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ABSTRACT 

Fault Trees (FTs) for the Probabilistic Safety Analysis (PSA) of real systems suffer from the 

combinatorial explosion of failure sets. Then, minimal cut sets (mcs) identification is not a trivial 

technical issue. In this work, we transform the search of the event sets leading to system failure and 

the identification of the mcs into an optimization problem. We do so by hierarchically looking for 

the minimum combination of cut sets that can guarantee the best coverage of all the minterms that 

make the system fail. A multiple-population, parallel search policy based on a Differential 

Evolution (DE) algorithm is developed and shown to be efficient for mcs identification, on a case 

study considering the Airlock System (AS) of CANDU reactor.  
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1. INTRODUCTION 

Fault Tree (FT) is a tool widely used in Probabilistic Safety Assessment (PSA) of Nuclear Power 

Plants (NPPs) [NUREG,  1983; NASA, 2002; Zio, 2007]. Traditionally, FTs are used for 

quantifying various probabilistic measures (including probabilities and/or frequencies of sequences, 

safety margins, importance factors and sensitivity indices) [Kumamoto et al., 1996; Epstein et al., 

2005]. The size of the system may challenge the FT analysis, in practical situations: even for the  

Airlock System (AS) of a CANDU nuclear reactor with only 9 components [Lee et al., 2012], the 

minimal cut sets (mcs) identification problem gives rise to a FT structure function composed by 

29=512 minterms (i.e., a product of the literals α representing  each component state, 1 failed, 0 

safe) , 16867 cut sets   (i.e., a combination of components failures leading the system into failure 

state) and cut set chart (i.e., a table with all the minterms as columns and the cut sets as rows)  of 

8635904 elements. To overcome the problem, research efforts have developed in two directions: 

one looking for approximations of the probabilistic measures of interest obtained by considering 

only some selected mcs; another one developing computational methods to easily more efficiently 

assess the probabilistic measures from the exact mcs. One example of approximation consists in 

considering only small order mcs (i.e., mcs formed by a small number of elements) [Rauzy, 2001], 

which in principle capture the main part of the top-event probability. Another truncation process 

selects only the mcs with probability of occurrence larger than a given threshold. However, mcs 

truncation can have direct consequences on the safety level of the NPP, because it is not known how 

many are the mcs neglected (because of big or of small probability) in the estimation of the 

risk/safety indicators of interest. For this reason, it has been pointed out that mcs exact 

identification (rather than truncation) is one of the technical issues to be tackled in the development 

of PSA for risk-informed decision making, e.g. for maintenance, service inspections and safety 

margins quantification in new NPPs design [Fleming, 2003; Duflot et., al, 2009; Zio et al., 2010]. 

A first attempt in developing computational methods for limiting the mcs combinatorial explosion 

of FTs without approximation has been to encode the Boolean formulae derived by the FTs into 

binary decision diagrams (BDDs) [Akers, 1978]. One of the major advantages of a BDD is that it 

provides exact values for probabilistic measures and it does not need any kind of truncation or 

approximations. However, BDD is highly memory consuming and very large models, such as FTs 

of NPP systems are beyond capability [Rauzy et al., 1997]. Another attempt for identifying mcs is 

the Dynamic Flowgraph Methodology (DFM), which is a directed graph based approach to model 

and analyze the behavior of dynamic systems [Garrett et al., 1995]. The main drawback is 

scalability, that is, the fact that realistic modeling causes a combinatorial explosion as the number of 

states in the system increases [Bjorkman, 2013]. In order to tackle this challenge, a DFM has been 



solved by a BDD (based on meta-products or on zero-suppressed BDD) [Bjorkman, 2013]. Also 

Petri nets suffer from the combinatorial explosion of the number of states, when applied to complex 

systems [Labeau et al., 2000].  

We present a novel approach to tackle this issue of exact mcs identification of coherent and non-

coherent FTs based on a Hierarchical Differential Evolution (HDE) algorithm. The ordinary DE 

algorithm has been demonstrated to be an efficient, effective and robust method for the 

identification of prime implicants (PIs) in simple non-coherent structure functions [Di Maio et al., 

2013]. Here it is applied within a hierarchical scheme to deal with its computational limitations and 

avoid any approximation in the identification of mcs of complex coherent structure functions. With 

the proposed scheme, we look for the minimum combination of cut sets that can guarantee the best 

coverage of all the minterms that make the system fail: during the first step of the iteration process, 

a multiple-population, parallel search policy is implemented to expedite the convergence of the 

second step of the exploration algorithm. 

The paper is organized as follows. Section 2 is devoted to recalling some base terminology (FT, 

Boolean Formulae, coherent and non-coherent structure functions, minterms, etc.). In Section 3, the 

HDE technique for mcs identification is presented. In Section 4, it is applied to the FT of a CANDU 

Airlock System (AS) and its results are compared with those obtained with a DE algorithm. 

Conclusions and remarks are given in Section 5. 

 

2. TERMINOLOGY 

In this Section, we introduce the terminology used throughout the article with reference to FT 

analysis. The causal relations that lead to the FT top event can be described by a set of Boolean 

formulae built over a set of variables (literals) α1, α2, α3,... αn, and connectives (and, or, not, k-out-

of-n), whose semantics is defined by means of truth tables. By manipulation of the truth tables, the 

top event can be expressed in terms of primary events (e.g. components failures in our case of 

interest). The simplest way to express the structure function Φ, which relates the top event to the 

primary events, is in terms of minimal cut sets (mcs) *  . A mcs is a combination of primary 

events (cut set  ), which if all, and only all, verified cause the top event to occur. Then, a mcs *  

is one of the 2n products of literals (minterms), whose occurrence ensures the failure of the system 

*( ) 1   , while no proper subset of *  is a cut set [Epstein, 2005]. A structure function Φ is 

coherent if it can be expressed without any *  of complemented literals X , non-coherent 

otherwise.  



 

3. CANDU AIR LOCK SYSTEM ANALYSIS 

The Airlock System (AS) of a Canada Deuterium Uranium (CANDU) reactor is a safety system 

required to keep the pressure of the inner side of the reactor vault lower than the outer side in order 

to avoid the dispersion of contaminants out of the reactor bay, in case of accident. The system 

consists of a vessel in the containment wall of the reactor vault, with two doors in order to allow the 

inspection of the vault: one door opens towards the inside of the reactor vault, the other towards the 

outside; so, at least one airlock door, whose seals are inflated via the air system, must be closed by a 

latch with sufficient pressure in the seals to fulfill its safety function. 

A FT has been developed for analyzing a scenario that involves a Design Basis Accident (DBA) 

occurred in 2011 in the AS of a CANDU NPP [Lee et al., 2012]. During the accident, the inflation 

of the seals switched to the back-up air supply tank and the FT top event is the incapability of the 

AS to maintain the pressure boundary [Lee et al., 2012]. The possible causes for this top event can 

be: the pressure equalizer valve fails (V1), doors fail to close because latches are not locked (D1) 

and seals are cracked or cannot be inflated (S1). The pressure equalizer valves are designed to 

equalize the pressure between the reactor bay and the service side and, therefore, to allow controlled 

flow between the reactor bay and service side. The pressure equalization can fail due to gear box 

failure (G1) that may limit the vents from opening and closing, to the presence of leakages in the 

piping system (P1/P2) or to the failure of the exhaust pipe (E1). The airlock doors must be closed 

by a latch, otherwise the pressure equalizer valves and seals cannot be called in operation on 

demand. In addition, the possibility is considered that the back-up tank is already empty (T1) or 

fails to engage (T2) when the inflation of the seals is switched to the back-up air supply system. The 

basic failure events that can give rise to the AS failure are listed in Tab. 1. 

 

 Basic Failure Events ID Code 

1. Pressure equalizer valve is failed V1 

2. Doors fail to close and lock D1 

3. Seals are cracked S1 

4. Gearbox fails G1 

5. The piping system presents minor leakages P1 

6. The piping system presents major leakages P2 

7. Exhaust pipe fails open E1 



8. Back up tank is empty T1 

9. Back up tank fails to engage T2 

Table 1. Basic failure events and ID code for the considered DBA in a CANDU AS 

The FT for the DBA here considered is shown in [Lee et al., 2012]. The structure function, whose 

expression is        1 AND 1  OR 1 AND 1 OR 1 OR 1  OR 1 OR 2 OR 2  OR 1G E T S V P V T P D     , 

entails 497 minterms leading to the system failure and 16867 cut sets can be found. The true 

solution optx  comprises 7 mcs *  ({D1}, {P2}, {T2}, {V1}, {E1,G1}, {P1,T1}, {S1,T1}) [Lee et 

al., 2012]. The results of the identification of the mcs of the CANDU AS obtained by the proposed 

HDE are presented in the following paragraphs. 

 

4. HIERARCHICAL DIFFERENTIAL EVOLUTION FOR MCS 

IDENTIFICATION 

We treat the problem of mcs identification as a set covering problem (SCP) [Beasley et al., 1996]. 

In the context of mcs identification, the SCP is the problem of covering each one of the minterms 

by a group of cut sets of minimal cost. We define the cost of a cut set Π as the number of literals α 

associated with system components included in the cut set (literal cost). Each solution of the SCP, 

ˆ ,optx  is represented by a specific combination of independent variables, or, mathematically 

speaking, by a R-dimensional vector 1 2( , ,..., )Rx x x x  (hereafter called chromosome within the 

jargon of the differential evolution (DE) optimization method (Appendix A)) where a value of 1 in 

the i-th vector position xiimplies that Πi  is chosen to be in the cover; a value of 0, otherwise [Sen, 

1993]. 

The novelty of the Hierarchical Differential Evolution (HDE), here proposed for mcs identification, 

builds on in the application of a two-step Differential Evolution (DE) optimization[Wang et al., 

2010]. In the proposed hierarchical framework, the first optimization is fed with subsets Γi, i=1, 2, 

...,S, of the whole set Ω, where the i-th subset Γi is generated by randomly assigning to it N cut sets 

Π of Ω in a way that each cut set belongs to only one subset, i.e.,    for   ii j j    , and the 

union of all the subsets is equal to all the cut sets, i.e.
1

n

i
i   .  

For each of the subsets i , i=1, 2, ...,S, 

1a) we build a cut set chart, using all the minterms as columns and the cut sets Π belonging to 

i  as rows 



2a) we build the cost vector, where to each Π is assigned its literal cost 

3a) we perform the DE optimization 

4a) we find the best individuals {Π}i. 

The second DE optimization is performed on the new subset  
1

S

ii  comprising all the cut sets 

included in the best individuals  
i

 found at the end of the first optimization. In detail,  

1b) we build a new cut set chart, using all the minterms as columns and the cut sets  
1

S

ii   as 

rows  

2b) we build a new cost vectorwhere to each  
1

S

ii   is assigned its literal cost 

3b) we perform the DE optimization 

4b) we find the mcs *  of the system 

The pseudo-code is shown below. 

 

 

for 1:i S  

 sample without replacement N  cut sets   from   

populate the i-th subset i  

end 

for 1:i S  

create an initial population of NP potential solutions x  containing a selection of the cut sets   in the 

i  subset 

for 1:g G  

select (for each potential solution gx ) three randomly chosen individuals for reproduction (Eq. 1a) 

create for each target vector gx  a noisy vector gv  using mutation process 

create a trial vector 1gu   mixing target and noisy vectors, gx  and gv , respectively (Eq. 3a) 

compare target vector gx  with each related trial 1gu   and eventually replace (Eq. 4a) 

end 

memorize the Π contained in the i best solutions  i
  

end 

create an initial population of NP potential solutions x  composed by  i
 , 1,2,...,i S  

for 1:g G  

select (for each potential solution gx ) three randomly chosen individuals for reproduction (Eq. 1a) 

create for each target vector gx  a noisy vector gv  using mutation process 

create a trial vector 1gu   mixing target and noisy vectors, gx  and gv , respectively (Eq. 3a) 

compare target vector gx  with each related trial 1gu   and eventually replace (Eq. 4a) 

end 

F
irst level D

E
 

Second level D
E

 



memorize the best solution found 
ˆ
optx  

 

 

Three performance indicators are used to judge the goodness of the results. In the evaluation, the 

optimizations are repeated a number of times (20 in our case), to account for the inherent 

stochasticity of the search algorithm. The three performance indicators are: 

- Cpu: cpu time (expressed in seconds) necessary to converge to the solution ˆ
optx . 

- Success rate (Sr): percentage of trials for which the true optimum optx  is found. 

- Accuracy (λ): the larger λ, the larger the accuracy of the solution [Tvrdìk, 2006] as: 
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4.1 DE Results 

 

We apply the DE approach proposed in [Di Maio et al., 2013]. A “One complement” fitness 

function [Shackleford et al., 2001] is embedded into the evolutionary algorithm: the cost of the trial 

solution ˆoptx is mapped into a binary fitness function made up by two parts where the most important 

digits are determined as the complement to one of the uncovered faulty minterms, whereas the least 

important digits are determined as the complement to one of the sum of the costs of the cut sets 

included in the trial solution. In this way, we obtain that a complete subset of cut sets that covers all 

faulty minterms has surely a larger fitness than any other incomplete subset. For the ease of clarity, 

with respect to the AS of the CANDU, since the columns of its cut set chart are 497 (that is, equal 

to the number of minterms), 9 bits code the maximum number of uncovered columns, whereas the 

(1) 



sum of the cost of all the 16867 cut sets is equal to 103298 so that 17 bits code the cost part of the 

trial solution. In Fig. 1 the calculation procedure of the “One Complement” fitness function is 

shown for the best solution: the uncovered columns are equal to zero, while the total cost of the best 

solution is equal to 10 (4 cut sets contain only one basic event and 3 contain 2 basic events); the 

complement to one of 0 on 9 bits is equal to 511, and the complement to one of 10 on 17 bits is 

equal to 131061; joining together this two parts of the fitness function gives a fitness value for optx  

equal to 67108853. 

 

Fig. 1. Procedure for the calculation of the fitness function for the best solution of the CANDU AS 

In this application, parameters F and b (Eq. 1a) and CR (Eq. 3a) are set equal to the values reported 

in Tab. 2. 

Parameters 
F 0.1 

CR 0.2 

b 9 

Table 2. Values of the parameters F, CR and b used in the DE 

The analysis is performed for population sizes NP=30, 100, 300 and 500. The only stopping 

criterion is the generation number G set equal to MAXGEN =5000. Performance indicators for the 

DE optimizations are shown in Tab. 4, 5, 6 and 7, for NP=30, 100, 300 and 500, respectively. 

NP 30 

Cpu [s] 2046.63 
Sr 0 % 

λ 4.50 

Tab. 4. Performance indicators for the DE performed with NP=30 



NP 100 

Cpu [s] 4449.50 
Sr 0 % 

λ 6.24 

Tab. 5. Performance indicators for the DE performed with NP=100 

NP 300 

Cpu [s] 10092.59 
Sr 5 % 

λ 7.57 

Tab. 6. Performance indicators for the DE performed with NP=300 

NP 500 

Cpu [s] 17503.51 
Sr 75 % 

λ 10.20 

Tab. 7. Performance indicators for the DE performed with NP=500 

It is seen that, in this real case with a large number of minterms and cut sets, the NP value is critical 

for finding the true mcs list: for population sizes NP=30 and 100,  the DE cannot succeed in 

identifying the correct mcs (Sr=0), whereas with NP=300 the Sr increases only to 5%. Even the 

success rate for NP=500 (Sr=75%) cannot be acceptable for industrial applications or regulatory 

purposes. 

Tab. 8 reports the results obtained with NP=700 and limiting G to MAXGEN =2000 which are 

sufficient to achieve convergence and allow saving computational time, i.e. better cpu performance, 

whilst expediting the convergence towards the optimal mcs ˆ
optx  because of a larger population. In 

fact, when NP=700, the Sr and λ indicators outperform those achieved with smaller population 

sizes. 

NP 700 

Cpu [s] 9353.48 
Sr 100 % 

λ 11 

Tab. 8. Performance indicators for the DE performed with NP=700 

It is important to notice that, with this setting:  



1) Sr turns out to be equal to 1, which means that the algorithm always finds the true optimum 

solution ˆ ;optx  

2) cpu indicator shows that reducing the value of MAXGEN allows for an effective practical 

application. 

In Fig. 2, the evolution of the difference Δ between the fitness values ofoptx  and ˆ
optx  during 20 

different trials of the iterative search for the optimal solution ˆ
optx is shown on a semilogarithmic plot 

for NP=30, 100, 300, 500 and 700: the mean values of the differences Δ at each generation are 

plotted in continuous line, with error bars of the minimum and maximum fitness values at each 

generation. 

 

Fig. 2. Fitness function convergence using DE with different NP values 

The convergence of the algorithm improves in value and number of generations for larger 

population sizes because of a better exploration of the search space, as confirmed by the Sr values 

of the indicators for the different NP values in Tables 4 to 8 and in Figs. 3 and 4.In particular, in 

Fig. 3, the boxplots of the ̂optx  fitness values obtained by the ordinary DE algorithm (with 

population of 30, 100, 300, 500 and 700 chromosomes) after MAXGEN generations are plotted. 

For the sake of clarity, in Fig. 4 the plotted boxplots are the zoom of Fig. 2 with respect to 

population sizes of NP=100, 300, 500 and 700. 
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Fig. 3. Boxplot of the fitness values obtained with the DE-based algorithm with NP=30, 100, 300, 500 and 

700 

 

Fig. 4. Boxplot of the fitness values obtained with the DE-based algorithm with NP=100, 300, 500 and 700 

It can be noticed that increasing the population size NP moves the mean fitness value of the 

population towards the fitness value of the true optimum solution equal for this case study to 

67108853. Moreover, the increase of the number of individuals in the population gives rise to 

distributions that are shrinked on the optx fitness value, which makes the result more reliable. 

In conclusion, NP reveals to be a critical parameter for the efficiency of the search of the mcs by the 

DE algorithm: the broader the search space (i.e., the number of cut sets) the larger NP is needed to 
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explore it. On the other hand, Tabs. 4 to 8 show that the cpu indicator increases less than linearly 

with the population size, whereas it is linearly dependent on the number of generations. Therefore, a 

compromise must be sought to improve the cpu by using a larger population for a shorter number of 

generations. 

 

4.2. HDE Results 

In order to apply the HDE technique to the CANDU FT, we have to partitioned Ω into S subsets Γi, 

where S is set to 10 and N=1687 for eachsubset. The cut set chart and cost vector are built for each 

subset as shown in Section 3.1. Then, the DE algorithm embedded into the first optimization stage 

is run with a population size NP equal to 500 and the maximum generation number MAXGEN equal 

to 700. In Tab. 9 the mean cpu time required for performing the optimization on a single i-th subset 

is shown. 

NP 500 
MAXGEN 700 

Cpu [s] 607.20 

Tab. 9. Cpu time for the first step of the HDE optimization 

At this first optimization stage, it is not possible to apply the Sr and λindicators because the true 

solution optx  does not belong to any of the subsets. With respect to the computational demand of the 

first stage of the HDE optimization, it is worth considering that on ordinary computers (e.g., Intel® 

Core™ i5.2500 CPU @3.30GHz) it is possible to treat at least 5 subsets at the same time. Thus, the 

total time approximately required for the first step is 1214.40 s. 

The number of cut sets found by the first step of the optimization is 100, among which the ordinary 

DE embedded in the second step of the optimization procedure has to search for the optimal mcs set 

optx . As in the first step, the cut set chart and the cost vector associated to the new cut sets are 

defined, and a DE search is launched with NP and MAXGEN equal to 500 and 200, respectively 

(Tab. 10). The mcs found by the HDE are the same as those reported in Tab. 3, proving that the 

HDE is capable of identifying the mcs.  The cpu time required for the second step optimization is 

equal to 19.76s. 

NP 500 
MAXGEN 200 

Cpu [s] 19.76 

Tab. 10. Cpu time required by the second step of the HDE optimization 



The total time required by the HDE optimization is equal to 1233s, which is significantly reduced 

compared with the previous DE (see Tabs. 4 to 8). 

The faster convergence obtained by the HDE compared with previous DE with NP=700 is shown in 

Fig. 5, where the evolution of the difference Δ between the fitness values of optx  and ˆoptx  is shown 

on a semilogarithmic plot. For DE, parameters NP and MAXGEN were set equal to 700 and 2000 

respectively, while for HDE they are equal to the values of Tabs. 9 and 10. 

 

Fig. 5. Fitness function convergence using DE and HDE 

HDE shows superior performance. In fact, in the first step of the optimization it achieves better 

results than DE by resorting to a larger population for exploring a reduced search space, whereas in 

the second step of the optimization it explores an even more reduced search space made up of best 

individuals, reaching Δ=0 in only 800 generations. 

 

5. CONCLUSIONS 

The exact identification of the mcs of FTs is an important task in PSA. It becomes non-trivial for 

systems that are composed by large numbers of components. In this paper, we have addressed this 

issue by proposing a novel HDE algorithm. This amounts to transferring the mcs identification into 

a hierarchical optimization problem: during the first step, a multiple population parallel DE search 

policy is used to expedite the convergence of a second step of DE exploration. The proposed 
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method has been applied for the analysis an airlock system of a CANDU reactor. The superior HDE 

results becomes evident as the number of basic events in the FT grows.  

 

 

APPENDIX A 

 

Differential Evolution (DE) 

For solving the so defined SCP we resort to Differential Evolution (DE) [Wang et al., 2010], which 

belongs to the class of Evolutionary Algorithms (EAs) [Storn et al., 1997][Holland, 1975]. 

DE entails three phases called mutation, crossover and selection. In the first phase, at the g+1-th 

generation, for each gene xrin the chromosome vector 1 2( , ,..., )g R gx x x x of the population of NP 

different chromosomes at the g-th generation, a probability estimation vector 

       1 2, , , RP x P x P x P x     is created by Eq. (1). 

( ) ( )( )
2 0.5

1 2

1
( )

1

r rl r mk

r
b x F x x

F

P x

e

         




฀ ฀

 

 

where the weighting factor [0,2]F  is a user-defined parameter, kept constant during the 

optimization and 
( ) ( ) ( )

,  and 
l k mr r rx x x  are the r-th genes of the three randomly chosen individuals, with 

 , , 1,2,...,l k m NP . 

According to the probability estimation vector, the corresponding genes of the noisy vector 1gv   of 

the current target individualgx are generated: 

1          if ( )

0          otherwise
r

r

rand P x
v

   

The genes of the trial individual 1gu  can be obtained by the crossover operator through Eq. (3): 

      if  or ( )

      otherwise
r

r

r

v rand CR r irand R
u

x

    

Therefore, at least one bit of the trial individual is inherited from the mutant individual so that DE is 

able to avoid duplication individuals and effectively search within the neighborhood; this 

contributes to maintain the diversity inside the perturbed population, shuffling old and new 

(1a) 

(2a) 

(3a) 



information. This increases the probability of maintaining some good property from the target 

vector and avoids drastic changes during the generation of new solution.  

During the selection process, the population is modified by substitution. Referring to minimization, 

if the fitness, i.e., the cost, of 1gu   is less than the fitness of gx , the first will be a member of the next 

generation g+1, replacing the target vector, and the trial vector is discarded 

1 1

1

      ( ) ( )

       
g g g

g

g

u if fitness u fitness x
x

x otherwise

 


   

The selection criterion in DE is greedy and for sure the following generation is better or at least 

equal to the previous generation. 
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