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ABSTRACT 

 

This paper presents a data-driven, similarity-based approach for prognostics of 

industrial and structural components. The potentiality of the approach is demonstrated 

on a problem of crack propagation, taken from literature. The crack growth process is 

described by a non linear model affected by non-additive noises. A comparison is 

provided with a Monte Carlo-based estimation method, known as particle filtering. 
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1. Introduction 

When the conditions of a component or structure can be monitored, maintenance can be 

planned dynamically on the basis of the observed conditions [Williams et al., 1994; Marseguerra et 

al., 2002]. This requires prognostic capability for predicting the evolution of the degradation state of 

the component or structure in the future. The aim of the prediction is to verify whether the 

component or structure can continue performing its function throughout its lifetime and, in case it 

cannot, to estimate the Remaining Useful Life (RUL), i.e. the time remaining before it can no 

longer perform its function [Jardine et al., 2006]. In practice, the estimate of the RUL of a 

component or structure may be difficult to obtain, since its degradation state may not be directly 

observable and/or the measurements may be affected by noise and disturbances. 

Approaches to failure prognostics can be categorized broadly into model-based and data-

driven [Chiang et al., 2001]. Model-based prognostics attempts to set up physical models of the 

component or structure for the estimation of the RUL. However, uncertainty due to the assumptions 

and simplifications of the adopted models may pose limitations on this approach. 

Many researchers have focused on the problem of building exhaustive models of 

deteriorating components and structures to implement model-based prognostic tools. Markov and 

semi-Markov models have been widely exploited for achieving analytical results [Samanta et al., 

1991; Lam et al., 1994; Hontelez et al., 1996; Kopnov, 1999; Yeh, 1997; Grall et al., 1998; 

Bérenguer et al., 2000]. On the basis of these models, several approaches have been proposed to 

analyze reliability-based and condition-based maintenance policies [Pulkkinen et al., 1992; Vlok et 

al., 2002; Castanier et al., 2002]. 

The most promising approaches rely on Bayesian methods to combine a prior distribution of 

the unknown degradation states with the likelihood of the observations collected, to build a 

posterior distribution [CUED-F-ENGTR310, 1998; Doucet et al., 2001]. In this setting, the 

estimation method most frequently used in practice is the Kalman filter, which is optimal for linear 
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state space models and independent, additive Gaussian noises [Anderson et al., 1979]. In this case, 

the posterior distributions are also Gaussian and computed exactly, without approximations. 

However, in most realistic cases the dynamics of degradation is non linear and/or the associated 

noises are non-Gaussian. Various approximate methods can be proposed to tackle these cases, e.g. 

the analytical approximations of the Extended Kalman (EKF) and the Gaussian-sum filters and the 

numerical approximations of the grid-based filters [Anderson et al., 1979]. Recently, Monte Carlo 

sampling methods are gaining popularity for their flexibility and ease of design [Kitagawa, 1987]. 

These methods go under the name of particle filtering because the continuous distributions of 

interest are approximated by a discrete set of weighed particles, where each particle represents a 

random trajectory of evolution in the state space and the weight is the probability of the trajectory 

[Djuric et al., 2003; Doucet et al., 2000; Cadini et al., 2009]. 

Data-driven techniques utilize monitored operational data related to system health. They can 

be beneficial when understanding of first principles of system operation is not straightforward or 

when the system is so complex that developing an accurate model is prohibitively expensive. 

Furthermore, recent advances in sensor technology and refined simulation capabilities enable us to 

continuously monitor the health of operating components and living structures, and to manage the 

related large amount of reference data. 

Data-driven techniques can be divided into two categories: statistical techniques (regression 

methods, ARMA models, etc.) and Artificial Intelligence (AI) techniques (neural networks, fuzzy 

systems, etc.). The most direct data-driven techniques for RUL estimation attempts at fitting 

available data of component or structure degradation by regression models and then extrapolating 

the evolution up to failure. However, in practice, the component or structure degradation history 

available may be short and incomplete, and extrapolation may lead to large errors [Yan et al., 2004]. 

With respect to AI techniques, the most commonly used prediction methods are based on 

Neural Networks [Peel et al., 2008; Barlett et al., 1992; Santosh et al., 2009]. For prognostic tasks, 
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promising methods are Recurrent Neural Networks (RNNs) [Campolucci et al., 1999], Neuro-Fuzzy 

(NF) systems [Wang et al., 2004] and Support Vector Machines (SVMs) [Sotiris et al., 2007]. In 

spite of the recognized potential of empirical, data-driven techniques, limitations still exist for their 

use in safety critical applications, e.g. in nuclear technology, because of the lack of a systematic 

approach for selecting the structure and parameters of the models and their black-box character 

which limits intuition with respect to the understanding of their performance [Wang et al., 2008]. 

An opportunity for increased transparency and openness of empirical, data-driven models is 

offered by fuzzy logic-based methods, which are sustained by a formal mathematical framework for 

dealing with the vagueness of everyday reasoning [Zadeh, 1965] and accommodating measurement 

uncertainty and estimation imprecision [Yuan et al., 1997; Zio et al., 2005]. 

The subject of the present paper is the estimation of the RUL of a component or structure on 

the basis of measurements of its degradation state taken at predefined inspection times, which are 

possibly only few due to the fact that the lower the number of measurements, the lower the 

computational time and the cost associated to the inspection procedures. The computational 

framework proposed manipulates a set of degradation-to-failure patterns (hereafter called reference 

patterns) within a fuzzy-based, data-driven similarity analysis procedure [Angstenberger, 2001] for 

predicting the remaining life of a newly developing degradation pattern (hereafter called test 

pattern). The adoption of a fuzzy definition of pattern similarity allows capturing and integrating the 

possibly imprecise information carried by the measured degradation signal. An application is 

presented with reference to a non linear fatigue crack growth process, typical for a certain class of 

industrial and structural components [Oswald et al., 1984; Sobezyk et al., 1992; Bolotin et al., 1998; 

Myotyri et al., 2006]. 

 

The paper contents are structured as follows. Section 2 contains the description of the 

algorithm for fuzzy similarity analysis, at the basis of the prognostic approach to RUL estimation. 
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Section 3 presents the dynamic model of fatigue crack growth. In Section 4, the results of the 

application of the approach to the case study are presented and compared with those obtained by 

particle filtering. Finally, some conclusions on the advantages and limitations of the approach here 

propounded are given in Section 5. 

 

2. Methodology 

It is assumed that J measurements taken at predefined inspection times are available for N 

degradation-to-failure trajectories (reference patterns) of components or structures of the type of 

interest; these trajectories last all the way to component or structure failure, i.e., to the instance 

when the degradation state reaches the threshold value beyond which the component loses its 

functionality. 

A degradation trajectory (test pattern) is developing in the actual component or structure 

under analysis, which is monitored at the predefined inspection times. The RUL estimation for the 

degrading component or structure is performed by analyzing the similarity between the test pattern 

and the N reference patterns, using their RULs weighted by how similar they are to the test pattern 

[Angstenberger, 2001]. The estimation procedure is adapted from a data-driven framework of 

recovery time prediction proposed by the authors for accident management [Zio et al., 2009]. 

Figure 1 shows a schematic sketch of the computational framework, with reference to 

degradation signal  f t : 

 

- Step 1: fault detection. The degradation signal  f t  is monitored throughout the time 

horizon of observation T , starting from (discrete) time 1t  ; inspections of the component 

or structure degradation state, as indicated by signal  f t , are made at predefined 

inspection times (T1, T2, T3, …, TJ), where 1j jT T n   is the number of discrete time steps 
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time between two successive inspections; at each inspection time jT , the value  jf T  is 

recorded and appended to the vector of the values collected at the previous ( j-1)-th 

inspections. For reasons which will become clear in the following, the reference patterns of 

signal values are organized in a reference matrix  N n JR   , whose generic element  ,r i k , 

1,2,...,k n J  , is the value assigned to the i-th reference pattern at time 1j k jT t T    by 

linear interpolation between the measured values   , 1r i n j   and  ,r i n j  at times 1jT   

and jT , respectively, and normalized in the range [0.2,0.8]. The choice of the normalization 

range is motivated by the need to avoid numerical problems arising from manipulating null 

values. 

As long as no signal trend is detected at inspection, the component or structure is qualified 

as working in nominal conditions and the estimate  ˆ
jRUL T  of the remaining useful life 

made at the generic inspection time jT  is taken equal to the component or structure Mean 

Time to Failure  jMTTF T , computed from the remaining useful life  i jRUL T  of all the 

reference patterns: 

    
 

 
 

 
| |

1 1ˆ

| | | |
i

f j f ji ii i

j j f j i j

i t T i t Tf j f j

RUL T MTTF T t T RUL T
i t T i t T 

   
 

   (1) 

where 
if

t  is the component or structure failure time of the i-th pattern (i.e., the time when 

the signal value exceeds the threshold beyond which the component or structure loses its 

functionality),  | |
if ji t T  is the cardinality of the set of reference patterns whose failure 

time is larger than jT  and  i jRUL T  is the remaining useful life on the reference pattern i 

starting from jT . At the following inspection times, the algorithm continues to update the 
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estimate of    ˆ
j jRUL T MTTF T  until a fault is detected upon inspection because the 

degradation signal has deviated from its nominal value beyond its range of allowed 

variability, which is a priori gauged with respect to the range of possible fluctuations in the 

signal; at this time, the RUL estimation algorithm is put to work to match the similarity of 

the developing degradation signal to the reference patterns and combine their failure times 

for estimating the component or structure RUL. 

- Step 2: pattern pointwise difference computation. At the current time jT , the latest n -long 

segment of values of the test pattern 

         1 , 1 ,..., 1 ,j j j j j jf T f T n T f T n f T f T
      
 

 is built by linear interpolation 

of the values  1jf T 
 and  jf T  measured at the successive inspection times 1jT   and jT . 

The test pattern f  is also normalized in [0.2,0.8]. The pointwise difference     between 

the n normalized values of pattern f  and of the reference pattern segment  ,r i k  is 

computed: 

      
 1

, ,
n j

k n j

i j f k r i k


  

  , 1,2,...,i N , 1,2,...,j J  (2) 

The matrix  N J   contains the difference measures  ,i j  between all n-long segments of 

the reference patterns and the test pattern. 
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Figure 1 The flowchart of the fuzzy-based, data-driven approach 
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- Step 3: pattern pointwise similarity and distance score computation. In practice, there are 

numerous cases in which the similarity measure should allow for a gradual transition 

between „similar‟ and „non-similar‟ [Binaghi et al., 1993; Joentgen et al., 1999]. This can be 

achieved by resorting to a fuzzy logic modeling paradigm in which the pointwise difference 

of two patterns is judged for similarity with respect to an “approximately zero” fuzzy set 

(FS) specified by a function which maps the elements  ,i j  of the difference matrix  N J   

into their values  ,i j  of membership to the condition of “approximately zero”. The 

distance score  ,d i j  between two pattern segments is then computed as: 

    , 1 ,d i j i j  , 1,2,...,i N , 1,2,...,j J  (3) 

Common membership functions can be used for the definition of the FS, e.g. triangular, 

trapezoidal, and bell-shaped [Dubois et al., 1988]. In an exploration of the effects of these 

membership functions, all defined on the same support of the fuzzy set “approximately 

zero” and centered in the value zero, no particular sensitivity of the RUL estimation results 

has been recorded with respect to the particular shape. In the application illustrated in this 

work, the following bell-shaped function has turned out to give more robust results due to its 

gradual smoothness: 

  
 

 2

2

ln
,

,
i j

i j e






 
  
   (4) 

The arbitrary parameters   and   can be set by the analyst to shape the desired 

interpretation of similarity into the fuzzy set: the larger the value of the ratio 
 
2

ln 




, the 

narrower the fuzzy set and the stronger the definition of similarity. The choice of the values 

of   and   depends on the application; one may proceed to determining the value   of the 
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difference value   which must have a degree of membership   equal to   

[Angstenberger, 2001; Zio et al., 2009]. 

- Step 4: weight definition. To assign the weight iw  given to the i-th reference pattern 

accounting for how similar it is to the test pattern, the minimum distance 
*

id  along the i-th 

row of the matrix of Eq. (3) is first identified: 

  *

1,...,min ,i j Jd d i j , 1,2,...,i N  (5) 

The weight iw  is then computed, resorting to the arbitrarily chosen decreasing monotone 

function, which guarantees that the smaller the minimum distance the larger the weight 

given to the i-th reference pattern: 

  
*1

*1
id

i iw d e


 
 
    , 1,2,...,i N  (6) 

The value of β in (7) is arbitrarily taken equal to that used in Eq. (4). 

Then, the weight wi is normalized: 

 
1

N

i i e

e

w w w


   (7) 

- Step 5: RULi(t) and RUL(Tj ) estimation. With respect to the generic i-th reference pattern 

for which 
if

t t , the value  iRUL t  is first determined as: 

  
i Mi f jRUL t t t  , 1,2,...,i N  (8) 

where    *max arg ,
Mj i

j
t n i j d    is the final time of the latest-in-life segment of the i-

th pattern among those which have minimum distance 
*

id  from the developing test pattern (n 

is the test pattern length,    *max arg , i
j

i j d   gives the largest column index j of  ,i   
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whose element is equal to *

id ). Thus,  iRUL t  is the remaining time before failure on the 

reference pattern starting from the end time of the latest-in-life segment of minimum 

distance from the developing test pattern (Figure 2). This allows a conservative RUL 

estimation, biased towards “pessimistic” predictions of the RUL because in the case that 

more than one segment along the i-th reference pattern is closest to the developing test 

pattern, the latest one is taken, i.e. the one closest to failure. 
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Figure 2 The remaining time before failure  iRUL t  on a generic reference pattern starting from the end time of the 

latest in-life segment of minimum distance from the occurring test pattern 
 

Then, at the generic inspection time Tj, the  ˆ
jRUL T  is estimated as a similarity-weighted 

sum of the  iRUL t : 

    ˆ

fi
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i t t

RUL T w RUL t


  , 1,2,...,i N  (9) 
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The ideas behind the weighting of the individual  iRUL t  is that: i) all reference patterns 

bring useful information for determining the RUL of the degradation pattern currently 

developing; ii) those segments of the reference patterns which are most similar to the most 

recent segment of length n  of the currently developing degradation pattern should be more 

informative in the extrapolation of the occurring pattern to failure. 

 

3. The model of the fatigue crack growth process 

Let us consider the process of crack growth in a component subject to fatigue. The common 

Paris-Erdogan model is adopted for describing the evolution of the crack depth x as a function of 

the load cycles t [Pulkkinen, 1991]: 

 ( )mdx
C S

dt
   (10) 

where C and m are constants related to the material properties [Provan, 1987; Kozin et al., 1989], 

which can be estimated from experimental data [Bigerelle et al., 1999] and ΔS is the stress intensity 

amplitude, roughly proportional to the square root of x [Provan, 1987]: 

 S x   (11) 

where   is again a constant which may be determined from experimental data. 

The intrinsic stochasticity of the process may be inserted in the model by modifying 

equation (10) as follows [Provan, 1987]: 

  
mdx

e C x
dt

   (12) 

where 
2~ (0, )N    is a white Gaussian noise. For t  sufficiently small, the state-space model 

(12) can be discretized to give: 

    1 ( )j m

k kx t x t e C S t


     (13) 
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which represents a non-linear Markov process with independent, non-stationary degradation 

increments of the degradation state x . 

At the generic inspection time Tj, the degradation state  jx T  is generally not directly 

measurable. In the case of non-destructive ultrasonic inspections a logit model for the observation 

 jf T  can be introduced [Simola et al., 1998]: 

 
 
 

 
 0 1ln ln

j j

k

j j

f T x T

d f T d x T
    

 
 (14) 

where d is the component material thickness, 0 ( , )     and 1 0   are parameters to be 

estimated from experimental data and   is a white Gaussian noise such that 
2~ (0, )N   . 

The following standard transformations are introduced: 

  
 
 

ln
j

j

j

f T
y T

d f T



 (15) 

  
 
 0 1 ln
j

j

j

x T
T

d x T
   


 (16) 

In the case study here considered, taken from [Myotyri et al., 2006], the parameters of the 

state equation (13) are C = 0.005, 1.3m   and γ = 1, whereas those in the measurement Eq. (14) are 

γ0 = 0.06, and γ1 = 1.25. The process and measurement noise variances are 
2

  = 2.89 and 
2

  = 

0.22, respectively. The component is assumed failed when the crack depth 100x d  , in arbitrary 

units. As an example, Figure 3 shows the degradation-to-failure pattern that in the following will be 

used as test pattern in the procedure for predicting the component RUL. The crack depth x  reaches 

the full material thickness d=100 at 802 [min]. 
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Figure 3 Crack growth pattern used as test pattern 

4. Results 

4.1 Application of the RUL estimation procedure on the fatigue crack propagation case study 

The application of the procedure for computing at the inspection time Tj the estimate 

 ˆ
jRUL T  (Section 2) on the fatigue crack propagation case study (Section 3) is hereafter illustrated. 

The interval between two successive inspections is equal to 1 100n   [min] if the estimated 

RUL>200 [min], otherwise 2 10n   [min], reflecting a more frequent inspection of the component 

or structure integrity as the component or structure is approaching the end of life. A database of 

N = 50 reference crack propagation patterns of differing initial conditions is organized in the 

reference matrix  1 2( )N n n JR    , where N = 50, 10J  , 1 100n   and 2 10n  . The elements  ,r i k  of 

such reference matrix are then compared for similarity with a test pattern containing the values of 

the measured signal of the developing degradation pattern. For each of the test patterns the 

procedural steps are performed as follows: 

Step 1: fault detection. 

The signal monitored starting from time 1t   [s] to the time horizon of observation T = 

1000 [min], with time step of n1=100 [min] until the estimated RUL>200 [min], or 2 10n   [min] 

otherwise, is the observation  f t  of Eq. (14). This means that the actual safety parameter driving 
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the RUL, i.e., the state variable x of Eq. (13), is followed only indirectly through the observable 

variable, thus challenging further the robustness of the approach with respect to non-observable 

safety parameters. At each inspection time jT , 1,2,...,30j  , its value is appended and stored in the 

vector containing the 1j   values of the signal collected at the previous times. At the current time 

jT , the latest n -long segment of values of the test pattern 

         1 , 1 ,..., 1 ,j j j j j jf T f T n T f T n f T f T
      
 

 is built by linear interpolation of the 

values  1jf T 
 and  jf T  measured at successive inspections. The Mean Time to Failure 

 jMTTF T  is calculated resorting to Eq. (1) and  ˆ
jRUL T  is set equal to  jMTTF T  for each time 

step, until fault detection when the on-line data-driven, similarity-based RUL estimation is 

activated. 

Step 2: pattern pointwise difference computation. 

The pointwise difference  ,i j  between the test pattern 

         1 , 1 ,..., 1 ,j j j j j jf T f T n T f T n f T f T
      
 

 and  ,r i k  is evaluated (Eq. (2)). 

Step 3: pattern pointwise similarity and distance score computation. 

The pointwise differences  ,i j  are mapped into values of membership  ,i j  of the 

“approximately zero” FS. The bell-shaped function of Eq. (4) is taken with parameters values 

0.2   and 0.1  . The distance scores  ,d i j  are then computed by Eq. (3), 1,2,...,50i  , 

1,2,...,30j  . 

Step 4: weight definition. 

The minimum distances 
*

id  are evaluated by Eq. (5), and the relative normalized weights iw  

calculated through Eqs. (6) and (7), 1,2,...,50i  . 

Step 5: RULi(t) and RUL(Tj ) estimation. 
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For each reference pattern, an estimate  iRUL t  is computed by Eq. (8), 1,2,...,50i  ; then, 

the  iRUL t  are aggregated in the weighted sum of Eq. (9) with the weights iw  previously 

calculated. 

For the crack propagation pattern plotted in Figure 3, the estimates of the  jMTTF T  are 

plotted in Figures 4 in thin continuous lines with the bars of one standard deviation of the samples 

 |
i if j f jt T t T  , where 

if
t  is the time at which the crack depth x exceeds the material thickness d 

and thus failure occurs. The  ˆ
jRUL T  estimates obtained based on pattern segments of 1 100n   

[min] and 2 10n   [min], when  ˆ 200jRUL T   [min] and  ˆ 200jRUL T   [min], respectively, are 

plotted in bold circles; at the beginning of the test pattern, the predictions match the  jMTTF T ; 

then, upon fault detection, the  ˆ
jRUL T  estimate moves away from the  jMTTF T  values towards 

the real RUL (dashed thick line). In the Figure, the bold vertical line indicates the time of crack 

depth exceedance of the limit on the material thickness. 
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Figure 4 RUL estimation for the crack propagation pattern of Figure 3 

 

4.2 Comparison with a model-based particle filtering method 

The Monte Carlo-based particle filtering method has been applied to the same case study of 

Section 3 in [Cadini et al., 2009]. The application of particle filtering for RUL estimation entails the 

evaluation of the conditional cumulative distribution function (cdf) of the stochastic observable 

variable related to the degradation state. For more details on the procedure, the interested reader 

may refer to [Cadini et al., 2009]. 

From Eq. (15) it follows that the transformed observation     2~ ,j jY T N T    is a 

Gaussian random variable with cdf: 

 
             

   
j

j j

j j j j jY T

y T T
cdf y T x T P Y T y T x T







 
   
 
 

 (17) 

where  u  is the cdf of the standard normal distribution  0,1N . 
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The conditional cdf of the stochastic measurement variable  jF T  related to the stochastic 

degradation state  jX T  is then: 

 
        

 
 

 
 
 

 
1

ln ln
j j

j j

j j j jF T Y T

j j

f T f T
cdf f T x T cdf x T T

d f T d f T




    
       

     
    

 (18) 

with corresponding probability density function (pdf): 
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 (19) 

The estimates of the RUL obtained resorting to particle filtering are plotted in Figure 5 (together with 

those obtained by the data-drive, similarity-based approach of Section 2) in thin continuous lines with 

the bars of one standard deviation of the samples  |
i if j f jt T t T  ; the  ˆ

jRUL T  estimates at the 

inspection times of Figure 4, are indicated in bold squares. The predictions provided by the two 

methods are comparable: after fault detection, the particle filtering  ˆ
jRUL T  estimates similarly 

move away from the  jMTTF T  values towards the real RUL (dashed thick line). In the Figure, the 

bold vertical line indicates the time of crack depth exceedance of the limit on the material thickness. 
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Figure 5 Comparison of the RUL estimations for the crack propagation pattern of Figure 3 provided by the similarity based, 

data-driven approach and particle filtering 

 

5. Conclusions 

A data-driven similarity-based prognostics procedure for estimating the RUL of a 

component or structure has been proposed. Data from different degradation-to-failure reference 

patterns are matched to the evolving degradation pattern based on a fuzzy pointwise similarity 

concept and their known residual life times are used for the estimation. 

The prognostic procedure has been applied to the crack propagation dynamics of a 

component subject to fatigue cycles. Comparison with particle filtering demonstrates that the 

method is capable of successfully handling nonlinear dynamics and of dealing with non-Gaussian 

noises. 
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