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Self-Organization in Decentralized Networks: A
Trial and Error Learning Approach

Luca Rose,Student Member, IEEE,Samir M. Perlaza,Member, IEEE,Christophe J. Le Martret,Senior
Member, IEEE,and Mérouane Debbah,Senior Member, IEEE

Abstract—In this paper, the problem of channel selection and
power control is jointly analyzed in the context of multiple-
channel clustered ad-hoc networks, i.e., decentralized networks
in which radio devices are arranged into groups (clusters) and
each cluster is managed by a central controller (CC). This
problem is modeled by game in normal form in which the
corresponding utility functions are designed for making some
of the Nash equilibria (NE) to coincide with the solutions toa
global network optimization problem. In order to ensure that
the network operates in the equilibria that are globally optimal,
a learning algorithm based on the paradigm of trial and error
learning is proposed. These results are presented in the most
general form and therefore, they can also be seen as a framework
for designing both games and learning algorithms with which
decentralized networks can operate at global optimal points
using only their available local knowledge. The pertinenceof the
game design and the learning algorithm are highlighted using
specific scenarios in decentralized clustered ad hoc networks.
Numerical results confirm the relevance of using appropriate
utility functions and trial and error learning for enhancin g the
performance of decentralized networks.

Index Terms—Ad-hoc networks, Resource allocation, Interfer-
ence management, QoS provisioning, Game theory

I. I NTRODUCTION

A decentralized self-configuring network (DSCN) is an
infrastructure-less network in which transmitters communicate
with their respective receivers without the control of a central
authority, for instance, a base station. The relevance of these
networks lies on the fact that a formal network planning is
not required, their deployment is easy, quick and, more impor-
tantly, capabilities such as self-healing and self-configuration
are often present. Therefore, DSCNs span a large number
of applications including military, law enforcement, disaster
relief, space, and indoor/outdoor commercial applications [1],
[2].

A growing body of research suggests that self-organization
is one of the fundamental capabilities decentralized networks
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Supélec, Plateau du Moulon, 91192, Gif-sur-Yvette, France (e-mail: mer-
ouane.debbah@supelec.fr).

must exhibit [3]–[8]. The term self-configuration refers to
the capability of radio devices to autonomously tune their
transmit-receive configuration for efficiently exploitingthe
available resources and guaranteeing network reliability. In
the most general case, a transmit-receive configuration can
be described in terms of the number of information bits per
block, the block length, the codebook, the encoding-decoding
functions, the channel selection policy, the power allocation
policy, etc., as suggested in [9]–[11].

This paper focuses exclusively on the self-configuration
dimension of these networks and more specifically, on the case
of multiple-channel clustered ad hoc networks, i.e., DSCNsin
which radio devices are arranged into groups (clusters) and
each cluster is managed by a central controller (CC). The
main task of the CC is to choose the logical channel in which
its cluster must operate and to determine the power levels to
be used by all radio devices inside the cluster. Hence, this
network model is both decentralized, in the sense that there
exist several CCs autonomously taking decisions, and also
centralized, in the sense that radio devices inside a cluster
implement the decision adopted by their corresponding CC.
The decision-taking problem faced by all CCs is modeled by
a game in normal form and the corresponding utility functions
are designed for making some of the Nash equilibria (NE) to
coincide with the solutions to a global network optimization
problem. That is, the utility functions are designed to make
some of the equilibria to be global optimal operating points.
In order to ensure that the network operates in those equilibria
that are globally optimal, a learning algorithm based on the
paradigm of trial and error learning [12] is proposed. The
main characteristics of the proposed algorithm are studiedand
interesting conclusions in terms of time to reach a globally
optimal NE are presented. Interestingly, the results presented
here are introduced in the most general form in order to
provide not only a solution to the problem described above but
also to provide a general framework for designing both games
and learning algorithms with which decentralized networks
can operate at global optimal points using only their available
local knowledge about the network.

The use of game theory [13] and multi-agent learning
[12] is already well accepted in the analysis of this kind
of problems. The following sub-section highlights the most
relevant contributions in this sense.

A. State of the Art

Among the most relevant contributions regarding the main
results of this paper, it is worth to highlight those in [14]–
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[23]. In [14], the authors consider a clustered multi-channel
ad hoc network in which clusters are able to sense all
available channels in order to choose an interference-free
channel. When an interference-free channel is not available,
the choice on the channel is randomly made. In low population
density networks, this behavioral rule is shown to exhibit
an acceptable performance with very little implementation
complexity. Nonetheless, in high population-density networks,
this approach is also shown to be highly suboptimal. Other
approaches are based on the use of the iterative water-filling
(IWF) power allocation policy [15]–[17]. For instance, in
[15], the authors prove that the IWF algorithm converges to
an operating point that guarantees a given transmission rate
while minimizing the transmit power. Such a convergence
is subject to the assumption that the system operates in
the weak interference regime. In [24]–[26], it is shown that
in decentralized networks the operating point achieved by
using IWF is often inefficient. To overcome this inefficiency,
solutions based on the cooperation of all transmitters are
proposed in [27]–[29]. Among other approaches, including
those based on reinforcement learning, maximum-entropy
reinforcement learning, smoothed best-response or fictitious
play, it is important to highlight the contributions in [3],[7],
[8], [18]–[23]. The main drawbacks of these contributions can
be summarized in five points:(i) The converging point is a
probability distribution over the set of all available channels
and power allocations policies [21], [22], [30], [31]. Therefore,
the optimization is often on the expectation of the performance
metric and the optimality is often claimed in the asymptotic
regime. (ii) Often, optimal performance is claimed only in
the case in which the number of available channels is higher
than the number of devices [20];(iii) The results are not
general as often algorithms are designed for a particular
metric, e.g., the transmission rate [4], [7], [8];(iv) The
channel selection problem is treated separately from the power
allocation problem [19], [20]; or(v) only the power control
problem is considered [23].

B. Structure of the Paper

The rest of the paper unfolds as follows. Sec. II introduces
the system model and describes a game in normal form that is
used as reference to present the main results. Sec. III briefly
describes the trial and error algorithm as introduced in [32].
Sec. IV establishes a connection between the stochastically sta-
ble points of the TE algorithm, the NE of the game cited above
and the solutions to a global network optimization problem.
Sec. V presents some simulation results in oder to highlight
some heuristic improvements that can be implemented to the
classical TE algorithm. Sec. VI concludes this work.

II. PROBLEM FORMULATION

This section describes the network model and a centralized
network optimization problem whose solutions are assumed to
be the desirable network operating points. Later, this section
introduces a game in normal form whose utility function is
designed for making its Nash equilibria to coincide with the
solutions of the network optimization problem.

A. System Model

Consider a DSCN in which all its nodes coexist within
the same spectrum subject to mutual interference. Nodes are
arranged into groups, referred to as cells. Each cell is con-
trolled by a CC that harmonizes the intra-cell communications
by strategically choosing a channel (frequency band) and a
power level to be used by all the nodes in the corresponding
cell. This model represents either networks in which all nodes
are interested in communicating with the same receiver (e.g.,
the CC acts also as a receiver) or networks in which the
CC manages several point-to-point communications inside the
cell. Let K = {1, 2, . . . ,K} be a set ofK cells. Let also
Lk = {ℓ1,k, ℓ2,k, . . . , ℓk,Lk

} denote the set ofLk links within
cell k, with k ∈ K. The set of all the links in the network is
denoted byL = ∪k∈KLk, with L = |L| the total number of
links in the network.

Let C = {1, 2, . . . , C} be the set ofC channels into
which the total spectrum is divided. All channel gains are
assumed to be time invariant for the whole duration of one
transmission. Cellk uses only one channel denoted byck ∈ C
and a transmit power levelpk that is chosen from a finite set
P = {0, . . . , Pmax} of Q = |P| power levels. The maximum
transmittable power level is denoted byPmax and it is assumed
to be the same for all cells. A pair of a channel and a power
level is referred to as anaction, i.e, ak = (ck, pk) ∈ A,
whereA = C × P is the set of actions. The super vector
describing the whole network configuration is denoted by
a = (a1, a2, . . . , aK) ∈ A × . . . × A = AK , and it is often
referred to as an action profile.

The goal is to design a fully decentralized algorithm that
selects a network configuration vectora∗ ∈ AK that is a
solution of the following optimization problem







max
a∈AK

K∑

k=1

ϕk(a)

s.t. ξℓ(a) > Γ ∀ℓ ∈ L∗.

(1)

The functionϕk : AK → [0, 1] determines the performance
ϕk(a) achieved by the cellk when the actions chosen by
all cells correspond to the action profilea. The function
ξℓ(·) : AK → [0, 1] represents the QoS constraints to which
link ℓ is subject. The setL∗ ⊆ L is defined as the largest set
of links for which the constraints in (1) can be simultaneously
satisfied. Note thatL∗ depends on all the individual constraints
that are autonomously determined by each link. Thus, not
all the constraints might be simultaneously satisfiable. Fixing
the setL∗ is a mathematical maneuver in order to guarantee
that the optimization domain in (1) is not empty. Later, it
is shown that there is no loss of generality by assuming
the setL∗ to be known in advance. The formulation in (1)
might describe a large set of network optimization problems
that do not necessarily need to be convex. For instance, by
properly selecting the functionsϕk and ξℓ, it is possible to
analyze problems such as: (a) the throughput maximization
problem subject to particular delay constraints; (b) the transmit
power minimization subject to a particular network reliability
constraint; and other problems.
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Here, the final goal is to design a decentralized behavioral
rule that allows the network to achieve an operating pointa

∗

that is a solution of (1) based only on local intra-cell available
information.

B. Game Theoretical Modeling

This sub-section introduces a game in normal form

G =
(
K, {Ak}k∈K , {uk}k∈K

)
, (2)

that models the problem described in Sec. II. The setK
represents the players, i.e., theK central controllers in the
network; the setA represents the individual actions of all
players. Note that all players have the same set of actions. An
action of playerk, denoted byak = (ck, pk) ∈ A = C×P , is a
pair made of a channel index (frequency band) and the transmit
power level to be used by all links inside the corresponding
cell. The utility function of playerk is uk : AK → [0, 1] and
it is defined as

uk(a) =
1

1 + βLmax

(

ϕk(a) + β
∑

ℓ∈Lk

1{ξℓ(a)>Γ}

)

(3)

whereβ is a design parameter that tunes the tradeoff between
the number of links that can be satisfied

∑

ℓ∈Lk
1{ξℓ(a)>Γ},

and the maximization of the functionϕk. The utility function
in (3) is a generalization of the utility function proposed in
[33]. More importantly, it is chosen such that it exhibits several
useful properties. First, it is monotonically increasing with
both the number of links that are able to satisfy their individual
constraints inside the corresponding cellk; and with the value
of the functionϕk that determines the global performance of
cell k. Second, as shown in Sec. IV, for a particular choice of
the parameterβ, there exists an algorithm whose stochastically
stable points are both equilibria of the gameG and solutions
of the optimization problem in (1).

The notion of equilibrium used in the following of this
analysis is that proposed by Nash in [34].

Definition 1 (Nash equilibrium in pure strategies). An action
profile a

∗ ∈ AK is an NE of the gameG if ∀k ∈ K and
∀a′k ∈ A

uk(a
∗
k,a

∗
−k) ≥ uk(a

′
k,a

∗
−k). (4)

The motivation for adopting the NE as the solution concept of
the gameG relies on the fact that at an NE, the action adopted
by every player is optimal with respect to the choices made by
all the other players. That is, if a playerk decides to deviate
from its individual NE action, its utility can only be degraded
if the system is at such NE. Therefore, from a decentralized
point of view, this property is particularly desirable.

In the case the gameG possesses several equilibria, they can
be compared by calculating their corresponding sum-utility,
i.e., the sum of the utilities obtained by all players at the
corresponding equilibrium. Therefore, the rest of this analysis
focuses on those NE that are maximizers of thesocial welfare
functionW : AK → R defined byW (a) =

∑K

k=1 uk(a).

III. T RIAL AND ERROR LEARNING ALGORITHMS

The purpose of this section is threefold. First, it provides
a brief description of the trial and error (TE) algorithm as
introduced in [12] and [32]; second, it describes the adaptation
of this algorithm to the game described in Sec. II-B; finally,
it introduces some heuristic enhancements to optimize the
convergence properties.

A. Trial and Error Learning Algorithm

The TE learning algorithm can be described by a state
machine locally implemented by each player. The main feature
of this state machine is that the set of stochastically stable
states are the NE that maximize the social welfare.

At each iterationt, the state of playerk is defined by the
triplet:

Zk(t) = {mk(t), āk(t), ūk(t)} , (5)

wheremk(t) ∈ {C,C+, C−, D} represents themood: content
(C), hopeful(C+), watchful(C−), discontent(D), āk(t) ∈ A
and ūk(t) ∈ [0, 1] represent thebenchmarkaction andbench-
mark utility, respectively. The state machine transitions and
behavior are detailed hereunder. Note that the notationa ⇐ b

indicates that variablea takes the value of variableb.
Content: Let ǫ ∈ [0, 1] be an experimentation parameter and

assume that the state of playerk at timet− 1 is Zk(t− 1) =
{C, āk(t− 1), ūk(t− 1)}. Then, at iterationt, it selects its
action according to the following rule: with probability(1 −
ǫ), it plays the benchmarked actionak(t) = āk(t − 1) or
with probability ǫ, it plays another action randomly selected
ak(t) 6= āk(t − 1). Once playerk has played actionak(t), it
observes the value of its utility functionuk(t).

The player updates its state as follows: Ifak(t) 6= āk(t−1)
and uk(t) ≤ ūk(t − 1), then Zk(t) ⇐ Zk(t − 1); If
ak(t) 6= āk(t − 1) and uk(t) > ūk(t − 1), then, with
probability ǫG(uk(t)−ūk(t−1)), it sets mk(t) ⇐ mk(t − 1),
āk(t) ⇐ ak(t) and ūk(t) ⇐ uk(t), while with probability(

1− ǫG(u′

k(t)−ūk(t−1))
)

, it sets Zk(t) ⇐ Zk(t − 1); If

ak(t) = āk(t− 1) anduk(t) ≥ ūk(t− 1) then,mk(t) ⇐ C+,
āk(t) ⇐ āk(t − 1), ūk(t) ⇐ ūk(t − 1); If ak(t) = āk(t − 1)
anduk(t) < ūk(t− 1) thenmk(t) ⇐ C−, āk(t) ⇐ āk(t− 1),
ūk(t) ⇐ ūk(t− 1).

Note that if playerk does not experiment (it plays its
benchmarked action) and its utility increases, then it becomes
hopeful, while if it decreases, it becomeswatchful. Here, the
functionG : R → R must be such that:

0 ≤ G(x) <
1

2
. (6)

Numerical simulations suggest that a linear formulation such
as:G(∆u) = −0.2∆u + 0.2, with ∆u = uk(t) − ūk(t − 1),
performs well under several scenarios.

Hopeful: Assume that the state of playerk at timet− 1 is
Zk(t−1) = {C+, āk(t− 1), ūk(t− 1)}. Then, at iterationt, it
plays the benchmark actionak(t) = āk(t− 1) and it observes
the value of its utility functionuk(t). If uk(t) ≥ ūk(t − 1)
then,mk(t) ⇐ C, āk(t) ⇐ āk(t− 1) and ūk(t) ⇐ ūk(t− 1);
otherwise,mk(t) ⇐ C−, āk(t) ⇐ āk(t − 1) and ūk(t) ⇐
ūk(t− 1).
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Watchful: Assume that the state of playerk at timet−1 is
Zk(t−1) = {C−, āk(t− 1), ūk(t− 1)}. Then, at iterationt, it
plays the benchmark actionak(t) = āk(t− 1) and it observes
the value of its utility functionuk(t). If uk(t) > ūk(t − 1),
thenmk(t) ⇐ C+, ūk(t) ⇐ ūk(t−1) andāk(t) ⇐ āk(t−1);
otherwise,mk(t) ⇐ D, ūk(t) ⇐ ūk(t − 1) and āk(t) ⇐
āk(t− 1).

Discontent: Assume that the state of playerk at timet− 1
is Zk(t − 1) = {D, āk(t− 1), ūk(t− 1)}. Then, at iteration
t, it randomly selects an actionak(t) and observes the value
of its utility function uk(t). The state is updated as follows:
with probability p = ǫF (uk(t)) it setsmk(t) ⇐ C, ūk(t) ⇐
uk(t) and āk(t) ⇐ āk(t− 1); with probability (1− p) it sets
mk(t) ⇐ D, ūk(t) ⇐ uk(t) and āk(t) ⇐ ak(t). The function
F : R → R must be such that

0 ≤ F (u) <
1

2K
. (7)

Numerical simulations suggest that a linear formulation such
as:F (u) = − 0.2

K
u+ 0.2

K
performs well under several scenarios.

In [12] and [32], the authors proved that the stochastically
stable action profiles of the trial and error algorithm (i.e.,
action profiles that are played most of the time) are those
NE that maximize the social welfare. Theorem 1 restates their
main results.

Theorem 1 Let G have at least one pure NE and let each
player use TE. Then, for eachǫ small enough there exists a
δ such that a pure Nash equilibrium that maximizes the sum
utility among all equilibrium states is played(1− δ) fraction
of the time.

Theorem 1 states that if all players implement the TE algo-
rithm and there exists at least one NE, then the NE with the
highest social welfare is played during alarge fraction of the
time. In general, the quantity1 − δ depends onǫ and on the
particular gameG. When players implement the TE algorithm,
the notion of convergence largely differs from the classical
idea of convergence, that is, a dynamic distance minimization
with respect to a certain action profile (e.g., an NE, a correlated
equilibria, etc), indeed, once such a limiting action profile is
reached, the system remains static. The convergence of the
TE algorithm must be understood in terms of the time players
remain at a given action profile. Indeed, the system can be
at an NE, but it might arbitrarily leave it to experiment other
action profiles. Therefore, in this setting, convergence refers
to the fact that the system remains on certain action profiles
a large fraction of the time.

B. Enhanced Distribution and Settings

This section presents some enhancements to the TE algo-
rithm in order to improve its performance. In its standard
formulation, the TE learning algorithm [12] is characterized
by a time invariantǫ and a uniform distribution over the whole
action set. Motivated by the fact that experimentations on the
set of channels brings higher instability than experimentations
on the set of power levels, the experimentation is divided into
two different steps. In detail, at each instantt, each player in a

contentmood and denoted byk experiments with probability
ǫkc (t) a different channel and with probabilityǫkp(t) a different
power level. The evolution ofǫkc (t) is given by:
{

ǫkc (t) = max
(

ǫkc (t−1)
2 , ǫmin

c

)

if
∑

n∈Lk
1{φn(a)>Γ} = |Lk|

ǫkc (t) = ǫkc (0) otherwise.
(8)

In (8), ǫmin
c > 0 represents the minimum experimentation

probability over the available channels andǫkc (0) > ǫmin
c

represents the initial value. These parameters depend on the
particular configuration of the system. Through numerical
simulations, it has been found that some well-performing
values are:ǫmin

c = 0.01
K

and ǫkc (0) = 0.01C
K

. Since no prior
information is available on the channels’ gain, the experimen-
tation on the channels follows a uniform distribution.

Each playerk experiments a different power level with
a constant probabilityǫkp. Such a probability is a uni-
form distribution over all the levels greater thanpk if
∑

n∈Lk
1{φn(a)>Γ} < |Lk|, whereas it is uniformly dis-

tributed over all the levels smaller thanpk, otherwise. Through
extensive simulations, it has been found that a well-performing
value isǫkp = 0.01C

K
.

When a playerk is discontent, it experiments according to
the following distribution:

{
pk(t) = Pmax with probability min

(
C
K
, 1
)

pk(t) = 0 with probability max
(
1− C

K
, 0
) .

(9)
The rationale behind this is that anydiscontentplayer needs

to test the network looking for a free channel. Clearly, the
probability of finding a free channel increases withC

K
. On

the other hand, in the case in which no channel is free for
transmission, zero power should be used to avoid wasting
energy and creating interference.

IV. CONVERGENCE STUDY

This section presents the main theoretical results of the
paper. A strong connection between the solutions of the
optimization problem in (1) and the NE of the gameG is
established via the utility function (3).

A. Equilibrium points

Theorem 2 Let all the players of the gameG implement the
TE algorithm with the utility function in(3), and letβ ∈ R

satisfyβ > K. Let alsoANE be the set of NE of the gameG
and assume it is non empty. Denote byλn the number of links
satisfied at then-th NE, withn ∈ {1, . . . , |ANE|} and letΛ =
maxn∈{1,...,|ANE|} λn. Then, the TE algorithm is stochastically
stable in an NE in which there are at leastΛ links that satisfy
their individual constraints.

Theorem 2 states that, if each player setsβ > K, then the
stochastically stable points of the TE learning algorithm are
those NE with the largest possible number of links satisfying
their constraints. Here,β represents the trade-off between the
interest in satisfying the constraints for the largest set of links
and the maximization of the sum of the objective functions.
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The next theorem links this result with the global optimization
problem in (1).

Theorem 3 Let all the players of the gameG implement the
TE learning algorithm with the utility function in(3), and
let β ∈ R satisfy β > K. Let A† ⊆ AK be the set of
solutions of the optimization problem in(1), and let L∗ be
the largest set such that∃ a ∈ A† and ∀ℓ ∈ L∗, ξℓ(a) > Γ
and |L∗| = L∗. Let also ANE be the set of NE of the
gameG, and assumeANE ∩ A† is non-empty. Then, the TE
algorithm is stochastically stable in an action profilea∗ such
that a∗ ∈ ANE ∩ A†.

Note that the set of solutions of (1) is non-empty as long
as there exists a setL∗ such that the optimization domain is
not an empty set. This theorem states that the stochastically
stable points of the TE algorithm are those NE that maximize
the sum of the network objective functions among the action
profiles that satisfy the constraints for the largest possible set
of links. For instance, if the network objective functionsϕk(·)
are decreasing with respect to the power levelpk, then the
stochastically stable points are those NE which satisfy the
constraints for the largest number of links and minimize the
power consumption.

B. Convergence time

This section studies the convergence properties of the TE
algorithm in a particular scenario.

More specifically, the TE learning algorithm defines a large
discrete time Markov chain (DTMC) over the set of the states.
Studying the behavior of the algorithm on such a chain is a
difficult problem due to the number of states, transitions and
parameters. For this reason, a simplified version of the system
model introduced in Sec. II-B is considered. This allows the
estimation of the average number of time instants that are
required to reach an NE for the first time and the expected
fraction of time the system is at an NE action profile.

For the ease of the presentation, considerLk = 1, i.e., each
cell possesses only one link. The functionsϕ andξ are defined
as: {

ϕk(a) = 1− pk

Pmax

ξk(a) = SINRk(a).
(10)

In this particular formulation, the aim is to minimize the
transmit power while keeping the SINR above a thresholdΓ
for the largest number of links. In (10), since there is only
one link per cell, the link index is the same as the cell index.
Therefore the SINR of linkk is evaluated as:

SINRk(a)=
pkg

(ck)

k,k

σ2+

∑

ℓ∈K\k

pℓg
(cℓ)
k,ℓ 1{cℓ=ck}

, (11)

where g
(ck)
k,ℓ indicates the channel power gain between the

transmitter of linkk and the receiver of linkℓ over channel
ck; andσ2 represents the noise power. This problem has been
also studied in [33]. Note that it is possible for the receivers
to evaluate the SINR through pilots or training sequences. In

Tx Rx

k=1

k=2

k=K

Fig. 1. Simplified system model: symmetric parallel interference channel.

DEq C(K-1) C(K-2) C(0)

Fig. 2. Markov chain describing the TE learning algorithm inthe network.
This model is used to study the convergence to the NE. The state Eq

represents an NE action profile.CK−k represents a state in whichK − k

players are using an individually optimal action,D represents a state in which
at least one player isdiscontent.

the following, it is assumed thatC ≥ K, and that the channel
gains follows the weak interference model as in [10]:
{

g
(c)
k,k = 1 ∀k ∈ K and∀c ∈ C

g
(c)
j,k = 1

2 ∀k ∈ K and∀j ∈ K \ {k} and∀c ∈ C
. (12)

In the light of the description made in Sec. III, if the number
of playersK is large enough the following can be stated:
(i) the fraction of time playerk is either atwatchful or
hopeful state is negligible compared to the fraction of time
it spends indiscontentor content state; (ii) at any time,
the probability of having more than one playerdiscontentis
significantly lower than the probability of having only one or
nodiscontentplayer. In fact, in (7) the probability of accepting
the outcome of the experimentation for a player which is
discontent is close to one, moreover players do not adopt a
watchful or hopefulstate for more than one iteration. Sec. V
shows that these results are good approximations under less
restrictive conditions as well.

Under these conditions, the resulting DTMC for studying
the TE learning algorithm is represented in Fig. 2.

In this figure, the final state represents an NE, the states
labeled withCK−k are those in whichK − k players use an
individually optimal action andD a state in which one player
is discontent. The transition probabilities are listed hereafter
(the reasoning behind these transition probabilities is given in
the appendix):

P (N,D) = K(K−1)2ǫ2

C2

(
Q−1
Q

)2

(13)

P (D,N) = (C−K+1)
CQ

(14)

P (D,CK−k) =
(C−K+k)

Ck

(K−1)!
(K−k)! (15)

P (CK−k, CK−k−1) = (K − k)C−k
CQ

ǫ. (16)

Here,P (N,D) is the transition probability between an NE and
a state in which one player isdiscontent; P (D,N) is transition
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probability between a state in which one player isdiscontent
and an NE;P (D,CK−k) is the transition probability between
a state in which one player isdiscontentand a state in which
K − k players are using an individually optimal action; and
P (CK−k, CK−k−1) is the transition probability between a
state in whichK−k players are using an individually optimal
action and a state in whichK−k−1 are doing the same. The
analysis of this DTMC leads to state the following theorems.

Theorem 4 Let K, C, Q, and ǫ be the number of players,
the number of channels, the number of power levels and the
experimentation parameter respectively. AssumeC ≥ K. Let
Lk = 1 and let the channel power gains be given by(12).
Then, if all players implement the TE learning algorithm, the
expected number of iterations needed to reach the NE for the
first time, T̄NE , is bounded as follows:

T̄NE ≤
CQ

ǫ (C −K)

(

1 + log

(
K (C −K + 1)

C + 1

))

(17)

T̄NE ≥
CQ

ǫ (C −K)

(

γ + log

(
K (C −K)

C

))

; (18)

where,γ ≃ 0.577 is the Euler-Mascheroni constant.

Note that the time needed to visit for the first time an NE
is directly proportional to the dimension of the action set (i.e.,
|A| = CQ) and inversely proportional to the experimentation
probability ǫ.

Theorem 5 Let K, C, Q, and ǫ be the number of players,
the number of channels, the number of power levels and
the experimentation parameter, respectively. AssumeC ≥ K,
Lk = 1, and let also the channel power gains follow(12).
Then, if all players follow the TE learning algorithm the
expected fraction of time the system is at an NE is:

(1 − δ) ≈
1

1 + P (N,D)TBNE

, (19)

where

TBNE ≈
K∑

k=1

P (D,CK−k)TCNE(k) +
P (D,N)

(1− P (D,D))2
,

TCNE(k) ≈
CQ

ǫ (C −K)

(

γ + log

(
K (C − k + 1)

C + 1

))

,

P (D,D) = 1− P (D,N)−
K∑

k=1

P (D,CK−k).

Note that the frequency of using an NE, i.e.,(1− δ) depends
on 1

ǫ2
as in (13). This means that the larger theǫ the shorter

the time the system is at an NE. The approximation is given
by the fact thatTBNE is replaced by its upper bound.

These theorems show that the stability of the TE algorithm
and the time it needs to visit an NE for the first time are
influenced by the experimentation probability. Lower values
increase stability while higher values increase the speed of
convergence.

Fig. 3. A 5 km × 5 km square field divided intoK = 16 cells. Nodes are
positioned randomly inside each cells.

V. SIMULATION RESULTS

This section provides numerical evaluations of all results
presented in this paper. To implement these simulations, two
scenarios are considered and reported in Figure 1 and Figure
3, respectively.

A. Numerical Validation

Theorems 4 and 5 allow the calculation of the fraction
of time the system uses an NE and the average number of
iterations needed before visiting the NE for the first time, as a
function of several design parameters when the channel gains
follow (12). The following shows that these results also hold
under a more general formulation.

All experiments presented here are run on the scenario
represented in Figure 1, with two different sets of parameters.
The first set is composed of:K = 3, C = 4, ǫ = 0.02
and 6 ≤ Q ≤ 10; the second one is composed ofK = 4,
C = 5, ǫ = 0.02 and 6 ≤ Q ≤ 10. In the first experiment,
the fraction of time the system uses an NE is estimated by
running107 iterations under two different channel models: the
simple channels expressed in (12) and a channel power gain
randomly drawn from a Rayleigh distribution. These results
are summarized in Fig. 4. The dashed line and the continuous
line correspond to the theoretical results with the first and
the second set of parameters respectively. The results of the
simulations are close to the lines for both channel models.

In the second experiment, the number of iterations needed
to visit an NE for the first time is estimated and compared with
the analytical results in Fig.5. Increasing the dimension of the
action set, i.e., increasingC or Q, brings slower convergence
rates since the algorithm requires more time to explore all the
possibilities.

B. Convergence Nash Equilibrium

The following shows the effect of the enhancement on the
stability and in the speed of the algorithm in reaching any
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Fig. 4. Fraction of time the system is at the NE, with the TE learning
algorithm, ǫ = 0.01 and uniform probability distribution over the action set.
Theoretical results are represented by the continuous lines, simulation results
are represented by the markers for two sets of data and different channels:
Rayleigh and the model in (12).

Fig. 5. Number of iterations needed for the algorithm to visit an NE for
the first time. Simulations run with the standard TE,ǫ = 0.01 and uniform
probability distribution on the actions set. The continuous lines represent (17),
the dashed lines represent (18).

stochastically stable point. A total of104 iterations of TE are
run with an underlying network as the one depicted in Figure
3, with K = 4 cells each populated with one link,C = 4
channels,Q = 5 power levels and a target SINR ofΓ = 10 dB.
In Fig. 6 the probability with which the TE algorithm selects
an NE as a network action profile is plotted as a function of
the experimentation probabilitiesǫp and ǫmin

c . Reducing the
minimum experimentation probability on the channel sensibly
decreases the instability of the system and thus increases the
probability of the system of being at the NE. On the other
hand, the stabilizing effect of reducing the experimentation
probability on the power levels is balanced by the longer time
that is needed for the system to reach an NE, as showed in
Fig.7. In this figure, the number of iterations used by the TE
learning algorithm to reach, for the first time, an NE is plotted
as a function of the experimentation probabilitiesǫp andǫmin

c .
Note that, the number of iterations needed to reach for the
first time an NE represents also a measure of the speed of the
algorithm to reach again an NE, once it is left. From a real-
system implementation point of view, it is also an estimation
of the ability of the algorithm to react to network changes
that modify the NE set, e.g. fading, shadowing, mobility, etc.
By inspecting both plots, it appears that the experimentation
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Fig. 6. The plot represents the probability of observing theTE learning
algorithm selecting an action profile which is an NE as a function of ǫp and
ǫmin
c . The underlying network is composed ofK = 4 cells,Lk = 1 links per

cell, C = 4 channels andQ = 5 power levels. Theǫmin
c values are reported

in logarithmic scale.

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

1

2

3

4

5

6

x 10
4

ǫp

ǫ
min
c

Ite
ra

tio
ns

Fig. 7. The plot represents the number of iterations betweent = 0 and the
instant in which an NE is played for the first time as a functionof ǫp and
ǫmin
c . The underlying network is the same as in Fig. 6.

frequency on the power levels should be relatively high, while
the one on the channels should be relatively low with the
exact optimal values depending on the other parameters of the
network.

C. Performance Metrics

The following metrics are considered to evaluate the per-
formance of the proposed algorithm:

• Average satisfaction (AS): The average number of times
a link satisfies its SINR constraints.
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Fig. 8. The upper plot represents the AS, the lower plot represents the APC.

• Average power consumption (APC): The average power
used by the transmitters in a cell to achieve the corre-
sponding satisfaction level.

• Average satisfaction over average used power ratio: This
metric establishes the ability of the algorithm in satisfying
the constraints with respect to the average power used.

The simulation scenario is represented in Fig. 3. Consider
a static network composed ofK = 16 cells each withNk = 4
links, C = 10 channels, and the maximum powerPmax =
50W is quantized inQ = 8 logarithmic levels. The results
are reported in Fig. 8, where the upper plot represents the AS
while the lower plot shows the APC. The figure shows that
the TE algorithm is able to drive the network to an almost
full satisfaction by averagely employing only10W. Note that,
even though the first visit to an NE may happen quite late, the
global performance at non-equilibrium states is high. Thisis
due to the fact that the probability of playing an action grows
with the social welfare of the action itself [32]. Second, Fig. 8
shows that even when an equilibrium is achieved, the system
sometimes attempts to use sub-optimal action profiles. Thisis
due to the stochastic nature of the TE learning algorithm. Note
that there exist a natural tradeoff between the time needed to
visit an NE and stability of such an equilibrium. In order to
decrease the time needed to visit an NE, the experimentation
probability needs to be large while, in order to improve the
stability it needs to be small.

Furthermore, the TE learning algorithm is compared with
the greedy based decentralized algorithm (GBDCA) described
in [14]. Briefly, this algorithm solves the graph-coloring prob-
lem, by letting each CC detect the channel employed by its
neighbors. If a CC detects that it is using a channel already
occupied by one of its neighbors then it chooses randomly
another channel among the free ones. If no channel is free,
then it does not change its strategy. Since this algorithm does
not consider a power allocation policy, its transmission power
is set toPmax. In this context, the GBDCA is compared with
the TE learning algorithm when the quantization levels are
reduced toQ = 2, i.e., an ON-OFF policy. The results, in

Fig. 9. Performance comparison between TE and the GBDCA in terms of
average number of constraints satisfied over average used power. The dashed
line is the performance of TE and the continuous line the one of GBDCA.
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Fig. 10. Performance comparison between TE (red continuousline), the
synchronous IWF (dotted line) and the global optimum (dashed line). We
represent, in the upper plot, the AS, in the lower plot, the APC. We run400
iterations of each algorithm on a network composed ofK = 16 cells, each
populated with one link,C = 5 channels,Q = 5 power levels, a maximum
available power ofPmax = 50W.

terms of the ratio
∑

ℓ∈L
1{ξℓ>Γ}∑

k∈Kpk

are reported in Fig.9. The TE

learning algorithm allows the cells that cannot satisfy their
constraints to stop the transmission for a short period of time,
which increases the efficiency.

The following compares the performance of the TE learning
algorithm with the one of synchronous IWF and the global
optimum. ConsiderK = 16 cells, Nk = 1 link per cell,
C = 5 channels,Q = 5 power levels and a target SINR
Γ = 10 dB. In the synchronous IWF each transmitter has
full knowledge of the transmit channel state information; each
transmitter may exploit multiple channels; the power allocation
routine happen at the same instant for all transmitters; andeach
transmitter attempts to achieve a transmission rate equal to
log2 (1 + Γ) with the minimum necessary power. The results
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of the experiment are reported in Fig. 10.
The first figure reports the AS in the upper plot and the APC

in the lower plot. In these plots, the dashed line represents
the global optimum, the continuous red line the performance
of TE algorithm and the dotted line the performance of the
synchronous IWF. The action profiles chosen by the TE algo-
rithm approach the global optimum both in terms of constraints
satisfaction and in terms of power drain. The synchronous
IWF, even though it is allowed to exploit a larger amount of
information, is not able to select an action that satisfies the
constraints for a large proportion of the links.

VI. CONCLUSION

In this work, strong connections between the solutions to
a centralized network optimization problem and the Nash
equilibria of a given game has been established via the design
of the corresponding utility functions. More specifically,it has
been shown that by properly choosing the utility function, it
is possible to make a decentralized network to be stable at a
global optimal operating point. More importantly, it has been
shown that such equilibria can also be achieved by using learn-
ing algorithms following the paradigm of trial and error. The
intuitions on the utility function design as well as the relevance
of the trial and error learning are shown using the the scenario
of a decentralized multi-channel ad hoc network. Using this
network model, some heuristic enhancements have been also
presented to improve the convergence of the algorithm and
theoretical bounds on the time to reach an equilibrium are
formally proved.

APPENDIX A
PROOF OF THEOREM2

Proof: Consider two arbitrary NEa∗ and a
+ ∈ ANE,

such that
∑

ℓ∈L 1{ξ(a∗)>Γ} = L∗,
∑

ℓ∈L 1{ξ(a+)>Γ} = L+

with L∗ ≥ L++1. From Theorem 1, the stochastically stable
points of the TE algorithm are the NE that maximize the
social welfareW . Therefore, proving the thesis is equivalent
to proving thatW (a∗) > W (a+).

The social welfare associated witha∗ using the utility in
(3) is

W (a∗) =
∑

k∈K

uk(a
∗)

=
∑

k∈K

1

1 + βLmax

(

ϕk(a
∗) + β

∑

ℓ∈Lk

1{ξi(a∗)>Γ}

)

=
1

1 + βLmax

(

βL∗ +

K∑

k=1

ϕk(a
∗)

)

. (20)

Sinceϕk is a non-negative function, it holds that

W (a∗) ≥
βL∗

1 + βLmax
. (21)

Analogously, the social welfare associated witha
+ is

W (a+) =
∑

k∈K

uk(a
+)

=
∑

k∈K

1

1 + βLmax



ϕk(a
+) + β

∑

ℓ∈Lk

1{ξi(a+)>Γ}





=
1

1 + βLmax

(

βL
+ +

K
∑

k=1

ϕk(a
+)

)

. (22)

By definition, ∀ a ∈ AK , and ∀ k ∈ K, ϕk(a) ≤ 1 and
thus W (a+) ≤ βL++K

1+βLmax
. Then, using the assumption that

L+ ≤ L∗ − 1, it holds that

W (a+) ≤
βL∗ − β +K

1 + βLmax
.

Therefore, from the assumption thatβ > K it is possible to
write

βL∗ − β +K

1 + βLmax
<

βL∗

1 + βLmax
, (23)

thus, following the chain of inequalities, it holds that
W (a+) < W (a∗). This concludes the proof.

APPENDIX B
PROOF OF THEOREM3

Proof: From the assumptions of Theorem 3, the inter-
section between the set of NEANE and the set of solu-
tions of (1) A† is non empty, i.e.,ANE ∩ A† 6= ∅. Let
a
∗ ∈ ANE ∩ A† be an arbitrary element of the intersection

andL∗ =
∑

ℓ∈L 1{ξ(a∗)>Γ} the number of links that satisfy
their constraints. Sincea∗ ∈ A† it results thatL∗ =
max

a∈AK

∑

ℓ∈L 1{ξ(a)>Γ}, i.e.,L∗ is the maximum number
of links that can simultaneously satisfy their constraints. From
Theorem 1, the set of the stochastically stable action profiles
is ATE =

{

a

′

∈ AK : a
′

∈ argmaxa∈ANE W (a)
}

. Hence,
proving the theorem is equivalent to prove thatATE ⊆
(
ANE ∩ A†

)
. From its definitionATE ⊆ ANE, thus it remains

to prove thatATE ⊆ A†.
Let A⋆ ⊆ ANE be the set of NE such that∀ a ∈

A⋆
∑

ℓ∈L 1{ξℓ(a)>Γ} = L∗. Then, it results that∀ a
+ ∈

AK \ A⋆ it hold that
∑

ℓ∈L 1{ξℓ(a+)>Γ} < L∗. Thus, from
Theorem 2 and the assumption thatβ > K, it holds that
W (a+) < W (a), ∀ a

+ ∈
(
AK \ A⋆

)
and∀ a ∈ A⋆. There-

fore the set of stochastically stable points can be expressed as
ATE =

{

a

′

∈ AK : a
′

∈ argmaxa∈A⋆ W (a)
}

. The social
welfare of the action profiles onA⋆ is:

W (a) = βL∗ +

K∑

k=1

ϕk(a). (24)

Therefore, argmaxa∈A⋆ W (a) =
argmaxa∈A⋆

∑K

k=1 ϕk(a). Thus, ATE is the set of the
action profiles that satisfy the constraints forL∗ links and
maximizes the

∑K

k=1 ϕk(a), henceATE ⊆ A†.
This concludes our proof.
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APPENDIX C
MARKOV CHAIN TRANSITION PROBABILITIES

A. Transition probability from an NE to adiscontentstate

The transition probability between an NE state and a state
with one discontentplayer is denoted byP (N,D). For the
system to exit an NE, a player must pass from acontentto
a discontentstate. This happens only in the following case:
at time t player k experiments and during this experimen-
tation k interferes with enough power to turn playerl into
watchful, at time(t + 1) player m experiments and during
this experimentationm interferes turningl into discontent.
The probability of at least one player experimenting in the
system is given by:Pǫ = 1 − (1− ǫ)K . By using the first
two terms (reasonable sinceǫ ≪ 1 implies ǫN ≪ ǫ(N−1))
of the binomial expansion(1 + (−ǫ))

K
=
∑K

k=0

(
K
k

)
(−ǫ)k

it holds thatPǫ ≃ Kǫ. The probability that the playerk
disturbs another one, sayl, is given by: (a) the probability
of choosing an already occupied channel multiplied by(b) the
probability of selecting a power level high enough. As a worst
case scenario, assume that any power level greater than first
quantization level is enough to create an intolerable levelof
interference. Thus, this probability is given by:

Pd =
K − 1

C
︸ ︷︷ ︸

(a)

(Q− 1)

Q
︸ ︷︷ ︸

(b)

. (25)

The probability that a player different froml experiments is
(K − 1)ǫ, the probability of choosing the channel employed
by l is 1

C
and the probability of selecting a power level high

enough is again given by (25). Therefore,

P (N,D) = Kǫ
(K−1)

C

(Q−1)
Q

(K − 1)ǫ 1
C

(Q−1)
Q

(26)

= K(K−1)2ǫ2

C2

(
Q−1
Q

)2

. (27)

B. Transition probability fromdiscontentstate to an NE

Here, we aim at evaluatingP (D,N), i.e., the transition
probability between a state in which one player isdiscon-
tent and a state in which all players are at the NE. Therefore,
one player is performing anoisysearch. Thus, the probability
of immediately returning to an NE is given by:(a) the
probability of selecting a free channel times(b) the probability
of selecting enough power. Thus, we obtain:

P (D,N) =
C − (K − 1)

C
︸ ︷︷ ︸

(a)

1

Q
︸︷︷︸

(b)

. (28)

C. Transition probability from a discontent state to a content
state

The transition probability from a state with onediscon-
tentplayer to a state in whichK−k players are employing an
individually optimal action is denoted byP (D,CK−k). The
discontentplayer selects a random action, then the probability
of quitting thediscontentstate to a state in which only(K−k)
players are using one of their individually optimal actions
depends on the acceptance functionF (u). Given (7) and forK

large enough, the accepting probability can be approximated
by ǫF (u) ≈ 1. When a player isdiscontent, it is possible for
it to accept as a benchmark action the one that makes another
player to change into adiscontentmood. Then, the transition
probability towards stateCK−k is given by the product of the
probability of disturbing(k − 1) players that were at an NE
before selecting a free channel or a channel used by a player
that is not at an NE. The probability of colliding withk − 1
players is given by

(K − 1)

C

(K − 2)

C

(K − 3)

C
...
(K − k + 1)

C
=

(K − 1)!

Ck−1 (K − k)!
,

(29)
while the probability of selecting a channel free or used by a
player not using an individually optimal action isC−(K−k)

C
.

Therefore, the product is:

P (D,CK−k) =
1

Ck

(K − 1)!

(K − k)!
(C −K + k) . (30)

D. Transition probability fromCK−k to CK−k+1

The transition probability between a state in whichK − k

players are using an individually optimal action and a statein
which K − k + 1 players are using an individually optimal
action is denoted byP (CK−k, CK−k+1). Since no player
is discontent, the transition happens through experimentation.
To pass from a state in whichK − k players are using an
individually optimal action to another one in whichK−k+1
are doing the same, the following sequence of events must
happen: at least one of theK − k players experiments; it
selects one of the available individually optimal actions;and
it accepts the action. Thus, the transition probability is

P (CK−k, CK−k+1) = (K − k)ǫ
︸ ︷︷ ︸

(a)

C − k

CQ
︸ ︷︷ ︸

(b)

ǫG(∆u)
︸ ︷︷ ︸

(c)

(31)

= (K − k)
C − k

CQ
ǫ1+G(∆u). (32)

APPENDIX D
PROOF OFTHEOREM 4

Proof: With a standard Markov chain analysis, starting
from state C0, the expected number of iterations before
reaching for the first time the NE is given by:̄TNE =
∑K−1

k=0
1

P (CK−k,CK−k+1)
. Substituting, we obtain

T̄NE =
CQ

ǫ(1+G(∆u))

K−1
∑

k=0

1

(K − k) (C − k)

=
CQ

ǫ(1+G(∆u)) (C −K)

K−1
∑

k=0

(

1

K − k
−

1

C − k

)

.(33)

Given (6) and the fact thatǫ ≪ 1, the following approximation
holds ǫ(1+G(∆u)) ≈ ǫ. For the sake of simplicity, in the
following, the pre-multiplying constant factor is omittedand
definem = K − k. Thus, equation (33) can be written as

K∑

m=1

(
1

m
−

1

C −K +m

)

. (34)
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It is known that
∑K

m=1
1
m

< 1 +
∫K

1
1
x
dx thus:

K∑

m=1

1

m
≤ log (K) + 1. (35)

It is also known that the harmonic sum is such that
K∑

m=1

1

m
≥ log (K) + γ. (36)

Consider that∀n ≥ 1, with K ∈ N andA ∈ N,
∫ K+1

n

1

A+ x
dx <

K∑

m=n

1

A+m
<

∫ K

n−1

1

A+ x
dx, (37)

and thus, for the second addend it holds that:

K∑

m=1

1

C −K +m
≤ log

(
C

C −K

)

, (38)

K∑

m=1

1

C −K +m
≥ log

(
C + 1

C −K + 1

)

. (39)

By joining together equation (35) with (38) and (36) with
(39), and by reinserting the omitted multiplicative factor, we
obtain the result, and this concludes the proof.

APPENDIX E
PROOF OFTHEOREM 5

Proof: The average fraction of time the system is at an
NE can be expressed as(1− δ) = TN

TTOT
, where T̄N is the

expected time spent at an NE once it has been reached and by
TTOT the total time spent in all the states. Given the DTMC
in Fig. 2, this can be expressed as

TTOT = T̄N + TBNE, (40)

where T̄BNE denotes the expected time between the instant
the system leaves an NE and the instant it reaches it again.
The expected number of time steps needed to leave the NE
once reached is

T̄N =

∞∑

n=1

nP (NE,D)(1− P (NE,D))(n−1)

= −P (NE,D) d
dP (NE,D)

∞∑

n=1

(1− P (NE,D))n

= −P (NE,D) d
dP (NE,D)

(
1

P (NE,D)

)

= 1
P (NE,D) .

Here, the well known equality
∑∞

n=1 x
n = x

1−x
has been used

and
∑∞

n=1 nx
(n−1) = d

dx

∑∞
n=1 x

n. Thus, it follows that

(1− δ) =
1

1 + P (NE,D)TBNE

. (41)

To evaluateTBNE, the process is as follows. The starting state
on the Markov chain is the state D. From here, it is possible
to go back to the NE state without quitting the discontent
state. To do this, the expected number of time steps needed is

T(D,NE) =
∑∞

n=1 nP (D,N)P (D,D)(n−1). These equalities
imply the following

T(D,NE) =
P (D,NE)

(1− P (D,D))2
, (42)

whereP (D,D) is easily obtained by imposing the sum of the
probabilities to be equal to1:

P (D,D) = 1−

(

P (D,NE) +

K∑

k=1

P (D,CK−k)

)

. (43)

On the other hand, it is possible to transit from the discontent
state to a certainCK−k state and the expected time steps
needed to return to the NE starting from stateCK−k is denoted
by TCNE(k). This quantity can be upper-bounded by using
(37):

TCNE(k) ≤
CQ

ǫ1+G(∆u) (C −K)

(

γ + log

(
K (C − k + 1)

C + 1

))

.

(44)
In the following, this upper bound is used as a close enough
approximation of the true value. Moreover, given (6), andǫ ≪
1, it follows thatǫ1+G(∆u) ≈ ǫ. As consequence, the expected
time TBNE to return to an NE when the system deviates is
given by:

TBNE = T(D,NE) +

K∑

k=1

P (D,CK−k)TCNE(k). (45)

This concludes the proof.
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