N
N

N

HAL

open science

Self-Organization in Decentralized Networks: A Trial
and Error Learning Approach
Luca Rose, Samir M. Perlaza, Christophe J. Le Martret, Mérouane Debbah

» To cite this version:

Luca Rose, Samir M. Perlaza, Christophe J. Le Martret, Mérouane Debbah. Self-Organization in
Decentralized Networks: A Trial and Error Learning Approach.

Communications, 2014, 13 (1), pp.268-279. 10.1109/TWC.2013.112613.130405 . hal-00927764

HAL Id: hal-00927764
https://centralesupelec.hal.science/hal-00927764

Submitted on 13 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

IEEE Transactions on Wireless


https://centralesupelec.hal.science/hal-00927764
https://hal.archives-ouvertes.fr

Self-Organization in Decentralized Networks: A
Trial and Error Learning Approach

Luca Rose Student Member, IEEESamir M. PerlazaMember, IEEE Christophe J. Le MartretSenior
Member, IEEEand Mérouane Debbalsenior Member, IEEE

Abstract—In this paper, the problem of channel selection and must exhibit [3]-{8]. The term self-configuration refers to
power control is jointly analyzed in the context of multiple- the capability of radio devices to autonomously tune their
channel clustered ad-hoc networks, i.e., decentralized neorks  yansmit-receive configuration for efficiently exploitinge
in which radio devices are arranged into groups (clusters) ad ilabl d teei twork reliabili
each cluster is managed by a central controller (CC). This avallable resources and guaran e_emg n_e wor _rel _lty
problem is modeled by game in normal form in which the the most general case, a transmit-receive configuration can
corresponding utility functions are designed for making samne be described in terms of the number of information bits per
of the Nash equilibria (NE) to coincide with the solutions toa plock, the block length, the codebook, the encoding-dewpdi

global network optimization problem. In order to ensure that  gnctions, the channel selection policy, the power alliocat
the network operates in the equilibria that are globally optimal, . ' . !
policy, etc., as suggested in [9]-[11].

a learning algorithm based on the paradigm of trial and error ) . ) .
leamning is proposed. These results are presented in the mos  This paper focuses exclusively on the self-configuration
general form and therefore, they can also be seen as a framevko  dimension of these networks and more specifically, on the cas
for designing both games and learning algorithms with which  of multiple-channel clustered ad hoc networks, i.e., DS@Ns

G nehvoks ca e ol T DO L1 ot v ar anenged 1o Groups (s an
game design and the learning algorithm are highlighted usig eaqh cluster is man.aged by a central .Controller (C_C)' The
specific scenarios in decentralized clustered ad hoc netwe. Main task of the CC is to choose the |09'Ca| channel in which
Numerical results confirm the relevance of using appropriag itS cluster must operate and to determine the power levels to

utility functions and trial and error learning for enhancin g the pe used by all radio devices inside the cluster. Hence, this

performance of decentralized networks. network model is both decentralized, in the sense that there
Index Terms—Ad-hoc netwqus, Resource allocation, Interfer- exist several CCs autonomously taking decisions, and also
ence management, QoS provisioning, Game theory centralized, in the sense that radio devices inside a cluste
implement the decision adopted by their corresponding CC.

I. INTRODUCTION The decision-taking problem faced by all CCs is modeled by

. _ . a game in normal form and the corresponding utility function
: A decentralized self-cor_1f|gur|_ng ”etWOF" (DSCN_) 'S e designed for making some of the Nash equilibria (NE) to
m_frastru_cture—les; networ_k n Wh.'Ch transmitters commate .., iqe with the solutions to a global network optimizatio
with their respective receivers without the control of atcain problem. That is, the utility functions are designed to make

authority, for instance, a base station. The relevance edeth some of the equilibria to be global optimal operating points

networks lies on the fact that a formal network planning ig, o ger 1 ensure that the network operates in those eqailib

not required,_t_h_eir deployment is casy, quick and, more imp(fhat are globally optimal, a learning algorithm based on the
tantly, capabilities such as self-healing and self-cométan aradigm of trial and error learning [12] is proposed. The

a;e oftlt_an _prese_nt.l '(I'jherefo_rlg, DS|CNS sfpan a Iarg;num in characteristics of the proposed algorithm are stualietl
of applications including military, law enforcement, it interesting conclusions in terms of time to reach a globally

relief, space, and indoor/outdoor commercial applicatif, optimal NE are presented. Interestingly, the results ptese

[2]. ina bodv of h h i . here are introduced in the most general form in order to
A grov]:nr;]g fo é’ 0 reselarc Sg?gesi that Sel_'oggam“%?ovide not only a solution to the problem described abote bu
Is one of the fundamental capabilities decentralized NBVO ;¢4 ¢, provide a general framework for designing both games
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[23]. In [14], the authors consider a clustered multi-chelnnA. System Model
h network in which cl r r | n Il . . . . . L
ad . oc netwo . ch clusters are abg to sense a Consider a DSCN in which all its nodes coexist within
available channels in order to choose an interference-fr ee same spectrum subiect to mutual interference. Nodes are
channel. When an interference-free channel is not avai,lablir[Iranged inrt)o groups r:—:-ferred t0 as cells. Each éell is con
the choice on the channel is randomly made. In low populati ' . . ) e
y pop {olled by a CC that harmonizes the intra-cell communiaetio

density networks, this behavioral rule is shown to exhib strategically choosing a channel (frequency band) and a
an acceptable performance with very little implementatio gically 9 9 y .
ower level to be used by all the nodes in the corresponding

complexity. Nonetheless, in high population-density reks, P . : ) .
this approach is also shown to be highly suboptimal. Othg?”' This model represents either networks in which allesd

approaches are based on the use of the iterative wategfillﬁl:g 'gtgrzscid;ggo;méjnr'g::isgr\)'v'g: trr:(St\f/grll(sa riﬁcsx;\éiecrﬁ(ethge
(IWF) power allocation policy [15]-{17]. For instance, in C manages several point-to-point communications ingide t
[15], the authors prove that the IWF algorithm converges t% 9 P P

. : - L ?II. Let X = {1,2,...,K} be a set ofK cells. Let also
an operating point that guarantees a given transmissi@n rar (0 4 0 (1.} denote the set ok links within
while minimizing the transmit power. Such a convergencg ", f i 2 Wi o ks in the network is
is subject to the assumption that the system operates Ignot'ed by E U' £ with L — |2| the total number of
the weak interference regime. In [24]-[26], it is shown theﬁ . Y& = Dkek bk = I£]
. . . . . Inks in the network.
in decentralized networks the operating point achieved by be th ¢ h Is |
using IWF is often inefficient. To overcome this inefficiency L_e:] Ch - {1|’2’ -, C} e (;[ ?d sgt OHC hC anr:e S Into
solutions based on the cooperation of all transmitters a\?@'c the tota s_,pect_rum IS divided. All channe gains are
proposed in [27]-[29]. Among other approaches, includi sumed to be time invariant for the whole duration of one
those based on reinforcement learning, maximum-entro gsmlssmn._CeIk usels only ﬁne_chinnel dfenoted;l_;y.ec
reinforcement learning, smoothed best-response or dicti a transmit power levei, that is chosen from a finite set

L - B ; P =1{0,..., Pnax} Of Q = |P| power levels. The maximum
play, it is important to highlight the contributions in [J7], o . -
[8], [18]-[23]. The main drawbacks of these contributioas ¢ transmittable power level is denoted By, and it is assumed

be summarized in five pointsi) The converging point is a to be the same for all cells. A pair of a channel and a power

probability distribution over the set of all available chais '€V€! is referred to as aaction i.e, ax = (cr,pr) € A
and power allocations policies [21], [22], [30], [31]. Théore, whergA = C x P is the set of act_lons. .The_ super vector
the optimization is often on the expectation of the perfarosa describing the whole network conﬂgur%non IS d_enoted by
metric and the optimality is often claimed in the asymptoti¢ ~ (1,02, ..., ax) < A x o X A =A%, and itis often
regime. (i7) Often, optimal performance is claimed only in€ferred to as an action profile. _ .

the case in which the number of available channels is higher! "€ goal is to design a fully decentrallzedKaIgorlthm that
than the number of devices [20]jii) The results are not S€l€cts @ network configuration vectar < A™ that is a
general as often algorithms are designed for a particu@lution of the following optimization problem

metric, e.g., the transmission rate [4], [7], [8](iv) The %

channel selection problem is treated separately from thepo max Z o (a)

allocation problem [19], [20]; ofv) only the power control acAK 7 — 1)
problem is considered [23]. st.&(a)>T  WVle Ll

The functiongy, : AX — [0, 1] determines the performance
a) achieved by the celk when the actions chosen by
cells correspond to the action profie. The function

B. Structure of the Paper

The rest of the paper unfolds as follows. Sec. Il introducgﬁ(
the system model and describes a game in normal form thai |%.) . AK 5 [0,1] represents the QoS constraints to which

used as reference to present the main results. Sec. ||I>briq K ¢ is subject. The sef* C £ is defined as the largest set

gescrll\t/)es thl;el_trr:al and error _algtk))rlthm as rl]ntrodur(]:ed _'ri'4[|320f links for which the constraints in (1) can be simultandpus
ec. [V establishes a connection between the stochagtitarl o jisfiay Note that* depends on all the individual constraints

ble points of the TE algorithm, the NE of the game cited aboYﬁat are autonomously determined by each link. Thus, not

and the solutions to a global network optimization problemy, y,o ¢qnstraints might be simultaneously satisfiablging
sec. V pre_se_ntg some simulation results n oder to highl setL* is a mathematical maneuver in order to guarantee
some heuristic |m_provement3 that can be |m_plemented to At the optimization domain in (1) is not empty. Later, it
classical TE algorithm. Sec. VI concludes this work. is shown that there is no loss of generality by assuming
the setL* to be known in advance. The formulation in (1)
Il. PROBLEM FORMULATION might describe a large set of network optimization problems
This section describes the network model and a centralizédt do not necessarily need to be convex. For instance, by
network optimization problem whose solutions are assumedgroperly selecting the functiong, and ¢, it is possible to
be the desirable network operating points. Later, thisi@ect analyze problems such as: (a) the throughput maximization
introduces a game in normal form whose utility function iproblem subject to particular delay constraints; (b) thesmit
designed for making its Nash equilibria to coincide with thpower minimization subject to a particular network rellapi
solutions of the network optimization problem. constraint; and other problems.



Here, the final goal is to design a decentralized behavioral 1ll. T RIAL AND ERRORLEARNING ALGORITHMS

rule _that a||OWS the network to achieve an pperating pait  The purpose of this section is threefold. First, it provides

that is a solution of (1) based only on local intra-cell aable 5 prief description of the trial and error (TE) algorithm as

information. introduced in [12] and [32]; second, it describes the adiapta

of this algorithm to the game described in Sec. II-B; finally,

B. Game Theoretical Modeling it introduces some heuristic enhancements to optimize the
convergence properties.

This sub-section introduces a game in normal form

G = (IC, (At {uk}kelc) 7 @) A. Trial and Errqr Learnin_g Algorithm _

The TE learning algorithm can be described by a state
that models the problem described in Sec. Il. The Ket machine locally implemented by each player. The main featur
represents the players, i.e., ttié central controllers in the of this state machine is that the set of stochastically stabl
network; the setd represents the individual actions of allstates are the NE that maximize the social welfare.
players. Note that all players have the same set of actions. A At each iterationt, the state of playek is defined by the
action of playetk, denoted by, = (cx,px) € A=CxP,isa triplet:
pair made of a channel index (frequency band) and the transmi Zp(t) = {my(t),ar(t), ux(t)}, (5)
power level to be used by all links inside the correspondin
cell. The utility function of player is uy : A% — [0, 1] and
it is defined as

eremy(t) € {C,CT,C~, D} represents theood content
(C), hopeful(C*), watchful(C~), discontent{ D), a(t) € A
anday(t) € [0,1] represent thdenchmarkaction andbench-
1 mark utility, respectively. The state machine transitions and
uk(@) = 1+ BLome (90’“(“) +6 ]l{éz(a)>F}> (3)  behavior are detailed hereunder. Note that the notatien b
teLy indicates that variable takes the value of variable

wheref is a design parameter that tunes the tradeoff betweerContent: Lete € [0, 1] be an experimentation parameter and
the number of links that can be satisfi®d, ., 1i¢,()>r}, asSUme that the state of playeat timet — 1 is Z,(t — 1) =
and the maximization of the functiop,. The utility function {C,ax(t —1),ux(t —1)}. Then, at iteratiort, it selects its
in (3) is a generalization of the utility function proposed i action according to the following rule: with probability —
[33]. More importantly, it is chosen such that it exhibityesel €), it plays the benchmarked action,(t) = ax(t — 1) or
useful properties. First, it is monotonically increasingthw With probability ¢, it plays another action randomly selected
both the number of links that are able to satisfy their indlisail  ax(t) # ax(t — 1). Once player has played actiomy (t), it
constraints inside the corresponding delland with the value ©observes the value of its utility functiom(t).
of the functionyy, that determines the global performance of The player updates its state as followsauif(t) # ay(t—1)
cell k. Second, as shown in Sec. IV, for a particular choice @nd ux(t) < ux(t — 1), then Zy(t) < Zi(t — 1); If
the parametes, there exists an algorithm whose stochasticallyx(t) # ax(t — 1) and ug(t) > ux(t — 1), then, with
stable points are both equilibria of the gagieand solutions Probability e« =ux(=0) it sets my(t) < my(t — 1),

of the optimization problem in (1). ar(t) < ax(t) and ug(t) < ux(t), while with probability
The notion of equilibrium used in the following of this (1 feG(“k(t)’ak(t’l))), it sets Zy(t) < Zp(t — 1), If
analysis is that proposed by Nash in [34]. ar(t) = ap(t — 1) anduy(t) > ak(t — 1) then,my(t) < CT,

(_],k(t) = C_Lk(t — ].), ’l_l,k(t) = ﬂk(t — 1); If ak(t) = (_],k(t — ].)
Definition 1 (Nash equilibrium in pure strategies). An actior@nNdux(t) < t(t — 1) thenmy(t) <= C~, ax(t) <= ax(t — 1),
profile a* € AKX is an NE of the gam@ if Vk € K and @x(t) < ax(t —1).
Va, € A Note that if playerk does not experiment (it plays its
4) benchmarked action) and its utility increases, then it beeo
hopefu| while if it decreases, it become&gtchful Here, the

The motivation for adopting the NE as the solution concept $nction G : R — R must be such that:

the gamej relies on the fact that at an NE, the action adopted 0<G) < 1' (6)

by every player is optimal with respect to the choices made by - 2

all the other players. That is, if a playgrdecides to deviate Numerical simulations suggest that a linear formulatiochsu

from its individual NE action, its utility can only be degedl as: G(Au) = —0.2Au + 0.2, with Au = u(t) — ar(t — 1),

if the system is at such NE. Therefore, from a decentralizgérforms well under several scenarios.

point of view, this property is particularly desirable. Hopeful: Assume that the state of playkerat time¢ — 1 is
In the case the gant possesses several equilibria, they caf, (t—1) = {C", ax(t — 1), ux(t — 1)}. Then, at iteration, it

be compared by calculating their corresponding sum-ytilitplays the benchmark actian,(¢) = a, (¢t — 1) and it observes

i.e., the sum of the utilities obtained by all players at théhe value of its utility functionuy(t). If uk(t) > ar(t — 1)

corresponding equilibrium. Therefore, the rest of thislgsia then,m(t) < C, ax(t) < ar(t — 1) andag(t) < @, (t — 1);

focuses on those NE that are maximizers ofgbeial welfare otherwise,m;(t) < C—, ap(t) < ax(t — 1) and ax(t) <

function W : AX — R defined byW (a) = Y1, ux(a). a(t—1).

uk(ay, a’y) > uk(aj, a’y).



Watchful: Assume that the state of playkmt timet —1is contentmood and denoted bk experiments with probability
Z(t—1) = {C~,ar(t — 1),ux(t — 1)}. Then, at iteration, it ¢*(¢) a different channel and with probabilitfj(¢) a different

C

plays the benchmark action,(t) = a, (¢t — 1) and it observes power level. The evolution of*(t) is given by:

the value of its utility functionuy(t). If ug(t) > ar(t — 1), k .

_ _ _ _ X k(¢ — ec(t=1) _min if 1 =|C
thenmy(t) < C+, g (t) < p(t—1) andag(t) < ap(t—1); ee(t) = max (=5, € it > e, Lion(a)>ry = Lkl
otherwise,my(t) < D, ux(t) < ur(t — 1) and ax(t) < eft) = €8(0) otherwise

ag(t—1). (8)
Discontent: Assume that the state of playerat timet—1 In (8), €/ > 0 represents the minimum experimentation

is Z,(t — 1) = {D,ar(t — 1), ux(t — 1)}. Then, at iteration probability over the available channels anf(0) > e"

t, it randomly selects an actioy,(t) and observes the valuerepresents the initial value. These parameters dependeon th
of its utility function wu,(t). The state is updated as follows:pparticular configuration of the system. Through numerical
with probability p = e"(“+(®) it setsmy(t) < C, ux(t) <« simulations, it has been found that some well-performing
ug(t) andag(t) < ax(t — 1); with probability (1 — p) it sets values aree!™™ = %% and ek (0) = 0.01%. Since no prior
my(t) < D, ux(t) < ui(t) andax(t) < ax(t). The function information is available on the channels’ gain, the experim

F : R — R must be such that tation on the channels follows a uniform distribution.
1 Each playerk experiments a different power level with
0< Fu) < 5 (7) a constant probabilityek. Such a probability is a uni-

N ical simulati ¢ that a i ¢ latiohs form distribution over all the levels greater tham, if
umerical simulations suggest that a linear formulatiod ufnGCk]l{¢n(a)>F} < |L4], whereas it is uniformly dis-

. — 0.2 0.2 i
aSI'F(;‘% o dK3u2+ {F] pen‘t?]rms well u(r;dtﬁr tscter\]/eratl schena;_rlol ributed over all the levels smaller thap, otherwise. Through
N[ ]"’?“ [ ]'. € authors proved that the stochasticaly o ygjye simulations, it has been found that a well-peariog
stable action profiles of the trial and error algorithm (i.e ko C
. . . value ise; = 0.01%.
action profiles that are played most of the time) are those P

T . “When a playel is discontentit experiments according to
NE that maximize the social welfare. Theorem 1 restates thme followin% dyistribution' & P 9

main results.

_ i ity min (€
Theorem 1 Let G have at least one pure NE and let each{ Pr(t) = Pumax  With probability min (f, 1)0 _
player use TE. Then, for eachsmall enough there exists a | Pr(t) = 0 with probability max (1 — 7, 0) ©

0 such that a pure Nash equilibrium that maximizes the sum
utility among all equilibrium states is played — §) fraction
of the time.

The rationale behind this is that adisconteniplayer needs

to test the network looking for a free channel. Clearly, the
probability of finding a free channel increases wi% On
Theorem 1 states that if all players implement the TE algé?e other hand, in the case in which no channel is free for
rithm and there exists at least one NE, then the NE with tli&nsmission, zero power should be used to avoid wasting
highest social welfare is played duringaage fraction of the €energy and creating interference.

time. In general, the quantity — § depends orx and on the

particular gam&;. When players implement the TE algorithm, IV. CONVERGENCE STUDY

the notion of convergence largely differs from the classica g gection presents the main theoretical results of the
idea of convergence, that is, a dynamic distance m'”'m“at'paper. A strong connection between the solutions of the

with respect to a certain action profile (e.g., an NE, a cateel optimization problem in (1) and the NE of the gargeis
equilibria, etc), indeed, once such a limiting action pef# si4plished via the utility function (3).

reached, the system remains static. The convergence of the

TE algorithm must be understood in terms of the time players o )

remain at a given action profile. Indeed, the system can fe Equilibrium points

at an NE, but it might arbitrarily leave it to experiment atheTheorem 2 Let all the players of the gam@ implement the
action profiles. Therefore, in this setting, convergenderse TE algorithm with the utility function in(3), and letg € R

to the fact that the system remains on certain action profileatisfy3 > K. Let alsoAxg be the set of NE of the gange

a large fraction of the time. and assume it is non empty. Denoteyythe number of links
satisfied at thea-th NE, withn € {1, ..., | Axg|} and letA =
maX,e(1,..|4Axs|} An- 1h€N, the TE algorithm is stochastically

) ] stable in an NE in which there are at leastlinks that satisfy
This section presents some enhancements to the TE alggsir individual constraints.

rithm in order to improve its performance. In its standard

formulation, the TE learning algorithm [12] is charactedz Theorem 2 states that, if each player sgts> K, then the
by a time invariant and a uniform distribution over the wholestochastically stable points of the TE learning algorithra a
action set. Motivated by the fact that experimentationshen tthose NE with the largest possible number of links satigfyin
set of channels brings higher instability than experimimta their constraints. Heregj represents the trade-off between the
on the set of power levels, the experimentation is divided ininterest in satisfying the constraints for the largest $din&s
two different steps. In detail, at each instaneach player in a and the maximization of the sum of the objective functions.

B. Enhanced Distribution and Settings



The next theorem links this result with the global optimiaat
problem in (1).

k=1
Theorem 3 Let all the players of the gamg implement the k=2
TE learning algorithm with the utility function irf3), and
let 3 € R satisfy 3 > K. Let AT C AKX be the set of
solutions of the optimization problem if1), and let £* be
the largest set such that a € A" and ¥/ € £*, &(a) > T k=K

and |£*] = L*. Let also Axg be the set of NE of the
gameg, and assumedng N A" is non-empty. Then, the TEFig. 1
algorithm is stochastically stable in an action profd€ such
thata* € Axg N A'.

Simplified system model: symmetric parallel intezfece channel.

Note that the set of solutions of (1) is non-empty as long
as there exists a sét* such that the optimization domain is
not an empty set. This theorem states that the stochagticall
stable points of the TE algorithm are those NE that maximizgy 2. wmarkov chain describing the TE learning algorithmtie network.
the sum of the network objective functions among the actidihis model is used to study the convergence to the NE. The dfat
profiles that satisfy the constraints for the largest pdssiet represents an NE action profil€lx_;, represents a state in whicki — k

. . . L . players are using an individually optimal actiai, represents a state in which
of links. For instance, if the network objective functiops(-)  at least one player idiscontent
are decreasing with respect to the power levgl then the
stochastically stable points are those NE which satisfy the
constraints for the largest number of links and minimize th@e following, it is assumed that > K, and that the channel

power consumption. gains follows the weak interference model as in [10]:

) _ 1 VkeKandVeeC
ek~ (12)

B. Convergence time gl =1 Vkekandvjek\ {k} andveeC

This section studies the convergence properties of the T ] o _ _
algorithm in a particular scenario. In the light of the description made in Sec. Ill, if the number

More specifically, the TE learning algorithm defines a larg@f Players K is large enough the following can be stated:
discrete time Markov chain (DTMC) over the set of the state&!) the fraction of time playerk is either atwatchful or
Studying the behavior of the algorithm on such a chain ispPefulstate is negligible compared to the fraction of time
difficult problem due to the number of states, transitiond art SPends indiscontentor contentstate; (i) at any time,
parameters. For this reason, a simplified version of theesystthe probability of having more than one play@iscontentis
model introduced in Sec. II-B is considered. This allows thgignificantly lower than the probability of having only one o
estimation of the average number of time instants that g@discontenplayer. Infact, in (7) the probability of accepting
required to reach an NE for the first time and the expect& outcome of the experimentation for a player which is

fraction of time the system is at an NE action profile. discontent is close to one, moreover players do not adopt a
For the ease of the presentation, consiflgr= 1, i.e., each watchful or hopefulstate for more than one iteration. Sec. V

shows that these results are good approximations under less
restrictive conditions as well.
pr(a) = 1— 2= 10 Under the_se condi';ions,_ the resulting [_)TI\/I_C for studying
&(a) = SINRy(a). (10) the TE_Iea_rnlng algon_thm is represented in Fig. 2.

) ] ) o o In this figure, the final state represents an NE, the states
In this particular formulation, the aim is to minimize thgapeled withCx_; are those in which — k players use an
transmit power while keeping the SINR above a threstiold individually optimal action and> a state in which one player
for the largest number of links. In (10), since there is only discontent The transition probabilities are listed hereafter
one link per cell, the link index is the same as the cell indexhe reasoning behind these transition probabilities\ismin

cell possesses only one link. The functignand¢ are defined
as:

Therefore the SINR of link is evaluated as: the appendix):
(eg)
SINRy, (a)= Pk Sk k , (11) _ KE-1% (@-1)°
2 Y Peg;(;'ﬁ)]l{c,_:ck} PN, D) c* ( Q ) (13)
LeR\K P(D,N) = ngfl) (14)
where i’ indicates the channel power gain between the P(D,Cky) = G (15)
transmitter of linkk and the receiver of linkk over channel P(Cxp, Cxiq) = (K — k>%—_Qk€' (16)

cx; ando? represents the noise power. This problem has been
also studied in [33]. Note that it is possible for the recesveHere, P(N, D) is the transition probability between an NE and
to evaluate the SINR through pilots or training sequenaes. & state in which one player éscontent P(D, N) is transition



5000
probability between a state in which one playediscontent Fr

and an NE;P(D, C'kx_y) is the transition probability between asoor -/
a state in which one player @iscontentand a state in which ‘
K — k players are using an individually optimal action; and
P (Ck_k,Ckx—_k—1) is the transition probability between a 35001
state in whichK — k players are using an individually optimal
action and a state in which — k — 1 are doing the same. The
analysis of this DTMC leads to state the following theorems. 2500

4000

3000

2000% ,

Theorem 4 Let K, C, @, and ¢ be the number of players,
the number of channels, the number of power levels and the 59

experimentation parameter respectively. Asswhe K. Let 1000k A A
L, = 1 and let the channel power gains be given (d). yara ‘\ .
Then, if all players implement the TE learning algorithme th S00F -+ S ‘g \
expected number of iterations needed to reach the NE for the 0* ‘ ‘ ‘ | ‘
first time, Ty g, is bounded as follows: 0 1000 2000 3000 4000 5000
_ Fig. 3. A5 km x 5 km square field divided intd{ = 16 cells. Nodes are
Tne < & 1+ log w (17) npositioned randomly inside each cells.
- e(C-K) C+1
— cQ K(C—-K)\\ .
Tne = (C-K) (7+10g< C + (18) V. SIMULATION RESULTS

This section provides numerical evaluations of all results
presented in this paper. To implement these simulations, tw
écenarios are considered and reported in Figure 1 and Figure
3, respectively.

where,y ~ 0.577 is the Euler-Mascheroni constant.

Note that the time needed to visit for the first time an N
is directly proportional to the dimension of the action $e. (
|A] = CQ) and inversely proportional to the experimentation
probability e. A. Numerical Validation

Theorems 4 and 5 allow the calculation of the fraction
Theorem 5 Let K, C, @, and ¢ be the number of players, of time the system uses an NE and the average number of
the number of channels, the number of power levels aiigirations needed before visiting the NE for the first tineaa
the experimentation parameter, respectively. Assaine &, function of several design parameters when the channegain
L, = 1, and let also the channel power gains folldd2). follow (12). The following shows that these results alsodhol
Then, if all players follow the TE learning algorithm theunder a more general formulation.

expected fraction of time the system is at an NE is: All experiments presented here are run on the scenario
represented in Figure 1, with two different sets of paransete
(1-06)~ 1 , (19) The first set is composed off = 3, ' = 4, ¢ = 0.02
1+ P(N,D)TpNE and6 < @ < 10; the second one is composed Bf = 4,

C =5,¢e=0.02and6 < Q < 10. In the first experiment,

the fraction of time the system uses an NE is estimated by
K P(D,N) running107 iterations under two different channel models: the
Tpng =~ ZP(D7CK—k)TCNE(k) + : simple channels expressed in (12) and a channel power gain

where

e
k=1 (1-P(D,D)) randomly drawn from a Rayleigh distribution. These results
N cQ K(C-k+1) are summarized in Fig. 4. The dashed line and the continuous
Tenp(k) = ————= |(v+log|—F—7—) ) : . _
e(C—-K) C+1 line correspond to the theoretical results with the first and
K the second set of parameters respectively. The resultseof th
P(D,D) = 1-—P(D,N)-— Z P(D,Ck_). simulations are close to the lines for both channel models.
k=1 In the second experiment, the number of iterations needed

hat the £ Usi . q q to visit an NE for the first time is estimated and compared with
NOt? that t elgrequJr:a_ncy 0 usmhg anhNIIE, I.(al,;@' eﬁen S the analytical results in Fig.5. Increasing the dimensibthe
on z as in (13). This means that the |arger € Shorter 4ction set, i.e., increasing or @, brings slower convergence

the time the system is at an NE. The approximation is giveQieg gince the algorithm requires more time to explorehall t
by the fact thatl's y g is replaced by its upper bound. possibilities

These theorems show that the stability of the TE algorithm
and the time it needs to visit an NE for the first time are o
influenced by the experimentation probability. Lower valueB: Convergence Nash Equilibrium
increase stability while higher values increase the spded oThe following shows the effect of the enhancement on the
convergence. stability and in the speed of the algorithm in reaching any
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Fig. 4. Fraction of time the system is at the NE, with the TEHe®
algorithm, e = 0.01 and uniform probability distribution over the action set. ol
Theoretical results are represented by the continuous, Isimulation results 107

are represented by the markers for two sets of data and adiffeshannels:
Rayleigh and the model in (12).
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. - Fig. 6. The plot represents the probability of observing e learning
- algorithm selecting an action profile which is an NE as a fioncof ¢, and
2500

Iterations
*
Iterations

7 § 200 em". The underlying network is composed &f = 4 cells, L, = 1 links per
2000 * 2000 . cell, C = 4 channels and) = 5 power levels. Thel"" values are reported
1500k 1500 . . in logarithmic scale.
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Fig. 5.  Number of iterations needed for the algorithm totvési NE for
the first time. Simulations run with the standard &= 0.01 and uniform
probability distribution on the actions set. The continsitines represent (17),
the dashed lines represent (18).

Iterations

stochastically stable point. A total af)* iterations of TE are
run with an underlying network as the one depicted in Figu
3, with K = 4 cells each populated with one link{ = 4
channels@) = 5 power levels and a target SINR Bf= 10 dB.

In Fig. 6 the probability with which the TE algorithm selectt
an NE as a network action profile is plotted as a function «
the experimentation probabilities, and €. Reducing the
minimum experimentation probability on the channel ségsibrig 7. The plot represents the number of iterations betweern and the
decreases the instability of the system and thus incre&gesitstant in which an NE is played for the first time as a functifne, and
probability of the system of being at the NE. On the othéf - The underlying network is the same as in Fig. 6.

hand, the stabilizing effect of reducing the experimentati

probability on the power levels is balanced by the longeetim ) ) )
that is needed for the system to reach an NE, as showedTgauency on the power levels should be re_latlvely h|gh.,lavh|
Fig.7. In this figure, the number of iterations used by the T one on the channels should be relatively low with the
learning algorithm to reach, for the first time, an NE is mdtt exact optimal values depending on the other parametersof th
as a function of the experimentation probabilitigsandemn,  Network.

Note that, the number of iterations needed to reach for the

first ti_me an NE represt_ants also a measure of the speed of ghepea tormance Metrics

algorithm to reach again an NE, once it is left. From a real-

system implementation point of view, it is also an estintatio The following metrics are considered to evaluate the per-
of the ability of the algorithm to react to network changetprmance of the proposed algorithm:

that modify the NE set, e.g. fading, shadowing, mobilitg.et o Average satisfaction (AS): The average number of times
By inspecting both plots, it appears that the experimemnati a link satisfies its SINR constraints.
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« Average power consumption (APC): The average pow
used by the transmitters in a cell to achieve the corr
sponding satisfaction level.

« Average satisfaction over average used power ratio: T}
metric establishes the ability of the algorithm in satistyi }
the constraints with respect to the average power uset 0

Average Satisfaction

0 560 1(;00 1560 ZO‘QO 25‘00 3060 35‘00 40‘00
The simulation scenario is represented in Fig. 3. Consid eratons
a static network composed & = 16 cells each withV;, = 4
links, C' = 10 channels, and the maximum powe&Y.. =
50W is quantized in@QQ = 8 logarithmic levels. The results
are reported in Fig. 8, where the upper plot represents the .
while the lower plot shows the APC. The figure shows thi
the TE algorithm is able to drive the network to an almo:
full satisfaction by averagely employing onlpW. Note that,
even though the first visit to an NE may happen quite late, tl O 500 1000 1500 2000 2500 3000 3500 4000
global performance at non-equilibrium states is high. Tiis lterations
due to the fact that the probability of playing an action gsow
with the social welfare of the action itself [32]. Secondy.R8 Fig. 10. Performance comparison between TE (red contintiog3, the
shows that even when an equilibrium is achieved, the systegfchronous IWF (dotted line) and the global optimum (ddshee). We
sometimes attempts to use sub-optimal action profiles. ihigepresent, in the upper plot, the AS, in the lower plot, theCAR/e run400
due to the stochastic nature of the TE learning algorithnieN 'tf)gﬁ'lg?;d O\Lifﬁ%hn:'ﬁ’r?&”chr‘; g”cﬁa?ﬁg’lvgg iogngg\fvz(ﬁ%eg gells, each.
that there exist a natural tradeoff between the time neealedatailable power ofPyax = 50W.
visit an NE and stability of such an equilibrium. In order to
decrease the time needed to visit an NE, the experimentation

1
probability needs to be large while, in order to improve theerms of the ratioM are reported in Fig.9. The TE

stability it needs to be small. learning algorithm allows the cells that cannot satisfyirthe
Furthermore, the TE learning algorithm is compared witbonstraints to stop the transmission for a short periodnoé i
the greedy based decentralized algorithm (GBDCA) desdrib&hich increases the efficiency.
in [14]. Briefly, this algorithm solves the graph-coloringpp- The following compares the performance of the TE learning
lem, by letting each CC detect the channel employed by #tgorithm with the one of synchronous IWF and the global
neighbors. If a CC detects that it is using a channel alreadgtimum. ConsiderK = 16 cells, N, = 1 link per cell,
occupied by one of its neighbors then it chooses randomly = 5 channels, = 5 power levels and a target SINR
another channel among the free ones. If no channel is frée,= 10 dB. In the synchronous IWF each transmitter has
then it does not change its strategy. Since this algorithesddull knowledge of the transmit channel state informatioagie
not consider a power allocation policy, its transmissiow@o transmitter may exploit multiple channels; the power akian
is set toP,.«. In this context, the GBDCA is compared withroutine happen at the same instant for all transmitterspaicti
the TE learning algorithm when the quantization levels ateansmitter attempts to achieve a transmission rate equal t
reduced toQ) = 2, i.e.,, an ON-OFF policy. The results, inlog, (1 +I') with the minimum necessary power. The results

o - - t= 0= - - 0

Average Power employed




of the experiment are reported in Fig. 10. Analogously, the social welfare associated with is

The first figure reports the AS in the upper plot and the AP n i
in the lower plot. In these plots, the dashed line represen s(a ) = ;Cu’“(a )
the global optimum, the continuous red line the performance ©
of TE algorithm and the dotted line the performance of the _ 1 +
synchronous IWF. The action profiles chosen by the TE algo- ,;C 1+ BLmax (W(a )+ ﬁz;gk ]1{57““)”})
rithm approach the global optimum both in terms of constsain %
satisfaction and in terms of power drain. The synchronous S <5L+ +Z¢”“(a+)> , (22)
IWF, even though it is allowed to exploit a larger amount of 1+ BLmax k=1

information, is not able to select an action that satisfies th

_— K -
constraints for a large proportion of the links. By definition, vV .a € A%, andV k € K, gr(a) < 1 and

thus W(a™) < ﬁLthfx' Then, using the assumption that

Lt < L* —1, it holds that

L* — K
VI. CONCLUSION Wat) < B B+ '
1+/8LIIIB.X

erefore, from the assumption thét> K it is possible to

In this work, strong connections between the solutionsgg,|
rite

a centralized network optimization problem and the Na
equilibria of a given game has been established via the nlesig
of the corresponding utility functions. More specificallyhas BL* — B+ K BL*
been shown that by properly choosing the utility functidn, i 1+ Bl < 1+ 8L’
is possible to make a decentralized network to be stable at a . . . » .
global optimal operating point. More importantly, it hasehe thus, following the chain of inequalities, it holds that

(23)

shown that such equilibria can also be achieved by usingdeal? (@) < W (a"). This concludes the proof. u
ing algorithms following the paradigm of trial and error.€r'h

intuitions on the utility function design as well as the xelece APPENDIX B

of the trial and error learning are shown using the the séenar PROOF OF THEOREM3

of a decentralized multi-channel ad hoc network. Using this Proof: From the assumptions of Theorem 3, the inter-
network model, some heuristic enhancements have been %Iégtion bétween the set of NExg and the set,of solu-

presented to improve the convergence of the algorithm aﬁgns of (1) At is non empty, i.e.Aws N AT #£ 0. Let

theoretical bounds on the time to reach an equilibrium are. € Axm N At be an arbitrary element of the intersection
formally proved.

andL* = 3, Li¢(a-)>ry the number of links that satisfy
their constraints. Sincex* € AP it results that L* =
maXge AK Zéeﬁ Li¢(a)>ry, 1€, L* is the maximum number

APPENDIXA of links that can simultaneously satisfy their constraifft®m
PROOF OF THEOREM2 Theorem 1, the set of the stochastically stable action psofil
. . is = {d eAX :d . W } Hence,
Proof: Consider two arbitrary Nm* anda® € Axg, Are @ € A" :a €argmaxeeay: W(a)

proving the theorem is equivalent to prove thdtg C

such thatZZeE ]1{5(@*)>F} = L*, ZZGE ]l{g(a+)>r} =Lt ¥ . o . -
with L* > L+ + 1. From Theorem 1, the stochastically stabl Axg N AT). From its definitionArg C Axg, thus it remains
o0 prove thatdry C A'.

points of the TE algorithm are the NE that maximize th
social welfarelV. Therefore, proving the thesis is equivalent
to proving thatiV(a*) > W(a™).

The social welfare associated witti* using the utility in

Let A* C Axg be the set of NE such that a €
* Yver Liea)>ry = L*. Then, it results that/ a® e
AK N\ A it hold that}",. - Le,(atysry < L7 Thus, from
Theorem 2 and the assumption that> K, it holds that

(3)is W(a*) < W(a),V a* € (AK \ A*) andV a € A*. There-
o . fore the set of stochastically stable points can be expdesse
W) = ]%’:Cuk(a ) Arg = ial e AX . a’ € argmaxgear W(a)}. The social
welfare of the action profiles odl* is:
1 *
= > Ry <90k(a )+8 ) ]l{gi(a*)>r}>
keK max LELy, K
K W(a) = BL"+ Y ¢i(a). (24)
1
= —— 8L . 2 —
T <5 +I;Sﬁk(a )) (20) k=1
B Therefore, , AT8MmaXaea: W(a) =
Sinceyy, is a non-negative function, it holds that argmaxaea- »_p_; ¢r(a). Thus, Arg is the set of the
action profiles tI}?lt satisfy the constraints fb¥ links and
. BL* maximizes the>";_, ¢x(a), hencedry C Al
W(a®) = 1+ Bl (21) " This concludes our proof. ]
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APPENDIXC large enough, the accepting probability can be approxithate
MARKOV CHAIN TRANSITION PROBABILITIES by e/'(*) ~ 1. When a player isliscontentit is possible for
A. Transition probability from an NE to discontentstate it to accept as a benchmark action the one that makes another
E{%Iayer to change into discontentmood. Then, the transition
p?obability towards staté€' ;. is given by the product of the
probability of disturbing(k — 1) players that were at an NE

sys_tem to exit an NE.’ a player must bass fromo&n?entto before selecting a free channel or a channel used by a player
a discontentstate. This happens only in the following Cas&; ot is not at an NE. The probability of colliding with— 1

at time ¢ player k& experiments and during this experimen- N
tation k interferes with enough power to turn playkiinto players is given by

The transition probability between an NE state and a st
with one discontentplayer is denoted by’(N, D). For the

watchful, at time(¢ + 1) player m experiments and during (K —1) (K —2) (K -3) (K—-k+1) (K -1)
this experimentationn interferes turningl into discontent C C c C - CFHU(K — k)
The probability of at least one player experimenting in the (29)

system is given byP. = 1 — (1 — e)K. By using the first While the probability of selecting a channel free or used by a
two terms (reasonable sinee< 1 implies ¢V <« V-1 player not using an individually optimal action w

of the binomial expansiorl + (—))* = Zszo (%) (—e)k  Therefore, the product is:

it holds that P, ~ Ke. The probability that the playek 1 (K —1)
disturbs another one, sdy is given by: (a) the probability P(D,Ck ) =
of choosing an already occupied channel multiplied bythe

probability of selecting a power level high enough. As a wors N .
case scenario, assume that any power level greater than fstTransition probability fromCr . t0 Cr—p41
quantization level is enough to create an intolerable lefel The transition probability between a state in whikh— &

!
EM(C—KJrk). (30)

interference. Thus, this probability is given by: players are using an individually optimal action and a siate
K-1(Q-1) Whi_ch K — k 4+ 1 players are using an ind_ividually optimal
Py = < g (25) action is denoted byP (Cx_1,Ck_rt1). Since no player
——— is discontentthe transition happens through experimentation.
(@) ®) To pass from a state in whickk — k players are using an

The probability that a player different fromexperiments is individually optimal action to another one in whidi — £+ 1

(K — 1)e, the probability of choosing the channel employeére doing the same, the following sequence of events must
by I is £ and the probability of selecting a power level higthappen: at least one of th& — k players experiments; it
enough is again given by (25). Therefore, selects one of the available individually optimal actioasd

it accepts the action. Thus, the transition probability is
P(N, D)= KENE (1)L E0 (26 P oo P Y
K(K-1)22 [0-1\2 P(Cx_p,Cx_ = (K — k)e ——— G(Aw) 31
_ (=1) (%) . 27) (Ck—k, Cr—kt1) = ( ) co . (3D

(@) T ()

= (K — k)HGHG(AU). (32)

B. Transition probability fromdiscontentstate to an NE

Here, we aim at evaluatind’(D, N), i.e., the transition cQ
probability between a state in which one playerdiscon-
tentand a state in which all players are at the NE. Therefore, APPENDIXD
one player is performing aoisysearch. Thus, the probability PROOF OFTHEOREM 4
of immediately returning to an NE is given bya) the Proof: With a standard Markov chain analysis, starting
probability of selecting a free channel tim@g the probability from state Cy, the expected number of iterations before
of selecting enough power. Thus, we obtain: reg(cp{ng for tlhe first time the NE is given b{fvp =
Co(K-1) 1 D keo e 1.0 o) Substituting, we obtain
P(D,N)= —— — . (28)
N ALY, cg = 1
~~ Tvg = Z
(a) ® COFGam) 2 (K =) (C— k)
k=0
cQ o 1
;ét'(l;ransmon probability from a discontent state to a conite = oG C—K) ;0 (K % 0o k) (33)

The transition probability from a state with ordiscon- Given (6) and the fact that< 1, the following approximation
tentplayer to a state in whiclk — k players are employing an holds ¢ +G(4%) ~ ¢ For the sake of simplicity, in the
individually optimal action is denoted b¥(D,Cx ). The following, the pre-multiplying constant factor is omittesd
discontentplayer selects a random action, then the probabilitiefinem = K — k. Thus, equation (33) can be written as

of quitting thediscontenstate to a state in which on(yX — k) )
players are using one of their individually optimal actions Z <_ _ > (34)
depends on the acceptance functiofu). Given (7) and fors’ —\m C-—K+m
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It is known thaty % _ L <1+ [ Lgz thus: Tip,NE) = Yy nP(D,N)P(D,D)"~1). These equalities

imply the following

K
1
— <log (K)+1. (35) P(D,NE)
mz::l m Tove) = (1- P(D,D))*’ (42)

It is also known that the harmonic sum is such that whereP(D, D) is easily obtained by imposing the sum of the

K

1 probabilities to be equal to:
— > log (K) + 1. (36)
m=1 m K
P(D,D)=1—- | P(D,NE)+ » P(D,Ck_ . (43
Consider that/n > 1, with K e N andA € N, ( ) < ( ) kz::l ( ® k)> (43)
K+1 K 1 K On the other hand, it is possible to transit from the disaonte
/n Aerdx < Z A+m < - A+xd357 (37)  state to a certairCk_j, State a_md the expecteq time steps
m=n needed to return to the NE starting from stétg_; is denoted
and thus, for the second addend it holds that: by Tene(k). This quantity can be upper-bounded by using
K (37):
> S Y <L> (38) cQ K(C—Fk+1)
C—-K - C—-K)’ el S 4
m=1 o Tene®) < Te@m (0o K <7 *loe ( Ci )> '
K (44)
Z - > log ( c+1 > ) (39) In the following, this upper bound is used as a close enough
S C—K+m — C-K+1 approximation of the true value. Moreover, given (6), anet

1, it follows thate!*¢(A%) ~ ¢, As consequence, the expected

By joining together equation (35) with (38) and (36) with. X :
(39), and by reinserting the omitted multiplicative factae ime Ty to return to an NE when the system deviates is

obtain the result, and this concludes the proof. s 9VEN by:

APPENDIXE
PROOF OFTHEOREMb5

Proof: The average fraction of time the system is at an
NE can be expressed d% — 6) = ~2—, whereTy is the

Tror’

expected time spent at an NE once it has been reached and by

This concludes the proof.

K
Tene =Tp,NE) + Z P(D,Cx_p)Tcne(k).  (45)
k=1
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