u., quantified in terms of power loss. These 

estimates are average values based on 100 samples, i.e.100 years of system operations were simulated for 

each scenario that includes uncertainties. The power loss is quantified by the Expected Demand Not 

Supplied, i.e. the average EDNS index for each hour of the year. The EDNS index is an adequacy index for 

the transmission level of the electric infrastructure [2]. It quantifies the power not supplied to the network 

and it is a suitable index when dealing with events. From Figure 9, it can be noticed that power losses occur 

in a burst fashion during the year, with two loss peaks occurring at the very beginning of the year and in 

summer; the highest peak load occurs in the week prior to the end of the year. In order to understand this 

behavior, the EDNS is compared to the hourly peak load curve (inset in Figure 9), which represents the 

seasonal load profile of system users. In the simulation, it is assumed that the first hours in the hourly peak 

load curve correspond to the first hours of the calendar year. It can be noticed that the highest values in 

EDNS corresponds to the periods in the year where power requests reach the peak value. 
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Figure 9. Representation of the hourly average loss of power due to uncertainties for the load level = 1.5. The average is considered 

over a period of 100 years. The inset represents the hourly peak load curve: the highest losses correspond to the highest demand from 

the consumers. 

 

In order to understand the causes for the demand not supplied in Figure 9 and to devise operational safety 

margins which could prevent the occurrences of these losses, the global system parameter that guides the 

flow pattern in the system, i.e., the total load requested at all the buses, is investigated. In Figure 10, the 

EDNS index is expressed as function of the total load requested at all the buses. It shows that there are small 

power losses, on average, until the demanded load reaches a threshold value of 3600 MW. Above the 

threshold value, the system loses power proportionally to the increasing load demand (Figure 10). 
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Figure 10. Average power loss as a function of the overall demanded load at all the buses. Each point is an average value evaluated 

in 100 simulated years 

The EDNS index captures the average power losses. It may be expected that there will be years with very 

few losses and years where losses are significant; rare events, such as cascades, may pass unnoticed in an 

average analysis. Therefore, the contribution to power losses of every hour load of each year of simulation is 

considered (Fig. 11). The obtained Demand Not Supplied reveals that the majority of losses take place when 

hour loads values are around or exceed the threshold value of 3600 MW (bottom right of Figure 11). 

 

Figure 11. Hourly power loss as a function of the overall demanded load at all the buses 

 

Nevertheless, the overall load requests alone cannot explain the magnitude of the demand not served. Indeed, 

some load demands may cause huge power losses as can be seen in Figure 11 (points at the top left and 

right), some other parameter must also influence the magnitude of the losses. Power loss values and power 

request values seem to subdivide the plane into the four quadrants detailed in Table IV. 

 DNS [MW] Hour Load [MW] 

Quadrant 1 > 600 < 3200 

Quadrant 2 < 600 < 3200 

Quadrant 3 < 800 > 3200 

Quadrant 4 > 800 > 3200 

 

Table IV. Subdivision of the Cartesian plane in Figure 11 into 4 quadrants 
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Quadrants 1 and 2 encompass the same hour load range, but different power loss range and so do quadrants 3 

and 4. Quadrants 1 and 4 register the highest losses. 

In order to understand which uncertain parameters affect the power losses in the transmission network, the 

cumulative distribution functions for ambient temperature, wind speed and wind power output in the four 

quadrants are represented in Figures 12-14. 

 

Figure 12. Cdf of ambient temperature distributions in the 4 quadrants. The black points represent the 95th percentile of each cdf. 

 

In Figure 12, the 95
th
 percentile of each cdf is represented by a black point. Three of the four cumulative 

distributions of ambient temperature concentrate at low temperatures values, between 8°C and 11°C. These 

cdfs correspond to quadrants 1, 2 and 4 (Table IV): the large power losses (quadrants 1 and 4) occur during 

winter season, when also small losses occur (quadrant 2). It seems reasonable to exclude that hot ambient 

temperature contributes to the overheating of the transmission lines. Indeed, the cdf of quadrant 3 includes 

the majority of small losses which occur throughout the year: the temperature values for the cdf range from 

typically winter ambient temperature values, next to 0°C, to summer hot ambient temperature values above 

35°C. 
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Figure 13. Cdf of wind speed distributions in the four quadrants. The black points represent the 95th percentile of each cdf. 

Figure 13 represents the cumulative wind speed distributions. The 95
th
 percentile values concentrate in a very 

small range of wind speed values, between 11.7 ms
-1

 and 11.9 ms
-1

. The uncertainty associated to the cooling 

of the overhead line does not contribute to the power losses. 

 

Figure 14. Cdf of wind power generation distributions in the four quadrants. The black points represent the 95th percentile of each 

cdf. 
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Figure 14 shows the cumulative distribution for the wind power generation. The cumulative distributions 

related to wind speed and wind power distribution show similar trends in the four quadrants, although the 

95
th
 percentile value corresponding to quadrant 4 is larger if compared to the other three 95

th
 percentiles. 

From Figures 12-14, it can be concluded that no single parameter affects the magnitude of the power losses. 

Therefore, the combined effects of multiple system parameters on the power losses are investigated.  

Cascades in the grid are triggered by overloaded lines: once a transmission line reaches the limit temperature 

(Tcl), the line is disconnected from the grid for a fixed amount of time during which its temperature drops 

under the Tcl value. The transmission lines that disconnect with larger frequency are line 25, line 26 and line 

28; as can be seen in Figure 7, these lines connect the upper four buses, i.e. bus 17, 18, 21, 22, with the rest 

of the network.  

If the unavailability of a transmission line is defined as the percentage of time during the year that the line is 

disconnected from the system, it can be seen from Table V that, on average, line disconnections last longer 

when load levels are higher. 

 
Unavailability 

 (Load level = 1.3) 

Unavailability  

(Load level = 1.4) 

Unavailability 

 (Load level =1.5) 

Line 25 0.0795 0.2109 0.3452 

Line 26 0.2557 0.4188 0.5664 

Line 28 0.0790 0.1969 0.3262 

 

Table V. Unavailability of the disconnected lines for the different load levels of demand. 

The disconnection frequency analysis reveals that the modified system with load level = 1.5 p.u. is highly 

stressed and it experiences a random sequence of disconnections of lines 25, 26, 27. When they are 

simultaneously disconnected, the system divides in two parts: an upper island including buses 17, 18, 21, 23 

and a lower island composed by the remaining 20 buses (Fig. 7). 

In the first island, composed by the upper part of the network, there are two generating buses, i.e. bus 21 and 

bus 22, that supply the only load bus left, i.e. bus 18: no losses or further disconnections are registered and 

the generation dispatch guarantees a balanced power supply in the island. 

On the other hand, the lower part of the network has many load buses and a generating system that is not fit 

to supply enough power in response to the variable load demand. When requested loads in the sub-system 

reach large values, the demand cannot always be supplied by the generating units and some power demand 

cannot be served. 

In 100 years of simulation, the behavior of the system has been analyzed and attention has been focused on 

the same hours of the years when cascades occur only in year 30 and year 98, and on the same hours of years 

when no contingencies take place; years 2, 14, 31, 42, 54 were taken as examples. 
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The starting event for the cascades is the disconnection of line 18 always occurring at hour 8443 of the year; 

then, lines 20, 21, and 29 disconnect in sequence, subdividing the lower part of the MRTS system in two 

smaller islands where other disconnections occur propagating the cascade all through the lower sub-system. 

Figure 15 shows that load demand in the hour during which the cascade occur, i.e. hour 8443, is large in year 

30 and year 98, when the cascade occurs, but the power request is large also for the same hour in year 14 and 

year 42 when no cascade takes place. 

 

Figure 15 Cumulative distribution function of load demand at hour 8443. 

Yet, from Figure 16, it can be noticed that in correspondence of  years 14 and 42, wind power generation at 

buses 1 and 3 is larger than it is in years 30 and 98, when cascades occur. 
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Figure 16. Cumulative distribution function for wind power output at hour 8443. 

 

By the same token, years 2, 31 and 54 record a lower wind generation output than years 30 and 98 (Figure 

16) but no contingencies occur because the corresponding load demand is small (Figure 15).  

Therefore, uncertainties in the wind conversion system may prevent the transmission in the power grid 

causing cascades. The DNS values in quadrants 2 and 3 are due to the lack of adequacy of the lower island, 

i.e. the generation cannot match the demanded power in hours of large power requests. Conversely, the DNS 

values in quadrants 1 and 4 are due to the incapability of the generated power of reaching the load buses, due 

to a cascade of line disconnections that isolates almost completely every load bus in the lower part of the 

network. The cascade of line disconnections is triggered by spatial unbalance between power requests and 

power generation, namely the wind power generation at buses 1 and 3 is not capable of meeting the local 

power request and power has to flow from the upper right part of the lower island causing line disconnection. 

The interplay between wind power generation and overall power request in the lower island constitutes a 

probabilistic safety margin which has to be monitored in order to avoid line disconnection cascade 

propagation and to limit the demand not supplied by the customers. 

 

5. Conclusions 
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The issue of the uncertainty in composite generation and transmission networks incorporating large-scale 

wind energy facilities and developed a simulation framework of analysis has been addressed. Wind speed 

variability, wind power variability, ambient temperature variability and load variability have been 

considered. As test-bed for the exemplification of the framework, a transmission-deficient setting has been 

created in the MRTS by increasing the system load level and the generating capacity, to represent general 

conditions that exist in actual power systems. The impact that the identified uncertainties have on the 

reliability of the electric infrastructure has been quantitatively analyzed: variability in load and in wind 

power generation have the biggest impact on the system. 

The following are some of the main findings of this application: 

 The combined, simultaneous effect of all the different sources of uncertainty has a smaller impact on 

system safety in terms of expected energy not supplied, than individual uncertainty sources: this is 

an effect of compensation of the uncertainties, which lowers the average energy not served to the 

customers.  

 The increase in the transmission system utilization can lead to cascade events if wind power output 

cannot sustain the load demand. Indeed, large power requests in the system cause the disconnections 

of the lines that link the upper part of the network, in which massive generating units are 

concentrated, and the lower part of the network, thus preventing the power transfer to the area with 

the highest concentration of buses. When the system tears apart, power request must be supplied by 

local power generation. In this situation, wind power generation may not be capable of satisfying the 

local power request causing cascade events of power line disconnections. 

 More generally, the interaction between wind power generation and the overall power request serves 

as paradigm for the assessment of the safety margins of the system, because no single parameter 

affects the magnitude of the power losses. 
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