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Summary 

Focus is on modeling of the electromagnetic behavior of complex dispersive, anisotropic structures, with in 

mind damaged fiber-based, flat composite panels as in aeronautic and automotive industries. The goal is to 

image these panels if damaged (defects are of many sorts, like delaminations, cracks, inclusions) via proper 

probes, to get reliable information on these defects. Yet, before imaging, one has to accurately and quickly 

compute the fields or pertinent associated quantities in ways versatile enough in terms of materials, sources, 

frequencies, etc. Also, one should devise both large-scale models assuming homogenized anisotropic media 

characterized by permittivity tensors and small-scale ones wherein each layer in the panels looks like a 

superposition of periodic rods (bundles of fibers) to achieve better and broader understanding. The 

presentation encompasses all such aspects while pinpointing also what is ahead for imaging solutions. 
 
1. Outline 

One might refer to the above summary, which introduces the theme of the work: electromagnetic behavior of 

anisotropic composite panels and testing thereof. These issues are studied by many since more than three decades with 

advance of computational tools and electromagnetic theory, notably about Green’s functions. A host of references on 

direct modeling of anisotropic structures with emphasis on eddy-current (mostly meaning exploration of conductive, 

carbon-fiber-reinforced structures in diffusive regimes) and microwave to higher frequency ranges (glass-fiber-

reinforced structures being of concern in propagative regimes) is available in [14-15], publications on the small-scale 

model of our interest being also found in [7] —the panels are made of stacks of planar strata, each with fiber 

orientation parallel with the interfaces (usually differing from one to the next). As for MUSIC approaches to imaging 

(localization) of small volumetric defects, references are in [10], but one might refer to [1] already. Here, one is to 

pinpoint a handful of references, [3] [4] [6] [11-12], which illustrate challenges in nondestructive testing (but full 

electromagnetic testing of anisotropic composites is still in infancy today). Also, a couple of references has promises 

beyond imaging of small defects (or delaminations, as thin layers in otherwise sound panels). Subspace-based 

optimization methods (SOM) [13] and Bayesian compressive sensing (BCS) [8] appear good choices to deal with 

volumetric defects, SOM in a deterministic setting, BCS in a Bayesian one with sparsity enforced in addition. Yet, as 

underlined, one always needs an efficient direct solver (as in [15], a fast Fourier-based Method of Moments, MoM), 

and, also, convergence at low frequency (to tackle voids in conductive panels) might be an open question save intricate 

loop-tree decompositions and pre-conditioners [2] or wide scope, possibly heavy FEM [3], the solution to be envisaged 

here originating from [9], the so-called contraction integral equation. 

 
2. Response of a panel to a distributed source 

Take z as vertical axis orthogonal to the panel interfaces, (x, y) as horizontal axes parallel to them. Define (kx, ky) as 

lateral wave-number plane. For electrical uniaxial media with anisotropy axes along z, dispersion relationships for each 

plane-wave component are circular like in isotropic cases; boundary conditions (BC) are expressed in the radial wave-

number kρ domain. For general anisotropy, or when anisotropy axes of the uniaxial media are not along z, the 

dispersion relations might be elliptic, and the BC are matched in the (kx, ky) plane. This applies to the said composite 

panels. The field must be decomposed into four wave modes coupled at each interface. A first-order differential (state) 

equation satisfied in each stratum leads to well-known propagator matrix methods, with instability due to evanescent 

waves fast decaying along z to cope with, via recurrence relations (RR) wherein magnitudes of evanescent components 

are normalized to avoid large numbers. Works and solutions thereof on this issue are numerous. However, if an active 

current source is as an example continuously distributed inside or outside (e.g., in air above) the panel, most of these 

solutions are not enough or the computational burden can become huge if one calculates the Green function at every 

point in the source domain and are then left to integrate it (and discretization matters, should the near-field response be 

needed, e.g., when constructing impedance matrices in MoM with such panels as background). In the work here, based 

on the eigen-analysis of the state equation and previous material on RR, novel RR are introduced. The field vector is 



 

 

 

not only decomposed into two wave modes but an extra term is introduced for the source effect and meanwhile to 

stabilize it. The knowledge needed is the 3-D spatial Fourier transform of the current source. So, one efficiently 

calculates the panel’s spectral response, even in near field, dyadic Green functions being obvious byproduct. 
 
 

3. Using the above for scattering by damaged panels 
Volume integral (VI) equations solved via MoM are standard tools with inhomogeneous bodies in planarly-layered 

media. When those are isotropic, MoM impedance matrices are obtained in a fast way by accelerating the calculation 

of the Sommerfeld integrals (SI) involved, e.g., by discrete complex image methods. The accelerated SI is a 1-D 

integral arising from the 2-D inverse Fourier transform (IFT) since dispersion relations with isotropy enable to 

calculate the integral along the azimuth direction in closed form. Yet, when optical axes of uniaxial media (as for the 

panels) are parallel with the interfaces, one is confronted to full 2-D IFT. One might circumvent them, with the 

rectilinear mesh usual in VI methods, achieving efficient construction of impedance matrices. Leaving aside all details 

of tedious analyses led, inspired from pioneering [5] here, from generalized Poisson summation formula, a new relation 

between the continuous Fourier spectrum of a continuous function and its sampled signals on a rectilinear mesh in the 

spatial domain is derived. Using this relationship and applying a so-called windowing technique, with proper window 

functions, a fast algorithm is proposed, yielding the discrete sampled signals on a rectilinear mesh from the continuous 

Fourier spectrum of the original function in efficient/accurate manner. New numerical interpolation and integration 

methods, based on recently proposed Padua points are also implemented. Numerical simulations illustrate the above, 

with comparisons to known results (isotropic cases) and FEM ones (isotropic & anisotropic cases). 

 

4. Conclusion 
To proper model a damaged composite panel, with ability to manage most situations in terms of undamaged material 

parameters and damages (save thin cracks) in reliable and fast way is needed for non-destructive electromagnetic 

testing. This contribution shows the progress made and works on-going, details being left to [14-15], the small-scale 

model [7] as well as MUSIC imaging of small defects [10] being discussed by complementary presentations. 
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