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This paper presents a similarity-based approach for the prediction of the Remaining Useful Life (RUL) of 

sea water filters placed upstream the heat exchangers of a nuclear reactor condenser. The prognostic 

approach is developed considering a library of reference degradation trajectories containing parameter 

observations taken from a set of similar equipments until their failures. The prediction of the RUL of the a 

filter is obtained by comparing its degradation trajectory to the reference trajectories and by properly 

aggregating the RULs of thetraining trajectories using a weighted sum which takes into account the 

similarity within test and training trajectories. In order to provide a measure of confidence in the RUL 

prediction in the form of a prediction interval, we place our work within the framework of belief function 

theory and we assign to each reference trajectory a belief proportional to its similarity to the test trajectory. 

A prediction interval is then obtained by properly combining these belief assignments using the Dempster’s 

rule. 

1. Introduction 

We consider the problem of predicting the Remaining Useful Life (RUL) of filters subjected to clogging, 

having available few sequences of clogging-related observation collected on similar filters. The real 

industrial data used in this study are taken from the filters used in the Boiling Water Reactor (BWR) of a 

Swedish nuclear power plant to clean the sea water pumped through the condenser. 

Several data-driven methods have been proposed for predicting the RUL of degrading equipment 

(Vachtsevanos, 2006; Sikorska et al., 2011), i.e., the time left before the equipment will stop fulfilling its 

functions. Data-driven methods rely on the availability of observations collected during the degradation of 

one or more similar equipments. Due to the scarcity of information typically available and the different 

sources of uncertainty to which the RUL estimate is subject, data-driven models can commit large errors in 

the RUL estimate and uncertainty management becomes a fundamental task in prognostics (Baraldi et al., 

2013): its goal is to provide the maintenance planner with an assessment of the expected mismatch 

between the real and predicted equipment failure times which allowsto confidently plan maintenance 

actions according to the maximum acceptable failure probability. 

In this context, the objective of the present work is to properly represent the uncertainty on the filter RUL 

predictionprovided by a data-driven prognostic model. In practice, the maintenance planner defines the 

maximum acceptable failure probability, and is informed by the prognostic method of the time at which this 

probability is exceeded.To this purpose, we consider the similarity-based prognostic model proposed in 

(Zio& Di Maio, 2010) which uses a set of reference degradation trajectories collected in a reference library 

and performs a data-driven similarity analysis for predicting the RUL of a newly developing degradation 

trajectory (hereafter called test trajectory). The matching process is based on the evaluation of the 

distance between the reference and test trajectories. This prognostic model is here extended in order to 

provide a measure of confidence in the RUL prediction based on the belief function theory (BFT) (also 

called Dempster-Shafer or evidence theory) (Smets, 1994). The BFT allows combining different pieces of 

(uncertain) evidence, based on the assignment of basic belief masses to subsets of the space of all 

possible events, which are, in this case, the possible values that the filter RUL can assume. In practice, the 



proposed method considers each reference trajectory as a piece of evidence regarding the value of the 

RUL of the test trajectory. These pieces of evidence are discounted based on their similarity to the test 

trajectory and pooled using the Dempster’s rule of combination [Petit-Renaud &Denoeux, 2004]. The result 

is a basic belief assignment (BBA) that quantifies one’s belief about the value of the RUL for the test 

trajectory given the reference trajectories. From the BBA, the total belief (i.e., the amount of evidence) 

supporting the hypothesis that the RUL will fall in any specific interval can be computed. The interval to 

which a sufficiently large total belief is assigned is retained as prediction interval for theRUL value. 

In the remainderof this paper wepresent the problem of RUL prediction in clogging filters (Section 2), 

describe the methodology for the similarity-based RUL prediction and the belief function theory–based 

uncertainty treatment (Section 3), present the results of the numerical application (Section 4) and draw the 

appropriate conclusions (Section 5).  

2. Clogging of BWR condenser filters 

We consider the problem of optimizing the maintenance of heat exchanger filters used to clean the sea 

water entering the condenser of the BWR reactor of a Swedish nuclear power plant. During operations, 

filters undergo clogging and, once clogged, can cumulate particles, seaweed, and mussels from the 

cooling water in the heat exchanger. For this reason, prompt and effective cleaning of the filter is desirable; 

predictive maintenance can help achieving this result, keeping maintenance costs reasonably low.  

The clogging process is affected by large uncertainties, due to the variable conditions of the sea water; in 

this context, the challenge is to provide reliable confidence intervals for the RUL prediction.  

From data collected on field, we have available sequences of 𝑛𝑞observations 𝐳1:𝑛𝑞
𝑞

, 𝑞 = 1: 8, taken during 

the clogging process of 𝑄 = 8 historical filtersup to the last measurement time 𝜏𝑛𝑞
𝑞

 before the failure 

time,𝜏𝐹
𝑞
. Each observation𝐳𝑖

𝑞
= [Δ𝑃𝑖

𝑞
,𝑀𝑖

𝑞
,𝑇𝑖

𝑞
]contains the measurements of the pressure dropΔ𝑃𝑖

𝑞
, the flow 

across the filter𝑀𝑖
𝑞
, and the sea water temperature𝑇𝑖

𝑞
 collected at time 𝜏𝑖

𝑞
 during the clogging process of 

the 𝑞-th filter.  

We are interested in predicting the RUL ofa filter𝑞 at the present time 𝜏𝐼
𝑞
, have available the observation 

sequences 𝐳1:𝑛𝑟
𝑟 , 𝑟 = 1: 7, for the remaining 𝑅 = 7reference trajectories, and the sequence of observations 

𝐳1:𝐼
𝑞

, from 𝜏1
𝑞
to the present time𝜏𝐼

𝑞
 and for the test trajectory 𝑞. 

3. Methodology 

The idea underpinning the RUL estimation method is to evaluate the similarity between the testtrajectory 

and the 𝑅reference trajectories, and to use the RULs of these latter to estimate the RUL of the test 

equipment, taking into account the similarities between the trajectories (Petit-Renaud &Denoeux, 

2004;Zio& Di Maio, 2010). 

The approach requires defining a measure of similarity between trajectories. This is done by considering 

the pointwise difference between 𝑛-long sequences of observations. At the present time 𝜏𝐼
𝑞
, the distance 

𝑑𝑖
𝑟between the sequence of the 𝑛latest observations 𝐳𝐼−𝑛+1:𝐼

𝑞
of the test trajectory, and all 𝑛-long segments 

𝐳𝑖−𝑛+1:𝑖
𝑟 , 𝑗 = 𝑛: 𝑛𝑟 , of all reference trajectories 𝑟 = 1:𝑅is computed as: 
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Where 𝐱 − 𝐲 𝟐is the square Euclidean distance between vectors 𝐱and 𝐲. 

The similarity 𝑠𝑖
𝑟  of the training trajectory segment 𝐳𝑖−𝑛+1:𝑖

𝑟 to the test trajectory is defined as a function of 

the distance measure 𝑑𝑖
𝑟 . In Zio & Di Maio (2010) the following bell-shaped function has turned out to give 

robust results in similarity-based regression due to its gradual smoothness: 
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The arbitrary parameter 𝜆 can be set by the analyst to shape the desired interpretation of similarity: the 

smaller is the value of 𝜆, the stronger the definition of similarity. A strong definition of similarity implies that 

the two segments under comparison have to be very close in order to receive a similarity value 𝑠𝑖
𝑟  

significantly larger than zero. 

For the prediction of the test equipment RUL, a RUL value 𝑟𝑢 𝑙𝑖∗
𝑟  is assigned to each training trajectory 

𝑟 = 1:𝑅by considering the difference between the trajectory failure time 𝜏𝐹
𝑟  and the last time instant 𝜏𝑖∗

𝑟 of 

the trajectory segment 𝐳𝑖∗−𝑛+1:𝑖∗
𝑟  which has the maximum similarity with the test trajectory:  
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Then, the prediction 𝑟𝑢𝑙𝐼
𝑆𝐵,𝑞

 of the test equipment RUL at time 𝜏𝐼
𝑞
 is given by the similarity weighted sum of 

the values 𝑟𝑢 𝑙𝑖∗
𝑟 . 
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The ideas behind the weighting of the predictions 𝑟𝑢 𝑙𝑖∗
𝑟  supplied by the individual trajectories is that: i) all 

failure trajectories in the reference library can, in principle, bring useful information for determining the RUL 

of the trajectory currently developing; ii) those segments of the reference trajectories which are most 

similar to the latest part of the test trajectory should be more informative about the value of its RUL. 

3.1 Credible RUL intervals based on belief function theory 

Given the uncertainty to which the RUL estimate is subject, maintenance plans cannot usually be based 

only on the RUL prediction in eq. (4). In this Section, we assume that the maintenance planner is able to 

specify a maximum acceptable failure probability,𝛼, and we propose a method to identify the latest time at 

which, according to the available information, we can guarantee that the probability to have a failure is 

lower than 𝛼. To this aim, we resort to the Belief Function Theory. For the ease of clarity, only the notions 

of BFT necessary for the understanding of the proposed method will be now presented. For further details 

about the mathematical developments and the possible interpretations of the theory, the interested reader 

is referred to the woks of Dempster (1976), Shafer (1976) and Smets (1994). 

The belief of an agent about the value of an uncertain variable, in this case 𝑟𝑢𝑙𝐼
𝑞
, is represented by a basic 

belief assignment (BBA), which assigns to subsets 𝑌𝑗 , of the domain of Ω𝑟𝑢𝑙 𝐼
𝑞  (called frame of discernment 

in the BFT jargon) a mass𝑚𝑟𝑢𝑙 𝐼
𝑞 (𝑌𝑗 )based on the available information. The frame of discernment Ω𝑟𝑢𝑙 𝐼

𝑞  is 

defined as the interval [0, 𝜏𝐹
max − 𝜏𝐼

𝑞
], where 𝜏𝐹

max  is the maximum possible life duration of the equipment. 

All the subsets of Ω𝑟𝑢𝑙 𝐼
𝑞  with associated a mass 𝑚𝑟𝑢𝑙 𝐼

𝑞 > 0 are referred to as focal sets. The BBA should 

verify the condition that the sum of the masses of all its focal sets is 1. 

In our application of the BFT, we assume that each reference trajectory 𝐳1:𝑛𝑟
𝑟 , 𝑟 = 1: 7, corresponds to a 

different agent and that each agent provides a BBA assignment defined by only one focal set𝑌1 =

{𝑟𝑢 𝑙𝑖∗
𝑟 },made of the single element 𝑟𝑢 𝑙𝑖∗

𝑟 , with associated mass𝑚
𝑟𝑢𝑙 𝐼

𝑞
𝑟   𝑟𝑢 𝑙𝑖∗

𝑟   = 1. 

The similarity measure 𝑠𝑖∗
𝑟  defined in eq. (9) is interpreted as a measure about the relevance of the source 

of information inducing the BBA𝑚
𝑟𝑢𝑙 𝐼

𝑞
𝑟  and the discounting operation is used to reduce the belief assigned 

by the 𝑟-th agent to {𝑟𝑢 𝑙𝑖∗
𝑟 }by a factor (1− 𝛾𝑠𝑖∗

𝑟 ), with 𝛾 ∈ [0,1] representing the dissimilarity between the 



test and the 𝑟-th training trajectory. The discounted BBAs 𝑚 
𝑟𝑢𝑙 𝐼

𝑞
𝑟 , 𝑟 = 1: 7, are thus obtained (Petit-Renaud 

&Denoeux, 2004): 
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According to the Dempster’s rule of combination, two distinct sources of information inducing two BBAs, 

e.g., 𝑚 
𝑟𝑢𝑙 𝐼

𝑞
1 and 𝑚 

𝑟𝑢𝑙 𝐼
𝑞

2 , can be combined to give the aggregated BBA 𝑚
𝑟𝑢𝑙 𝐼

𝑞
1⨁2 (Petit-Renaud &Denoeux, 2004): 
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where the mass 𝑚
𝑟𝑢𝑙 𝐼

𝑞
1⨁ 2 ∅ = 0 is imposed to convert a possibly subnormal BBA (i.e., a BBA assigning a 

finite mass to the empty set∅) into a normal one and where 𝐾 is a normalization factor introduced to make 

the masses 𝑚
𝑟𝑢𝑙 𝐼

𝑞
1⨁ 2 𝑌𝑗   assigned to all focal elements sum up to 1. Then, by aggregating through eq. (5) 

the 𝑅 discounted BBAs 𝑚 
𝑟𝑢𝑙 𝐼

𝑞
𝑟  in eq. (4) one obtains the aggregated BBA 𝑚𝑟𝑢 𝑙𝐼

𝑞 . 

The information conveyed by a BBA can be represented by a belief𝐵𝑒𝑙𝑟𝑢 𝑙𝐼
𝑞 𝑌𝑗   or by a plausibility function 

𝑃𝑙𝑟𝑢 𝑙𝐼
𝑞 𝑌𝑗   defined, respectively, as 
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The belief associated to an interval [𝑟𝑢𝑙𝐼
inf , 𝑟𝑢𝑙𝐼

sup
] represents the amount of belief that directly supports the 

hypothesis 𝑟𝑢𝑙𝐼
𝑞
∈ [𝑟𝑢𝑙𝐼

inf , 𝑟𝑢𝑙𝐼
sup
], whereas the plausibility represent the maximum belief that could be 

committed to this hypothesis if further information became available. Then, belief and plausibility can be 

seen as lower and upper bounds on the probability that hypothesis 𝑟𝑢𝑙𝐼
𝑞
∈ [𝑟𝑢𝑙𝐼

inf , 𝑟𝑢𝑙𝐼
sup
] is true. Let us 

consider a left bounded interval [𝑟𝑢𝑙𝐼
inf , +∞]; the belief assigned to such interval is a lower bound for the 

probability that the RUL of the test equipment is larger than 𝑟𝑢𝑙𝐼
inf . Thus, if the maintenance planner 

defines the maximum acceptable failure probability 𝛼, the method can provide a value 𝑟𝑢𝑙𝐼
inf (1− 𝛼)which 

guarantees that the test equipment will fail before𝑟𝑢𝑙𝐼
inf (1− 𝛼) with a probability lower than𝛼. The interval 

𝐶𝐼𝐼
𝑞
(1− 𝛼) ∈ [𝑟𝑢𝑙𝐼

inf (1− 𝛼), +∞] will be referred to as left bounded prediction interval with belief 1 − 𝛼. 

To set parameters𝜆and 𝛾 one should take into account the precision of the prediction, which can be 

evaluated as the meanamplitude 𝑀𝐴1−𝛼  of the interval  𝑟𝑢𝑙𝐼
inf  1− 𝛼 , 𝑟𝑢𝑙𝐼

𝑆𝐵,𝑞
 , its coverage 𝐶𝑜𝑣1−𝛼 , defined 

as the percentage of times the condition 𝑟𝑢𝑙𝐼
𝑞
> 𝑟𝑢𝑙𝐼

inf (1− 𝛼) is verified, and its accuracy, measured by the 

Mean Square prediction Error (𝑀𝑆𝐸). In practice one is interested in two conflicting desiderata: small 

prediction intervals (𝑀𝐴1−𝛼 ) and high coverage values (𝐶𝑜𝑣1−𝛼 ). Notice that a coverage lower than (1− 𝛼) 

is not acceptable since it would indicate that a too large belief mass has been assigned to the predictions 

provided by the reference trajectories, and, thus, that the belief (1 − 𝛼) assigned to the prediction interval 

is not justified by the experimental evidence. 

The following procedure for setting the parameters 𝜆 and 𝛾 is here adopted: 1) we identify a set of 

plausible values of𝜆; 2) for each value of 𝜆 in 1), we derive a condition for parameter 𝛾 by imposing a 

coverage𝐶𝑜𝑣1−𝛼greater than (1− 𝛼); 3) since the precisiontends to monotonically increase as 𝛾 increases, 

we choose, for each value of𝜆, the maximum 𝛾 value which satisfies the condition in 2; 4) within the 

identified couples of values of 𝜆 and 𝛾 in 3), we choose the couple with the most satisfactory prediction 

accuracy (low 𝑀𝑆𝐸) and precision (low 𝑀𝐴1−𝛼 ) trade-off. 



4. Results 

According to the procedure proposed in Section 3.1, we have set the method parameters 𝜆 and 𝛾to the 

values of 0.05 and 1, respectively. The prognostic method has then been applied to each available 

trajectory 𝑞at the three life fractions using the remaining 𝑅 = 7 trajectories as reference trajectories.Figure 

1 shows the predicted RUL and RUL confidence boundwith  1− 𝛼 = 0.8.  

From the point of view of the maintenance planner, the on-line application of the method to trajectory 4 

would suggest to perform maintenance on the filters after few days of operation, since the 80% confidence 

bound reaches the value of zero at time𝜏3 = 3 working days. This is due to the fact that the similarity of 

this trajectory with all reference trajectories is rather low, and thus the prediction is very uncertain. Notice 

that this filter is actually characterized by a very short life since it is going to fail at time 𝜏12 = 12working 

days, and, thus, the anticipation of the maintenance action can be acceptable. 

On the other side, the application of the method to trajectory 6 would inform the maintenance planner at 

time 15 working daysthat the filter life is still long since the 80% RUL confidence bound is 21 working days 

when actually the filter is going to fail in 10 working days. This incorrect outcome of the method can be 

ascribed to the fact that trajectory 8 receives a very high belief assignment 𝑚𝑟𝑢 𝑙𝐼
𝑞  𝑟𝑢 𝑙𝑖∗

8   = 0.937 due to 

its high similarity with trajectory 6 around time 𝜏15 = 15 although after few working days the parameter 

evolutions become very different. 

 

 

Figure 1:predictions obtained for the 𝑄 = 8 filter clogging trajectories available using parameters𝜆 =

0.05and 𝛾 = 1. 

5. Conclusions 

In this work, we have considered the problem of predicting the RUL of clogging filters and providing a 

measure of confidence in the prediction. The information available to perform the prediction is a set of 

reference degradation trajectories followed by similar filters which have failed in the past. We resorted to a 

method based on the use of a similarity-based approach for the prediction of equipment RUL and of the 

belief function theory for the assessment of the RUL uncertainty. Considering the large uncertainties 

affecting the clogging process and the limited number of available reference degradation trajectories, the 

obtained results seem to be satisfactory in terms of accuracy, precision and coverage. 
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Key elements to be considered for the application of the method are the setting of the parameter 𝜆used by 

the similarity algorithm to define how strong is the interpretation of similarity, and the parameter 𝛾 of the 

BFT discounting operation which defines the degree of trust to be given to the reference trajectories.  

A limit of the method is the presence of possibly large oscillations in the provided confidence bound which 

can be confusing for the maintenance planner. We have shown that such oscillations can be reduced by 

conveniently setting the parameter values which, however, tends to reduce the precision of the prediction. 
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