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Abstract—In this paper, we propose as a first step a software
solution to measure the electrical power consumed in an industrial
furnace intended essentially for heat treatments. The soft sensor
is constructed from the power physical measurement taken as
the output of the set (dimmer + resistances), and the control
signal measurement provided by a controller with an unknown
structure. The second step consists in a detection of faults like
a resistance disconnection, for instance. This phase requires the
knowledge of the controller model and the furnace system. An
overparametrization method was chosen for the controller esti-
mation. An indirect closed-loop Input-Output (IO) identification
approach was used for the furnace model estimation through a
Tailor-Made and a decomposition of the closed-loop algorithms. A
validation with two other experimental tests concludes the paper.

I. INTRODUCTION

In France, the energy consumption of the industrial sector

represents roughly 28% of the french energy consumption

and 23% of its total CO2 emissions [8]. This situation is

becoming unacceptable in a context of increasingly demands

with respect to energy efficiency of industrial and household

uses, especially when a great part of this energy can be saved.

That is in this context that the project ANR CHIC (CHaı̂nes

de mesures Innovantes à bas Coût) emerged. The objective is

to develop and test low-cost sensors to monitor and analyze

the energy consumption of major fluids used in industrial sites

(electricity, gas, compressed air). These sensors should allow

the consumption monitoring and the detection of consumption

deviations. The objectives are to achieve a measurement ac-

curacy of about 5%. The project involves the design of new

low-cost sensors (both physical and software sensors) in the

following areas: current sensors, voltage, power, and gas flow.

The work presented in this paper only concernes the study of

power measurement.

The objective of the study presented in this paper is, in a

first step, to design of a power “soft” sensor. The concept of

soft sensors is to combine measurement available or easily

achievable, representing the evolution of the studied process,

and mathematical models relating the measure and the quan-

tities to determine. This concept is used in different fields and

especially in chemical or biological processes [2]. Modeling

is a key step to determine the quality of the measurement

and can be based on a physical or empirical approach, or

a combination of both (grey box models). The design of a

physical model is excluded since it is poorly adapted to an

industrial environment. For this purpose, we propose to build

behavioral models.

The second step consists in a diagnosis of faults usually

noticed in this kind of equipment. When it is the case, an

overshoot in power is observed and may be caused by a

door that was poorly closed or by a failure in one of the

resistances of the furnace. The diagnosis procedure depends on

the kind of occurred failure. We will see that a failure presence

can be detected only with the control signal. Therefore, it is

important to have a good estimation of the controller. However,

this criterion is not sufficient in the sense that we can not

distinguish what sort of failure has occurred. In this case, the

study of the furnace model parameters such as its gain and

time constants is essential.

The I/O furnace modeling in a closed-loop working envi-

ronment was rarely discussed [1], [13]. There are two types

of identification in such case: identification in open-loop and

identification in closed-loop. The first one is in practice diffi-

cult or simply not feasible. For example, some plants have an

integrator or are instable in open-loop, and others can undergo

long term drift in open-loop operation and non-stationary

disturbances which favor a closed-loop experiment for data

collection [7]. Also, it has been shown that a closed-loop

identification experiment is often the optimal experimental

setup [3]. In the remainder of this paper, two different output-

error algorithms are discussed.
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II. PLANT DESCRIPTION

The furnace, shown in figure1, contains a two zones refrac-

tory brick chamber. Each zone includes 6 resistances (12kW,

380V) which leads to 144kW of total power. The temperature

in each zones is regulated by a digital controller actuated by

a dimmer following a setpoint profile imposed by the operator

(figure 2), and measured by a thermocouple. Measurements

(electric power [kW], furnace temperature [◦C], control sig-
nal [%]) are collected each 10s. The closed-loop scheme is

summarized in the figure 3. The maximum temperature is of

1600◦C.

Fig. 1. Experimental plant
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Fig. 3. Closed-loop system

The figure 4 presents some of the data collected on the

furnace during a free-load common test. We can see that power

is strongly related to the control signal.

III. POWER MEASUREMENT

The power soft sensor development comes down to model

the set dimmer and resistances defined by the relationship P =
f(u) between the power and the control signal as shown in the
figure 3.
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Fig. 4. Typical experimental data

Knowing that the furnace is of power equal to 144 kW and

that the control signal varies between 0 and 100%, the theo-

retical model of the dimmer and resistances is then deduced:

P (t) = 1, 44u(t). The plot (Figure 5) of the experimental

data P = f(u) reveals a linearity. Thus, a simple least-

squares algorithm (LS) is sufficient to model this relationship
and gives : P (t) = 1.506u(t) − 0.9117. Figure 5 shows

the measured and simulated output. The figure 6 represents a
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Fig. 5. Least-squares dimmer/resistances model estimation

comparison between the theoretical model and the LS-model.

To verify the consistency of the estimated model, a validation

was done on another experimental test as shown in the figures

7 and 8. The calculation of the relative error (see table I),

without taking into account the outlier points, shows that its

maximum is less than the fixed objective of 5% with a clearly

advantadge for the LS-model.

Test meanLS meanTh maxLS maxTh

Estimation 0.22 3.38 9.68 9.90

Validation 0.22 3.29 9.75 9.96

TABLE I
MEAN AND MAXIMUM RELATIVE ERROR WITH ESTIMATION AND

VALIDATION DATA

The interest of the estimated model is its simplicity to handle. It

can be easily implemented with a microcontroller, for instance.

It also gives the possibility to calibrate or recalibrate the model

online.

IV. FAULT DIAGNOSIS

An overshoot in power may be caused by a door that was

poorly closed or by a fault in one of the resistances of the
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Fig. 7. Validation of LS dimmer/resistances model estimation
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Fig. 8. Comparison between the LS-model output and the theoretical dim-
mer/resistances model output with validation data

furnace. Early detection of these faults can significantly reduce

energy consumption by alerting the system operator.

As it has been said in introduction, this step involves the

identification of the controller and the furnace system. Indeed,

the feedback is taken into acount by identifying a closed-loop

transfer function and determining the normal-operating using

the knowledge of the linear controller.

A. Controller estimation

It might be obvious to know exactly the control law, par-

ticularly when the systems are numerically controlled. But in

practice, the implemented controller can be very different from

the real one, because of programming mode, nonlinearities,

antisaturation devices, etc. A solution consists to identify the

controller. In order to avoid the choice of the controller model,

an overparametrization technique is used. Then a criterion

based on discrete moment is used to choose the model order

[12].

Consider the system given by the closed-loop setting of the

figure 9. yk is the measurement of xk added to measurement

R(z)
S(z) H(z)+

-

+
+

yk

bk

xkukek

Fig. 9. Closed loop

noise bk (yk = xk + bk with xk unknown). Once the mea-

surement is obtained, yk is well known. Thus, yk is a certain

value that we can use in a processing control algorithm. The

controller identification is therefore a free-noise identification

problem. With the prior knowledge of the control signal uk

and the setpoint ek, we can apply an ordinary least-squares

algorithm [9].

Let us define for example the controller to be estimated by

R(z)

S(z)
=

r0 + r1z
−1

1 + s1z−1
(1)

Then

uk + s1uk−1 = r0(ek − yk) + r1(ek−1 − yk−1) (2)

Knowing the control signal, the setpoint and the noisy output,

we can write

ûk = ϕT

k
θ̂ (3)

with ϕT

k
=

[
ek − yk ek−1 − yk−1 −uk−1

]

and θ̂
T
=

[
r̂0 r̂1 ŝ1

]
.

If the exact structure is unknown, an overparametrization

principle can be used. Thus, Cs(z) =
Rs(z)
Ss(z)

is chosen such as

deg[Rs(z)] > deg[R(z)], deg[Ss(z)] > deg[S(z)] (4)

Consider the overparametrized estimated controller

Cs(z) =
r0 + r1z

−1 + . . .+ r2z
−S

1 + s1z−1 + . . . sSz−S

where S is the degree of overparametrization, and ûk =
ϕT

Sk
θ̂S ,with

{
ϕT

Sk
= [ek − yk . . . ek−S − yk−S − uk−1 . . .− uk−S ]

θ̂
T

S = [r0 . . . rS s1 . . . sS ]
(5)

It is necessary to be sure that the S degree is sufficiently high

in order to avoid modeling error and at the same time not

uselessly high. For that purpose, a characterization test based

on system invariants called “discrete moments” is used [15].

Let us define the controller impulse response gk with a

finite sum in [0,∞[. A Taylor series expansion of CS(z) in
neighborhood of z−1 = 1 gives
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Z {gk} = CS(z) =

∞∑

n=0

(z−1 − 1)n

n!
Mn(gk) (6)

where Mn(gk) =
∞∑

k=n

An
kgk with An

k = k!
(k−n)! , is the nth

order discrete moment of the impulse response gk. In the case
of a controller with an integrator, we deduce the moments of

order 0, 1 and 2 as follows



M0 = β0/α1

M1 = (β1 − C0α2)/α1

M2 = 2(β2 − C0α3 − C1α2)/α1

(7)

with βn =
M∑

k=n

An
krk, αn =

N∑
k=n

An
ksk and M,N the numera-

tor and denominator orders.

If an overparametrized structure includes the exact structure,

then all its moments are equivalent to those of the real system.

In practice, the exact moments are unknown, but we can

increase the structure complexity and calculate its moments.

When a stability of moments is reached, the considered struc-

ture includes certainly the real system.

This algorithm is now applied to the experimental data.

Because of the lack of knowledge about this structure, an

overparametrization to a degree S = 3 was done. In order to

find the good S degree, the discrete moments are tested to find

the degree from which the system invariants does not change

as shown in table II. We can clearly observe a negligible

variation of the discrete moment values for models higher or

equal to S = 2. Consequently, the estimated controller has the

Estimated models 0th moment 1st moment 2nd moment FIT [%]

S = 1 2, 2× 10−2 5, 5× 10−3 0 98,4

S = 2 2, 3× 10−2 9, 7× 10−3 1, 1× 10−2 97,9

S = 3 2, 3× 10−2 9, 2× 10−3 1, 1× 10−2 97,4

TABLE II
DISCRETE MOMENTS VERSUS S DEGREE

following DT (discrete-time) structure

Ĉ(z) =
r0 + r1 z

−1 + r2 z
−2

1 + s1 z−1 + s2 z−2

The estimated parameters are given in table III. The measured

r0 r1 r2 s1 s2
0, 02 −1, 7× 10−3 0.011 −0, 677 −0, 321

TABLE III
ESTIMATED PARAMETERS OF THE DT CONTROLLER

and estimated control signals are plotted in figure 10.

B. Furnace model

The parameters are estimated using a nonlinear optimization

algorithm which minimizes a quadratic criterion according to

the iterative Levenberg-Marquardt algorithm [10]. The crite-

rion is based on the output error, i.e. the error between the

measured system output y and the model output ŷ(θ̂), defined
by

εOE = y − ŷ(θ̂) = y −H(s, θ̂)u (8)

where

ŷ(θ̂) =
B̂(s, θ̂)

Â(s, θ̂)
u(s) (9)
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Fig. 10. Measured and estimated control signals for S = 2

with θ̂ = [â0, . . . , âna−1, b̂0, . . . , b̂nb
] and

B̂(s, θ̂i) =
nb∑
j=0

b̂js
j , Â(s, θ̂i) =

na−1∑
j=0

âjs
j + sna .

The Levenberg-Marquardt algorithm is defined by the follow-

ing iterative equation

θ̂i+1 = θ̂i −
{
[J

′′

θθ + λIn]
−1J

′

θ

}
θ=θ̂i

(10)

where J
′

θ and J
′′

θθ are the gradient and the approximated

Hessian, respectively defined by

J
′

θ = −
2

K

K∑

k=1

εOE(θ̂)σ(θ̂), J
′′

θθ =
2

K

K∑

k=1

σ(θ̂)σ(θ̂)T (11)

σ(θ̂) is the vector of sensitivity function: σ(θ̂) = ∂ŷ(θ̂)

∂θ̂
, λ

is a scalar used to control the convergence, and K the number

of samples.

The sensitivity functions are computed as follows

σy,âj
= −

sj ŷ(θ̂i)

A(s, θ̂i)
, σ

y,b̂j
=

sju(θ̂i)

A(s, θ̂i)
(12)

The property of asymptotic convergence in this algorithm

is achieved at the cost of the minimization of a nonlinear

quadratic criteria, which can lead to a local optimum [6]. To

avoid the local optimum, a solution is to use an equation-

error algorithm to initialize near the global optimum. The

routine IVCTRPM (Instrumental Variable Continuous-Time

Reinitialized Partial Moments) can be used [11], [14]. Two

different methods are compared: the OE identification method

based on a closed-loop decomposition (OE-CLD) [4] and the

Tailor-Made first OE method (TM) [4], [17].

1) OE-CLD: We can use a DT controller with a continuous-

time (CT) system as shown in Figure 11 [4]. The solution pro-

vided by the OE-CLD consists in simulating y from H(s, θ̂).
The output sensitivity functions σ

y,θ̂
should be calculated with

taking account of σ
u,θ̂

(the sensitivity of the predictive control

signal û to θ̂).
Let us define σ

y,θ̂i
. We know that

ŷ(s) = H(s, θ̂)û(s)
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so

σ
y,θ̂

= H(s, θ̂)
∂ûk

∂θ̂
+

∂H(s, θ̂)

∂θ̂
û(s) (13)

with ∂ûk

∂θi
obtained from a difference equation like (2), for

example, which gives

∂ûk

∂θ̂i
+ s1

∂ûk−1

∂θ̂i
= −r0

∂ŷk

∂θ̂i
− r1

∂ŷk−1

∂θ̂i

in other terms

σ
ûk,θ̂i

+ s1σûk−1,θ̂i
= −r0σyk,θ̂i

− r1σyk−1,θ̂i

(14)

With this sensitivity function formulation, it is possible to

estimate the CT system model parameters controlled by a

digital controller.

2) TM: An OE method is used to globally identify the DT

closed loop of the figure 12 and it was widely treated in [4],

[17] . Let us consider C(z) = R(z)
S(z) and H(z, θ̂) = B̂(z)

Â(z)
.

H(z, θ̂)
+

-

yMkxkûk
rk

C(z)

Fig. 12. DT closed-loop system

Hence

yM (z) =
R(z)B̂(z)

S(z)Â(z) +R(z)B̂(z)
r(z) (15)

or yM (z)P̂ (z) = R(z)B̂(z)r(z) with
P̂ (z) = [S(z)Â(z) +R(z)B̂(z)]
The calculation of the sensitivity function σk = ∂yMk

∂θ̂
gives

σk =
S(q−1)

P̂ (q−1)
ϕ
Mk

(16)

with q is the forward-shift time operator, and

ϕ
Mk

=




−yM (k − 1)
...

−yM (k − na)
û(k − 1)

...

û(k − nb)




The equation (16) is used in the OE algorithm. Then, the CT

transfer function Ĥ(s) is obtained from the DT one Ĥ(z).
On experimental data, we first initialize the OE algorithm

with the IVCTRPM algorithm estimated in open-loop by taking

as input the control signal and the measured temperature

as output. The results shown in table IV are the estimated

parameters of a transfer function of orders na = 2 and nb = 1
defined by H(s, θ̂) = G(1+τzs)

(1+τp1 )(1+τp2 )
. FIT denotes the fitting

criterion [9] which is defined by

FIT = 100×

(
1−

‖y(t)− ŷ(t)‖

‖y(t)−mean(y(t))‖

)
(17)

The choice of orders has been made after testing several orders.

It can be seen that the IVCTRPM initialized parameters are

very close to the TM and OE-CLD estimated ones. However,

the difference could be more important for a more disturbed

application. The fitting values show that the OE methods

improve the quality of estimation. The temperature outputs are

drawn in the figure 13.

FIT [%] G τz τp1 τp2
IVCTRPM 96% 18, 13 1, 1329 0, 2333 4, 6595

TM 98% 17, 56 0, 98 0, 23 4, 65
OE-CLD 98% 18, 37 1, 1372 0, 2337 4, 9175

TABLE IV
ESTIMATED PARAMETERS
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Fig. 13. Identification results

This identification is followed by a validation procedure on

two other data sets by simulating the estimated closed-loop

system (see Figures 14 and 15). We can easily observe that

the simulated outputs are close to measurement and this result

is confirmed by table V.

FIT [%] TM OE-CLD

2ndtest 96.4 96.3

3rdtest 98.3 98.2
TABLE V

VALIDATION FITTINGS

C. Fault diagnosis results

The furnace model is now estimated and validated. The final

step consists of a diagnosis of a resistance disconnection. We

have two possibilities:

• First, we can simulate the closed-loop identified below

and then deduce the control signal with taking as input

the setpoint temperature of the experimental data with

a fault. A comparison to the measured control signal
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Fig. 14. Validation on a 2nd free-load test
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Fig. 15. Validation on a 3rd free-load test

obtained with a disconnected resistance is shown in Figure

16. It is sufficient to detect a failure and an alarm can

be introduced with choosing, for example, an adaptive

threshold. However, we can not distinguish what kind of

failure the furnace is suffering from.
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Fig. 16. Control signal divergence

• We simulate all the closed loop which includes the

estimated furnace model. With this procedure, a sep-

aration can be done between a fault in the set (dim-

mer+resistances) (e.g. a resistance disconnection) from a

fault in the furnace itself (e.g. a door opening).

V. CONCLUSION

In this paper, a complete study of a furnace plant was

introduced with the objectives of designing a soft power sensor

and of a fault diagnosis. It has also been shown that we

can easily identify the model using the existing identification

approaches. An indirect closed-loop estimation using two OE

algorithms were investigated. For that, a previous step to

estimate the controller consisting of an overparametrization

technique was exploited. A successful validation is also given

and the results show that the proposed methods are effective.

However, only a resistance disconnection fault diagnosis was

investigated but future directions as a door opening or poorly

closed fault diagnosis will be explored. This diagnosis deals

with building a grey box model in order to obtain a more

flexible model which takes into account the mass and the load

nature.
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Thesis, Université de Poitiers, France, 1987.

[16] P.M.J Van den Hof, Closed-loop issues in system identification, Annual
reviews in control, 22, pp. 173-186, 1998.

[17] E.T. Van Donkelaar and P.M.J. Van den Hof, Analysis of closed-
loop identification with a tailor-made parametrization, European Control
Conference, Brussels, Belgium, Vol. 4, 1997.

2194

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

