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Comments on “Joint Bayesian Model Selection and

Estimation of Noisy Sinusoids via Reversible Jump

MCMC”

Alireza Roodaki, Julien Bect and Gilles Fleury

Abstract—Reversible jump MCMC (RJ-MCMC) sampling techniques,

which allow to jointly tackle model selection and parameter estimation

problems in a coherent Bayesian framework, have become increasingly
popular in the signal processing literature since the seminal paper of

Andrieu and Doucet (IEEE Trans. Signal Process., 47(10), 1999). Crucial

to the implementation of any RJ-MCMC sampler is the computation of
the so-called Metropolis-Hastings-Green (MHG) ratio, which determines

the acceptance probability for the proposed moves.

It turns out that the expression of the MHG ratio that was given in the

paper of Andrieu and Doucet for “Birth-or-Death” moves is erroneous,

and has been reproduced in many subsequent papers dealing with RJ-
MCMC sampling in the signal processing literature. This note fixes the

erroneous expression and briefly discusses its cause and consequences.

Index Terms—Signal decomposition; Bayesian inference; Markov

Chain Monte Carlo methods; Trans-dimensional problems.

I. INTRODUCTION

Model selection and parameter estimation are fundamental tasks

arising in many (if not all) signal processing problems, when para-

metric models are employed. Andrieu and Doucet [1] pioneered the

use of Reversible Jump Markove Chain Monte Carlo (RJ-MCMC) [2]

sampling in “signal decomposition” problems, by tackling joint

model selection and parameter estimation for an unknown number

of sinusoidal signals observed in white Gaussian noise. This seminal

paper was followed by many others in the signal processing literature

[3–11], relying systematically on the original paper [1] for the

computation of the acceptance ratio of “Birth-or-Death” moves—the

most elementary type of trans-dimensional move, which either adds

or removes a component from the signal decomposition. However, the

expression of the acceptance ratio for Birth-or-Death moves provided

by [1, Equation (20)] turns out to be erroneous, and the same error has

been reproduced in many subsequent papers dealing with RJ-MCMC

sampling in the signal processing literature (referred to above).

In this note, we briefly justify the computation of the acceptance

ratio for the Birth-or-Death moves and provide the correct acceptance

ratio for the problem considered in [1], which can be used in the

problems addressed in the papers mentioned above. For a complete

justification and mathematical results, we refer the reader to [12, 13]

and references therein. Section II recalls, very quickly, the hierarchi-

cal model and RJ-MCMC sampler developed by [1] for the problem

of Bayesian detection and estimation of sinuoids in white Gaussian

noise. Section III provides results for computing the acceptance ratio

for the Birth-or-Death moves and gives the correct expression in the

considered problem. Finally, Section IV discusses the effect of using

the erroneous ratio and explains the cause of the error. The good

news is that published results obtained with the erroneous ratio are

still valid, if interpreted as coming from a different prior distribution

on the number of components.
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II. MODEL

In this section, we follow closely the model and notations of [1];

the reader is referred to the original paper for more details.

Let y= (y1, . . . , yN )t be a vector of N observations of an

observed signal. We consider the finite family of nested models

M0 ⊂ M1 ⊂ · · · ⊂ Mkmax , where Mk assumes that y is

composed of k sinusoids observed in white Gaussian noise. Let

ωk = (ω1,k, . . . , ωk,k) and ak =
(

ac1,k , as1,k , . . . , ack,k
, ask,k

)

be

the vectors of radial frequencies and cosine/sine amplitudes under

model Mk, respectively; moreover, let Dk be the corresponding

N×2k design matrix. Then, the observed signal y follows under Mk

a normal linear regression model:

y = Dk.ak + n,

where n is a white Gaussian noise with variance σ2. The unknown

parameters are, then, assumed to be the number of components k, the

component-specific parameters θk = (ak,ωk) and the noise variance

σ2 which is common to all models. The joint prior distribution is

chosen to have the following hierarchical structure:

p
(

k,θk, σ
2) = p

(

ak | k,ωk, σ
2) p

(

ωk | k
)

p
(

k
)

p
(

σ2),

where the prior over ak is the conventional g-prior distribution, which

is a zero mean Gaussian with σ2δ2 (Dt
kDk)

−1 as its covariance

matrix. Conditional on k, the radial frequencies are independent

and identically distributed, with a uniform distribution on (0, π).
The noise variance σ2 is endowed with Jeffreys improper prior,

i.e. p(σ2) ∝ 1/σ2. The number of components k is given a

Poisson distribution with mean Λ, truncated to {0, 1, . . . , kmax}. The

parameters ak and σ2 can be integrated out analytically, and the

resulting marginal posterior becomes

p (k,ωk |y) ∝ (yt
Pky)

−N/2 Λkπ−k

k! (δ2 + 1)k
1(0,π)k (ωk) , (1)

with

Pk = IN −
δ2

1 + δ2
Dk

(

D
t
kDk

)

−1
D

t
k

when k ≥ 1 and P0 = IN .

III. BIRTH-OR-DEATH KERNELS

Inference under this hierarchical Bayesian model is carried out

in [1] using an RJ-MCMC sampler on X =
⋃kmax

k=0 {k} × (0, π)k

with target density (1). We only focus here on the birth-or-death

moves which propose a jump by one component between models.

More precisely, assuming that the vector ωk of radial frequencies

is not sorted, a birth move inserts a new component with radial

frequency ω∗ ∈ (0, π), generated according to some proposal

distribution q(ω), at a randomly selected location. A death move,

on the contrary, removes a randomly selected component form the

current state. We assume that a discrete uniform distribution is used

in both cases.

Proposition 1: Let us denote by ωk ⊕i ω
∗ the vector obtained by

inserting ω∗ at location i in ωk . Then, the MHG ratio for a birth

move from x = (k, ωk) to x
′ = (k + 1, ωk ⊕i ω

∗) is

r(x,x′) =
p (k + 1,ωk ⊕i ω

∗ |y)

p (k,ωk |y)
×

pd(x
′)

pb(x)
×

1

q (ω∗)
. (2)

See [12, Proposition 1.11] or [13, Proposition 2] for a proof. Now,

setting q to a uniform distribution on (0, π) and using for probabilities

of selecting birth and death moves

pd(x
′)

pb(x)
=

p0(k)

p0(k + 1)
=

k + 1

Λ
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Figure 1. Probability distribution functions of the Poisson (gray) and
accelerated Poisson (black) distributions with mean Λ = 5.

as in [1], with p0 standing for the (truncated Poisson) prior distribu-

tion of k, we finally find

r(x,x′) =

(

ytPk+1y

ytPky

)

−N/2
Λπ−1

(1 + k)(1 + δ2)
·
k + 1

Λ
·

1

π−1

=

(

ytPk+1y

ytPky

)

−N/2
1

1 + δ2
· (3)

IV. THE ERROR AND ITS IMPACT

Note that the expression of the ratio proposed in [1, Equation (20)]

differs from the one we find here (3) by a factor 1/(k + 1). A

similar error in computing RJ-MCMC ratios has been reported in

the field of genetics [14, 15]. In fact, using the expression of the

birth ratio with an additional factor of 1/(k +1), as in [1], amounts

to assigning a different prior distribution over k called “accelerated

Poisson distribution” [15] which reads

p2(k) ∝
e−ΛΛk

(k!)2
1N(k). (4)

Figure 1 illustrates the difference between both the accelerated (black)

and the usual (gray) Poisson distributions when mean Λ = 5. It

can be observed that the accelerated Poisson distribution (4) puts

a stronger emphasis on “sparse” models, i.e., models with a small

number of components.

To show the impact of using the erroneous MHG ratio, let us con-

sider an experiment in which the observed signal of length N = 64
consists of k = 3 sinusoidal components with the radial frequen-

cies ωk = (0.63, 0.68, 0.73)t and amplitudes a2
ci,k

+ a2
si,k

=

(20, 6.32, 20)t, 1 ≤ i ≤ k. The signal to noise ratio, defined as

SNR , ‖Dk.ak‖
2 / (Nσ2), is set to a moderate value of 7dB.

Samples from the posterior distribution of k are obtained using the

RJ-MCMC sampler of [1], with an inverse Gamma prior IG(2, 100)
on δ2 and a Gamma prior G(1, 10−3) on Λ. For each observed signal

in 100 replications of the experiment, the sampler was run twice: once

with the correct expression of the ratio, given by (3), and once with

the erroneous expression from [1]. Figure 2 shows the frequency of

selection of each model under both the Poisson and the accelerated

Poisson distribution as a prior for k. It appears that the (unintended)

use of the accelerated Poisson distribution, induced by the erroneous

expression of the MHG ratio, can result in a significant shift to the

left of the posterior distribution of k.

The reason why the MHG ratio in [1] is wrong can be understood

from a subsequent paper [16], where the same computation is

explained in greater detail. There, we can see that the authors consider

that the new component in a birth move is inserted at the end. The
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Figure 2. Frequency of selection for each model Mk for 100 replications
of the experiment described in Section IV, using the expression of the ratio
given in [1, Equation (20)] (black) and the corrected ratio (3) (gray).

death move, however, is defined as in the present paper: a sinusoid

to be removed is selected randomly among the existing components.

Here is the error: if the new component is inserted at the end during

a birth move, then any attempt at removing a component which is not

the last one should be rejected during a death move. In other words,

the acceptance probability should be zero when any component but

the last one is picked to be removed during a death move.
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