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An integrated framework for risk response planning under 

resource constraints in large engineering projects 

 

Abstract 

Engineering project managers often face a challenge to allocate tight resources for 

managing interdependent risks. In this paper a quantitative framework of analysis for 

supporting decision-making in project risk response planning is developed and studied. The 

design structure matrix representation is used to capture risk interactions and build a risk 

propagation model for predicting the global mitigation effects of risk response actions. For 

exemplification, a genetic algorithm is used as tool for choosing response actions and 

allocating budget reserves. An application to a real transportation construction project is also 

presented. Comparison with a Sequential Forward Selection greedy algorithm shows the 

superiority of the genetic algorithm search for optimal solutions, and its flexibility for 

balancing mitigation effects and required budget.  

 

Keywords: risk response planning, project management, complexity, design structure matrix, 

resource constraints, genetic algorithm 

 

Managerial relevance statement 

The aim of this paper is to provide managers of engineering projects with an integrated 

five-step framework to guide the risk response planning process, which is to determine and 

implement preventive and corrective actions to avoid, reduce or transfer project risks. A 
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series of quantitative methods have also been presented for practical use, e.g., for modeling 

risks and risk interactions, predicting global mitigation effects of response actions, and 

optimizing the allocation of constrained budget to candidate response actions. Thus, the 

framework supports project managers‟ decision-making process in coping with the 

complexity of project risks and resource constraints. An example of application to a real 

industrial project of implementing a tramway system in a medium-sized city in Europe is also 

provided. The proposed approach is expected applicable to a wide set of engineering projects 

for risk management. 

 

1. Introduction 

Engineering projects require the timely accomplishment of a number of tasks, which 

are exposed to risks of delay, erroneous or low quality completion, incompletion, etc. The 

Project Management Institute (PMI) defines a project as “a temporary endeavor undertaken to 

create a unique product, service or result”, and a risk as “an uncertain event or condition 

whose occurrence affects at least one of the project objectives, e.g., scope, schedule, cost, and 

quality” [1]. The classical Project Risk Management (PRM) process includes risk 

identification, risk analysis, risk response planning, risk monitoring & control and lessons 

learned. In particular, project risk response planning aims at identifying actions that can 

reduce the threats to the realization of the project objectives at minimum cost. It includes the 

identification and assignment of one or more persons (the “risk response owner”) to take 

responsibility for each agreed-to and funded risk response action. Risks are addressed by their 

priorities in terms of their impact on the project. Resources are then assigned to the budget 

and risk response actions are scheduled in the project plan. 
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Risks are generally identified using more or less structured methods involving a 

combination of experience, expertise and information search [2], with classical methods, for 

example, based on analogy [3], heuristics [4] or analysis [5]. They are generally assessed 

with respect to their probability and impact [1, 6, 7]. For risk prioritization, a very common 

tool in risk management practice for projects and other contexts is the „risk matrix‟ or 

„probability- impact grid‟ (PIG) or „probability-impact graph‟ [8-10]. Top-ranked critical risks 

are then subject to budget allocation and action planning for prevention or mitigation. The 

other risks identified are not treated, because the risk is regarded acceptable (in terms of both 

probability and impact) or the action is too expensive and there is no sufficient budget 

remaining.  

However, engineering projects are growing in complexity, of both structure and context 

due to the involvement of numerous, diverse and strongly interrelated elements [11-13]. This 

situation exposes projects to a number of diverse and interdependent risks, which implies that 

identifying and analyzing their causes and effects is an important aspect. For instance, Failure 

Modes and Effects Analysis (FMEA) consists in a qualitative analysis of dysfunction modes 

and their effects [14]. Initially developed for product-related risks, it has been expanded to 

process-related and project-related risks, where the focus changes, but the principle is the 

same, consisting in identifying direct causes and effects of a potential failure. Fault Tree and 

Cause Tree Analyses determine the conditions which lead to an event, and link them through 

logical connectors in a tree-structure which clearly displays causes and effects of the 

particular risk analyzed [15, 16]. Some methods have been considered for analyzing the 

interrelationships among risks, such as Bayesian Belief Networks [17, 18], System Dynamics 

[19-22], and Influence Diagrams [23].  
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In addition, risk analysis methods and risk response planning methods do not share the 

same objectives. Risk analysis methods can help to identify actions (for instance, preventive 

actions by inferring the causes of a risk from a bow-tie diagram), but they do not indicate 

how to decide on which actions to undertake or not. Within the risk decision-making process, 

these methods perform the step of searching alternatives, not the step of sorting / ranking the 

alternatives. In the end, risk responses must be appropriate, cost effective, and realistic within 

the project context. Selecting the best risk response from several options is often required. To 

measure the effectiveness of an action or of a portfolio of actions is not easy, since it affects 

an uncertain event with the additional uncertainty inherent to the planning and execution of 

the action itself. 

In our work here presented, the complexity underlying the web of interconnections 

among project risks is modeled and represented in terms of a risk network [24]. Such network 

representation captures the individual risks and the interactions which may trigger global 

phenomena, like chain reactions or loops. For instance, a single source risk such as project 

schedule delay, may impact on the risk of cost overrun, which influences a technical risk, and 

propagates looping back to amplify the original delay. Then, the effects of response actions 

designed for mitigating the exposure to one or several risks may impact other parts of the 

network, so that the overall effects of risk response actions may be very different from the 

expectation of project managers. The challenge of risk response planning is rendered more 

difficult by the limitation of resource. As constraints become tighter, balancing risks is more 

critical and less intuitive. For these situations, reliable analytical methods can help project 

managers plan risk response actions that optimize resource allocation [25-27].  

In this paper, a novel integrated five-step framework is introduced to guide the risk 

response planning process, which is to determine and implement preventive and corrective 
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actions to avoid, reduce or transfer project risks. A matrix-based method is used to facilitate 

identifying and assessing risk interactions, and build the representative project risk network. 

This enables the risk propagation behavior in the network to be analyzed. It is then possible 

to anticipate the global effects of response actions identified by the project management team. 

Thus, the framework supports project managers‟ decision-making process in coping with the 

complexity of project risks and resource constraints. An example of application to a real 

industrial engineering project, which consists in implementing a tramway system in a 

medium-sized city in Europe, is considered.  

For this case study, a genetic algorithm is developed to optimize the plan of response 

actions under given budget constraints. Genetic algorithm (GA) is a probabilistic search 

method introduced by Holland in 1970s [28]. It is based on Darwin‟s principle of “survival of 

the fittest”, and has rapidly become a popular evolutionary technique for solving complex 

combinatorial optimization problems, in a wide range of applications [29]. For example, they 

have been extensively used for the optimization of system reliability and maintenance [30-33], 

index fund portfolio management [34, 35], project scheduling [36-38] and machine 

scheduling problems [39, 40]. The GA results are compared with those obtained by using a 

greedy algorithm, which is based on Sequential Forward Selection (SFS) [41], where the 

search for the optimal solution proceeds by making the locally optimal choices at each step, 

with the hope of finding the global optimum.  

The remainder of the paper is organized as follows. Section 2 introduces the integrated 

framework for risk response planning under resource constraints. Section 3 describes the 

process of building the project risk network and a risk propagation model. In Section 4, the 

remaining steps of the framework and the developed algorithms for optimizing the risk 
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response plan are presented in details. Section 5 illustrates the application of the proposed 

approach to a real industrial project. Finally, we conclude the paper in Section 6. 

 

2. An integrated framework for risk response planning 

In this Section, a five-step framework for project risk response planning is presented 

(Fig.1):  

1) Building project risk network;  

2) Defining objective function;  

3) Identifying budget constraints;  

4) Identifying potential response actions;  

5) Optimizing risk response plan.  

Building the project risk network allows us to follow risk propagation in the project. 

Potential risk response actions can then be proposed, given the risk management objectives 

and budget constraints. The effects of these response actions can be traced and anticipated in 

the risk network model. Embedding these analyses within an optimization algorithm (like the 

SFS greedy algorithm or the genetic algorithm used in this paper) allows searching for an 

optimal project risk response plan. 

The details of each step of the framework are discussed in the following Sections 3 

(step 1, which consists of a few sub-steps) and 4 (steps 2 to 5). In practice, the 

implementation of the proposed framework requires the involvement of the project 

management team in each step, to provide the necessary project knowledge and expertise and 

to take decisions. 
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Fig.1. Framework for risk response planning 

 

3. Building project risk network (step 1) 

The project risk list containing previously identified potential risks is provided by the 

project management team (step 1.1). It serves as an input for studying risk interactions in 

order to build the project risk network. 
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3.1.  Identification of risk interactions (step 1.2) 

The Design Structure Matrix (DSM) method introduced in [42] has proven to be a 

practical tool for representing and analyzing relations and dependencies among system 

components [43, 44]. For example, it has been extensively used in process modeling and 

project scheduling problem for design and product development projects, such as in [45-49]. 

In this work, we use the DSM method to identify risk interactions, for determining the cause-

effect relationships among project risks. It provides a simple and concise way to represent the 

inter-relationships in a complex system. This helps the project manager and the experts 

focusing on one risk and its dependency with other risks (causes in row and effects in column) 

during the identification and also the subsequent assessment process, while not getting 

confused in the complex interrelationships among risks. In addition, the possible existing 

DSMs representing the interrelations among project objects, such as tasks, actors and product 

components, can be used to guide the identification of the interactions among the risks 

associated to these objects. For example, an object-object relationship (whether functional, 

structural or physical) means that risks, which may be related to product function, quality, 

delay or cost, can be linked, since a problem on one object may have an influence on another. 

For instance, the project schedule gives information about task-task sequence relationships; 

this enables identifying relationships among risks of delay on these tasks.   

Moreover, a number of DSM tools and algorithms have been developed to facilitate 

systemic information acquisition and matrix-based analysis, e.g., in [50, 51]. Although 

applying these DSM tools/algorithms is not in the scope of this paper, using the DSM 

methods may provide possible solutions (e.g., in risk grouping and risk owner assignment) 

for other managerial purposes. 
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Risk interaction consists of a precedence relationship between two linked risks. We can 

represent this by the Risk Structure Matrix (RSM), which is a square matrix whose generic 

element: 

1 if there is an interaction between risks  and 

0 otherwise
ij i j

ij

RSM R R

RSM

     (1) 

Fig. 2 shows an example of a risk structure matrix capturing the relationships in the risk 

network. 

 

Fig. 2. Risk network and Risk Structure Matrix (adapted from [24]) 

In the process of building the risk network structure, a sanity check is performed. 

Suppose we know that Rj has Ri as a cause: if Ri does not have Rj as a consequence, then there 

is a mismatch. All identified mismatches are studied and solved, like in [52]. Multiple experts 

are engaged for this task, after being made aware of the possible confusion between direct 

and indirect interactions among risks, and being asked to concentrate on direct dependencies. 

For solving mismatches, the two actors involved at each end of the edge are asked to confirm 

or to deny their initial proposal by discussing together. Generally, people are more easily 

aware of potential causes that may affect them, rather than potential effects of their own 
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failures. This is why these discussions are mandatory and useful, both for creating a reliable 

input matrix and for creating links among people. 

3.2.  Assessment of risk interactions (step 1.3) 

In the assessment task, we not only evaluate risk characteristics such as impact and 

probability, but also assess the strength of risk interactions (interpreted as transition 

probability between risks). Risk impact may be assessed on a qualitative scale (ordinal or 

cardinal scale with 5 or 10 levels for instance) or on a quantitative scale (financial loss for 

instance). Risk impact is assessed by classical methods, based upon a mix of previous 

experience and expert judgment [1, 53].  

For the probability assessment, we make a distinction between the probability of a risk 

to be triggered by another risk inside the network, and its probability caused by external 

events or risks which are outside the system. Spontaneous probability can be interpreted as 

the likelihood of a risk which is not the effect from other activated risks inside the system. On 

the other hand, transition probability measures the likelihood of direct cause-effect relation 

between two risks. For the example in Fig. 2, Risk 5 occurs only by spontaneous probability; 

and Risk 6 may arise from both its spontaneous probability and the transition probability 

between Risk 5 and Risk 6.  

Qualitative scales are often used to express risk probability with 5 to 10 levels (e.g., 

very rare, rare, unlikely, li kely, etc.), which typically correspond to non-linear probability 

values (e.g., 10-4, 10-3, 10-2, 10-1, etc.) [9, 54].  

3.3.  A risk propagation model (step 1.4) 

Some DSM-based work has been done to model the propagation or transmission 

behavior in the design process. For example, Clarkson and Hamilton proposed a 
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“signposting” model to identify the next design tasks based on the confidence in key design 

parameters [55]; Smith and Eppinger introduced a work transformation matrix based on the 

DSM method to model the engineering design iteration process [49]. In the domain of project 

risk management, a matrix-based risk propagation model has been presented in [56]. This risk 

network model can be used to predict the global effects of response actions on the entire risk 

network.  

Suppose there are N identified project risks in the network. Let vector s represent their 

spontaneous probabilities, i.e. the initial vector of risk probabilities before propagation in the 

network. Let the N-order square matrix T denote the matrix of transition probabilities. We 

make the assumption that a risk may occur more than one time during the project (as 

witnessed in practical situations). Risk probability is thus cumulative if arising during 

propagation from different causes or several times from the same cause. After m steps of 

propagation, the probability vector of risks is thus equal to mT s  and the cumulative risk 

probability vector P is given by the following equation:  

1 1 0

( ) ( )
m m m

i i i

i i i

P s T s I T s T s
  

                (2) 

where I is the N-order identity matrix. In the limit of infinite propagation steps in the project 

development, 

0

lim( )
m

i

m
i

P T s 
           (3) 

Multiplying both sides of Eq. (3) by (I - T),  

1

0

( ) ( ) ( ) ( )
m

i m

i

I T P I T T s I T s


               (4) 
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It is not guaranteed that the infinite product of the transition matrix T would converge 

to 0, as shown in the following equation: 

lim 0m

m
T            (5) 

Sufficient conditions for the convergence of an infinite product of matrices have been given, 

e.g., in [57-59]. Since in our case T is the risk transition matrix, which is usually sparse and 

composed of transition probability values less than 1, convergence is usually satisfied. Thus, 

the cumulative risk probability vector can be re-evaluated as: 

1( )P I T s             (6) 

Response actions performed on the risk network translate in changes in the values of 

the parameters of the model, e.g., the spontaneous probabilities in vector s, the transition 

probabilities in matrix T. The global effects of these actions in terms of the new values of the 

risk probabilities in the vector P after actions implementation can then be obtained by 

running the propagation model. 

 

4. Formulating and solving the optimization problem 

4.1. Defining objective function (step 2) 

Generally, risk response actions with allocated budget are conducted to achieve two 

different goals: the local mitigation of particular risks and the global risk exposure mitigation. 

In this paper, we only consider minimizing the overall risk exposure or expected financial 

loss in global sense. In this regard, the objective function OF can be defined as:  

1

N

i i
i

OF P G


            (7) 
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where Pi and Gi indicate the probability and impact (G for gravity scale or financial value) of 

Risk i.  

4.2. Identifying budget constraints (step 3) 

Given the project scope, a budget for project risk management, called BRM, is initially 

established by the project manager. This budget is dependent on the total budget of the 

project, the evaluated overall level of risk exposure, and also the risk attitudes of the 

stakeholders. 

The budget BRM is normally comprised of three parts. Besides the expense for 

performing risk analysis BRA (not significant compared with the other parts) and the reserve 

for risk contingency BRC, the remaining amount BRR is for the execution of the risk response 

plan: 

RR RM RA RCB B B B            (8) 

It should be noted that based on the results of the project risk analysis and of the 

evaluation of the costs of actions in Step 4 (Fig. 1), the budget for performing the risk 

response plan BRR can be updated according to the new knowledge acquired with regard to 

the risk management tasks. 

4.3. Identifying potential response actions (step 4) 

The identified project risks can be analyzed and prioritized using classical methods or a 

simulation model based on the risk network [24] (step 4.1). However, it is not the main 

concern of this paper. Aiming at achieving the objectives defined for risk management, for 

example, mitigating the global risk exposure as mathematically captured by the OF in Eq. (7), 

potential response actions can be identified based on the project risk analysis results (step 

4.2). The response action list may include different types of risk response actions on risks and 
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their interactions, in terms of risk sharing, risk avoidance, risk mitigation and risk acceptance, 

etc. These actions are, for instance, adopting less complex processes, conducting more tests, 

enhancing internal communication, choosing a more stable supplier, etc. From the point of 

view of the framework of modeling and analysis, conducting the response actions has the 

effects of changing the values of some of the parameters of the risk network model. For 

example, a classical response action on a particular risk reduces its spontaneous probability or 

impact; a complementary preventive action is to cut off the input links or reduce their 

transition probabilities; blocking the output links can be regarded as the action of confining 

the further propagation of such risk to subsequent risks. 

Risk response actions always consume time, money and other resources. In order to 

perform the optimization, the cost of each identified action is evaluated by the project 

management team (step 4.3). Actions should be worthwhile, i.e., more valuable than the 

expected value of the risk impact. Before the next step of optimization, the response action 

list shall be examined by the project manager to exclude the unfeasible actions. 

4.4. Optimizing risk response plan (step 5) 

For each risk response action identified in Step 4, the project manager can decide 

whether to implement it or not. Given a list of n candidate actions, there are 2n-1 

combinations for the risk response plan aiming at mitigating the overall risk exposure (the 

global objective function). An exhaustive test of all the combinations is impractical. 

Considering the resource constraints, heuristic algorithms can be exploited to optimize the 

portfolio of response actions: here, we provide two examples of such algorithms which are 

then applied on a real case study in Section 5. 
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 4.4.1. A SFS greedy algorithm 

A greedy algorithm based on Sequential Forward Selection is developed for the 

optimization of a risk response plan under constraints. At each step the action with the best 

test performance is chosen until the budget is completely allocated. The risk propagation 

model presented in Section 3.3 can be used to evaluate the mitigation performance of actions 

in terms of the OF in Eq. (7).  

The SFS greedy algorithm is sketched as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Usually such greedy algorithm for optimization under constraints can achieve only a 

locally optimal solution because it makes commitments to certain choices too early, which 

Identify the budget constraint BRR; 

Prepare the action list L; 

Create the portfolio of actionsA ; 

WHILE L   DO 

BEGIN 

FOR each iA L  

IF the cost of Ai exceeds the remaining budget BRR: ( ( )i RRC A B ) 

Remove Ai from L : ( \ iL L A ); 

ELSE  

Test the global mitigation effects of iA A  in the risk network model;  

END 

END 

 Choose the best candidate Ai
*; 

 Add Ai
* into A : ( *

iA A A  ); 

 Remove Ai
* from L : ( *\ iL L A ); 

 Allocate the corresponding amount of budget ( *( )RR RR iB B C A  ); 

END 

RETURN A as the optimal portfolio of actions. 
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prevent it from finding the best overall solution later. For example, choosing at an early stage 

an action with positive effects but expensive reduces the budget remaining for future actions, 

with the risk of sacrificing opportunities. 

 4.4.2.  A genetic algorithm 

In our work, a genetic algorithm is devised for the optimization of a project risk 

response plan. The aim is to find an optimal portfolio of actions, whose performance is 

measured by an objective function (fitness) which integrates the budget constraint. The 

synergic effects (positive or negative) of the actions in the portfolio are taken into account, 

because the entire portfolio is tested on the risk network model, while not just the single 

actions separately.  

The basic genetic algorithm-based optimization process is described as follows:  

1) Basic Scheme 

 

 

 

 

 

 

 

1) Representation 

Generation GEN = 1; 

Create initial population POP of individuals Ind (each one is a portfolio of actions); 

WHILE GEN < GEN* AND (Not Terminate-Condition) DO 

BEGIN 

GEN = GEN + 1; 

Apply each portfolio of actions (Ind POP ) to the risk network model and compute the 
fitness values for each individual; 

Select parents PAs from POP; 

Produce children CHs from PAs by Crossover; 

Mutation operation on childrenInd CHs ; 

POP POP CHs  ;  

Reduce POP by fitness ranking; 

END 
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A risk response plan of n actions Ai (i = 1, …, n) is suitable to be encoded as a string of 

bits 1 2 1={ , ,... ,... , }i n nx x x x x x  forming a chromosome (individual) in the GA. Each bit 

{0,1}ix  indicates whether the corresponding action Ai is chosen in the portfolio or not.  

2) Fitness 

We integrate the budget constraint into the objective function (fitness) of the 

optimization problem, aiming at minimizing the value: 

1

( )+(1 )( / )
N

i i RR
i

Fitness f P G C B   


          (9) 

Here C is the total cost of the action plan; iPand iG  are the probability and impact of 

Risk i after the implementation of the response plan. The penalty value 

( / )RRC B  significantly increases if the allocated costs C exceed RRB  ( 0 1  ), e.g., 

90% of the budget constraint. Thus, breaking constraints is penalized by the decrease of the 

fitness. The parameter 1   reflects the project manager‟s degree of aversion to budget 

overruns. The project manager can adjust the parameter [0,1]  to balance the trade-off 

between budget constraints and mitigation effects. 

The details of the GA process are introduced in the Appendix. 

 

5. Application to a real industrial project 

The framework proposed has been implemented to a real engineering project aimed at 

building a tramway infrastructure and associated systems. The project includes the 

construction and implementation of tramway, equipment, and civil work.  
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5.1. Build the project risk network (step 1) 

An original project risk list has been provided by the project manager. It contains 56 

identified risks at the main level, with their names, domains and qualitatively evaluated 

characteristics, as shown in Table 1. The project risks identified with negative effects belong 

to different categories such as Technical, Contractual, Financial, 

Client/Partner/Subcontractor, and Project management on construction site. 

Using the DSM-based method introduced in Section 3.1, the interactions among the 56 

risks have been identified with the help of the project manager and the team of experts, 

composed of the 11 risk owners. For each risk, experts were asked to provide information 

about the potential causes and effects (to explore the row and the column corresponding to 

the considered risk in the risk structure matrix). The aggregation of local cause-effect 

relationship identifications enables to build the global risk network.  

As anticipated in Section 3.2, the assessment of the identified risk interactions was then 

performed on a 10-level Likert scale, due to the high expertise of interviewees. This requires 

the participation of several experts involved in the project, since it necessitates a wide 

overview of the project elements and stakes. In this case study, four risk owners, including 

the project manager, were mostly contributing to the data gathering. The other owners and an 

external risk manager were only solicited to give some specific and local information, and to 

validate existing data. In the end, the binary risk structure matrix can be transformed into the 

matrix of the transition probabilities between risks.  

 

 



- 19 - 

 

Table 1. Tramway project risk list and related characteristics 
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5.2. Define the mitigation objective and budget constraint (steps 2 and 3) 

In this prototype application, the aim is to mitigate the global risk exposure, and for this, 

the objective function in Eq. (7) is used as the function for which minimization is sought. The 

impact of risks is assessed in terms of qualitative severity scale (from 1 to 10) for this case study, 

as shown in Table 1.  

We suppose in this case study that the budget reserve for implementing the risk response 

plan is BRR = 300 k€. 

5.3. Build the action list (step 4) 

With the help of the project management team, a list of potential risk response actions is 

proposed, as reported in Table 2. The 21 proposed actions are based on a refined analysis, taking 

into account interactions between risks and eliminating some unfeasible ones. The actions are 

intended to mitigate the risk nodes (reduce risk spontaneous probability or risk impact) or the 

risk interaction edges (reduce transition probability between risks). The local effects of the 

response actions are estimated (Table 2). The global effects of the actions can be predicted using 

the risk propagation model described in Section 3.3. The cost for executing these actions is also 

estimated by the project management team. 
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Table 2. List of risk response actions 
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5.4.  Optimize the portfolio of actions (step 5) 

Optimization results obtained using both the SFS greedy algorithm and the genetic 

algorithm are illustrated and compared in this Section. 

 5.4.1.  Greedy algorithm results 

The SFS greedy algorithm devised in Section 4.4.1 has been used to obtain a portfolio of 

actions, given the budget constraint BRR = 300 k€. The results are reported in Table 3, following 

the successive iterations of optimal action addition to the portfolio.  

The optimal portfolio A* contains 11 actions: A* = [A1, A2, A3, A4, A5, A6, A8, A9, A12, 

A13, A16]. The total cost is 295 k€ and the value of the objective function, namely the overall 

risk exposure, has been reduced from 63.128 to 43.599 thanks to the identified actions. 
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Table 3. Optimization results using the SFS greedy algorithm 

Iteration 
Selected 

Action ID 

Cost 

(k€) 

Objective 
Function 

Value 

Added 
Effects 

Current Portfolio 
Allocated 

Budget (k€) 

Initial 

Status 
- 0 63.128 0.000 [Null] 0 

1 A16 40 59.572 -3.556 [A16] 40 

2 A5 20 56.521 -3.051 [A16,A5] 60 

3 A9 5 54.367 -2.154 [A16,A5,A9] 65 

4 A2 10 52.558 -1.808 [A16,A5,A9,A2] 75 

5 A4 20 50.777 -1.781 [A16,A5,A9,A2,A4] 95 

6 A6 10 49.222 -1.555 [A16,A5,A9,A2,A4,A6] 105 

7 A1 35 47.910 -1.313 
[A16,A5,A9,A2,A4,A6,

A1] 
140 

8 A8 20 46.641 -1.269 
[A16,A5,A9,A2,A4,A6,

A1,A8] 
160 

9 A13 60 45.434 -1.208 
[A16,A5,A9,A2,A4,A6,

A1,A8,A13] 
220 

10 A12 20 44.424 -1.009 
[A16,A5,A9,A2,A4,A6,

A1,A8,A13,A12] 
240 

11 A3 55 43.599 -0.825 
[A16,A5,A9,A2,A4,A6,
A1,A8,A13,A12,A3] 

295 

 

 5.4.2.  Genetic algorithm results 

In the genetic algorithm, the population size is set to M = 100 individuals. The Roulette 

Wheel Method is used for selecting the parents for the next generation. The crossover fraction is 

set to 0.8, and the mutation rate is set to 0.01 by testing. The termination condition is set as either 
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1) the maximum number of generations GEN* = 100; or 2) there is no improvement in the best 

fitness value for 20 successive generations. 

For the parameters of the fitness function f of Eq. (9), we set =0.9 , =0.95 and =20 by 

experience and testing. We have run the GA for twenty times with different random seeds and 

selected the best solution among them. In that run performed, the algorithm terminates at the 48th 

generation and the best individual is the chromosome x* = [1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 

1, 0, 0, 0, 0, 1], corresponding to the decoded optimal portfolio A*= [A1, A2, A4, A5, A6, A7, 

A8, A9, A11, A12, A13, A16, A21]. The best fitness value is equal to 39.052. The total cost of 

implementing action plan A* is 295 k€. The objective function of global risk exposure in Eq. (7) 

is reduced to the value of 43.169. 

Comparison with the results of the SFS greedy algorithm (Table 4) shows that in the 

optimal solution obtained by the genetic algorithm, the action A3 has been replaced by the 

combination of A7, A11 and A21. In this case, the required budget for the portfolio is the same, 

but the optimal risk response plan has better effects on the objective of mitigating the global risk 

exposure.  

Table 4. Comparison of the results obtained by the greedy and genetic algorithms 

Method Optimal Portfolio 
Number of 

Actions 

Required 

Budget (k€) 

Objective 

Function Value 

SFS Greedy 
Algorithm 

[A1, A2, A3, A4, A5, A6, A8, 
A9, A12, A13, A16] 

11 295 43.599 

Genetic 
Algorithm 

[A1, A2, A4, A5, A6, A7, A8, 
A9, A11, A12, A13, A16, A21] 

13 295 43.169 
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The parameters of the genetic algorithm can be modified to reflect the adjustment of 

strategy by the risk management. For example, if we set 0.8  to strengthen the control over the 

budget, the optimal portfolio becomes A* = [A1, A2, A4, A5, A6, A7, A8, A9, A12, A13, A16, 

A21]. We can see that A11 has been removed from the action plan so that the required budget 

has decreased to 275 k€, with an objective function value of 43.443. 

On the other hand, if we increase the balance factor  to 0.95 for emphasizing the 

mitigation effects, the optimal portfolio becomes A* = [A1, A2, A3, A4, A5, A6, A8, A9, A12, 

A13, A16, A21]. In this case, A3 has replaced the actions A7 and A11. As a result, the objective 

function has improved to 42.963. However, extra budget is required to achieve such result, for a 

total cost of the risk response plan equal to 320 k€.  

 

6. Discussion 

This study has been motivated by questions and requests by practitioners, who are ready to 

apply more sophisticated techniques to make decisions about their risk response plans. They 

were confident in the results of the case study on the tramway construction project, since both 

algorithms confirmed their priorities. 

Apparently, the comparison of the results on the case study indicates that the genetic 

algorithm provides a superior search for the optimum than the greedy algorithm. The deficiency 

of the SFS greedy algorithm is that only the effect rather than the cost of actions is considered as 

the basis for local searches, which may prevent it from finding the global optimal solution. On 

the contrary, through testing the entire response plans while not individual actions in the risk 
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network model, the genetic algorithm takes into account the synergy or co-effects of different 

actions for mitigating. Moreover, by adjusting the parameters of the fitness function, the project 

manager is able to achieve a trade-off between improving risk management results and lowering 

the budget. 

However, the practitioners were attached to the sequence of inclusion of actions in the 

portfolio by the SFS greedy algorithm, even if in a global optimization algorithm, like GA, this 

could not have any importance. Specifically, they were confident on inclusion of actions A16, 

A5 and A9, rather than A13, A12 and A3. On this last action A3, they were ready to include it in 

their action plan, and both greedy algorithm (since this was the last action included in the 

portfolio) and genetic algorithm (since it was not included in the optimal portfolio, but embraced 

after relaxing the budget constraint) proved helpful in convincing them to change their plan in 

such direction. In general, it is to be expected that the optimization should change only some 

elements of an action plan, and not make a complete revolution, since decision-makers are 

capable of identifying the most important and efficient response actions. The optimization work 

can help in the decisions for actions which are close from inclusion or exclusion, and in the 

identification of possible big surprises, although less frequent. 

One may wonder when to perform this process of data gathering and related analysis. In 

most cases, the earlier, the better. Indeed, it changes the risk response plan, with its associated 

budget, resources and actions, so it is recommended to change decisions before they are applied. 

However, information may be neither available nor reliable at the very beginning of the project, 

which may result in irrelevant action plans. The decision about the schedule (one or several times 

during the project) should thus be a balance between the necessities to do it early enough and to 
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have enough reliable information. The best moment depends on the degree of uncertainty on data. 

If projects are recurrent and some historical data are available, both on risks, risk interactions and 

risk response alternatives, then this process may be run at the earliest phases. But generally, if 

the context is new (country, subcontractors), or if the objectives are significantly different, then it 

is better to wait to have enough and more reliable data. In the case study presented here, the 

project had already been launched before the beginning of the study. Eight risk review meetings 

had been conducted before our intervention. 

It should be admitted that there exist limitations of applying the proposed approach in 

practice. For example, the difficulties and uncertainties are unavoidable in identifying and 

quantifying the risk interactions using the DSM methods. First, the issue of a correct risk 

identification and particularly risk formulation is relevant. In this regard, efforts should be made 

by the project management team to determine the proper level of details and the way to 

formulate risks in less ambiguous ways. Second, it is sometimes difficult to differentiate direct 

and indirect interactions between risks, although the interviewees have been reminded to 

concentrate on direct dependencies. Third, dealing with project risks, especially the probabilities 

being used, includes subjective assessment and thus uncertainties. Subsequently, we have to be 

very careful when manipulating uncertain / unreliable data using optimization algorithms, since 

the output depends on the reliability of the inputs. One should not apply blindly the optimization 

results, but should analyze carefully the gap between the proposed solution and its neighbors. 

Also, we have to be careful when using quantitative data, since we cannot have all the data 

which are quantitative, so the danger is to mix qualitative and quantitative data.  
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7. Conclusion and perspective 

In this paper, we have presented an original framework for decision support in project risk 

response planning, and showed how it is applied to a real case study of a tramway construction 

project. Through modeling risk interactions, the framework makes it possible to analyze risk 

propagation behavior and thus to anticipate the overall effects of response actions on the global 

risk network. It can guide the project manager design some non-conventional actions on risk 

interactions which mitigates risk propagation instead of risk occurrence. For optimally allocating 

tight resources for risk mitigation, i.e., selecting the best risk response plan from an action list 

with many options, a Sequential Forward Selection greedy algorithm and a genetic algorithm 

have been investigated, taking into account budget constraints. The comparison of the results 

obtained by these two optimization algorithms shows that the genetic algorithm has superior 

performance. The proposed framework and quantitative methods are expected applicable to a 

wide set of engineering projects for risk management. 

In addition to the limitations of the approach discussed above, for potential improvements, 

the stakeholders‟ or the project manager‟s preferences would be included into the risk response 

planning process. For example, the mitigation of several particular risks is sometimes mandatory. 

In addition, the portfolio of actions may be more complex. In practice, for instance, if more funds 

are allocated on the reinforcement of a component or task, the probability of its failure risk will 

decrease. In this regard, an action for mitigating risks, for example, A2 can be subdivided into 

several alternatives (e.g., A2.1, A2.2, and A2.3) with different levels of cost, which will 

undoubtedly generate different levels of mitigation effects. In this case, we need not only to 

decide whether to choose an action or not, but also to optimize the level of investment on each 
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action and related risks. Furthermore, the developed DSM-based tools/techniques can be 

considered for managerial purposes concerning risk management, e.g., in risk grouping and risk 

owner organization. This work will also be considered for program management of multiple 

related projects with regard to risk management. 

 

Appendix. The process of Genetic Algorithm for this study 

1) Initial population 

An initial population of M individual solutions is created randomly. Each individual is a risk 

response plan, namely a portfolio of actions. Population diversity (i.e., differences in the individuals) is 

encouraged to investigate more broadly the search space [60].  

2) Selection of the parents 

During each successive generation, a proportion of the existing population is selected to breed a 

new generation. Individual solutions are selected through a fitness-based process, where fitter solutions 

(with lower values of the fitness function) are more likely to be selected. We employ the straightforward 

Roulette Wheel Selection method [61, 62]: the chromosome kx  is selected if: 

1

1 1

1 1

( ) ( )

( ) ( )

k kj j

j j
M Mj j

j j

f x f x
r

f x f x


 

 
            (10) 

where r is the generated random number with  0,1r . 

3) Crossover and mutation 

Crossover allows combining two parents to form a child. We employ a conventional scattered 

crossover as sketched in Fig. 3 [63]. A random binary vector is created as bit mask. It selects the genes 

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
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from parent 1 where the mask bit is „1‟, and the genes from parent 2 where the mask bit is „0‟, and 

combines the genes to form the child. It should be noted that in Fig.3 the symbols a~h and 1~8 are 

replaced by binary bits in the work here presented. A crossover fraction of value in [0, 1] specifies the 

portion of the individuals in the next generation that are produced by crossover, other than the elite 

individuals (the number of individuals that are guaranteed to survive to the next generation). Elitism is the 

process of selecting individuals with a bias towards the better ones, which is based on fitness ranking in 

the developed GA. Indeed, elitism is important for allowing the solutions to get better over generations. 

 

Fig. 3. Illustration of the crossover operation 

Mutation inserts small random changes in the individuals of the population, which further favors 

genetic diversity. It thus enables the GA to extend the search to a broader space. A mutation rate is 

introduced as the probability that a bit in a chromosome will be reversed (0->1, 1->0). The mutation rate 

for a single bit is usually taken very low for binary encoded genes [64].  

4) Reduction of population for the next generation 

We use the conventional GA with fixed population size in this work. In this regard, fitness ranking 

is used to guide the reduction of the population for the next generation [30]: the individuals with lowest 

fitness are removed from the enlarged population of parents and children, where the original size M is re-

established.  
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5) Termination condition 

In this work, the search iterations of the GA are terminated simply when an a-priori fixed number 

of generations GEN* is reached, or when the top ranked solution's fitness has stabilized, i.e., a fixed 

number of successive iterations no longer improve it. 
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