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Channel state information (CSI) provided by limited feedback channel can be utilized to increase the system throughput. However, in multiple input multiple output (MIMO) systems, the signaling overhead realizing this CSI feedback can be quite large, while the capacity of the uplink feedback channel is typically limited. Hence, it is crucial to reduce the amount of feedback bits. Prior work on limited feedback compression commonly adopted the block fading channel model where only temporal or spectral correlation in wireless channel is considered. In this paper, we propose a differential feedback scheme with full use of the temporal and spectral correlations to reduce the feedback load. Then, the minimal differential feedback rate over MIMO time-frequency (or doubly) selective fading channel is investigated. Finally, the analysis is verified by simulation results.

the fading process was considered best. When the wireless channel experiences temporal-correlated fading, modeled as a finite-state Markov chain, the amount of CSI feedback bits can be reduced by ignoring the states occurring with small probabilities [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF]- [START_REF] Zhou | Interference alignment with delayed differential feedback for time-correlated MIMO channels[END_REF]. The feedback rate in frequency-selective fading channels was studied in [START_REF] Sun | Asymptotic capacity of multicarrier transmission with frequency-selecive fading and limited feedback[END_REF], [START_REF] Chin | Design of Differential Quantization for Low Bitrate Channel State Information Feedback in MIMO-OFDM Systems[END_REF], by exploiting the frequency correlation.

In summary, all the above works mainly focus on feedback rate compression considering either temporal correlation or spectral correlation. However, doubly selective fading channels are more frequently encountered in wireless communications as the desired data rate and mobility grow simultaneously. To the best knowledge of the authors, the scheme of making full use of the two-dimensional correlations is not yet well studied. Using both of the orthogonal dimensional correlations in a cooperated way, the feedback overhead can be further reduced in the doubly selective fading channels. Thus, in this paper, we derive the minimal feedback rate using both the temporal and spectral correlations.

The main contributions of the present paper can be briefly summarized as:1) We discuss the minimal feedback rate without differential feedback. 2) We propose a differential feedback scheme by exploiting the temporal and spectral correlations, and 3) We derive the minimal differential feedback rate expression over MIMO doubly selective fading channel.

The rest of the paper is organized as follows: In Section II, we describe the differential feedback model as well as the statistics of the doubly selective fading channel. In Section III, we propose a differential feedback scheme by exploiting the two-dimensional correlations and derive the minimal feedback rate. In Section IV, we provide some simulation results showing the performance of the proposed scheme.

II. SYSTEM MODEL

In this paper, we assume that the down-link channel is a mobile wireless channel which is always correlated in time and frequency domains, while the up-link channel is a limited feedback channel.

A. Statistics of the down-link channel

Since the channel corresponding to each antenna is independent and with the same statistics, we can describe the separation property of the channel frequency response H(t, f ) at time t for an arbitrary transmit and receive antenna pair [START_REF] Li | Robust channel estimation for OFDM systems with rapid dispersive fading channels[END_REF] 

r H (∆t, ∆f ) = E {H (t + ∆t, f + ∆f ) H * (t, f )} = σ 2 H r t (∆t) r f (∆f ) , (1) 
where E {•} denotes expectation function, the superscript (•) * denotes complex conjugate. σ 2 H is the power of the channel frequency response. r t (∆t) and r f (∆f ) denotes the temporal and spectral correlation functions, respectively.

Assuming that the channel frequency response stays constant within the symbol period t s and the subchannel spacing f s , the correlation function for different periods and subchannels is written as

r H [∆m, ∆n] = σ 2 H r t [∆m] r f [∆n] , (2) 
where r t [∆m] = r t (∆mt s ) and r f [∆n] = r (∆nf s ). Furthermore, if we just consider the time domain, the correlated channel can be modeled as a time-domain first-order autoregressive process (AR1) [START_REF] Baddour | Autoregressive modeling for fading channel simulation[END_REF] 

H m,n = α t H m-1,n + 1 -α 2 t W t , (3) 
where H m,n denotes the channel coefficient of the mth symbol interval and the nth subchannel, W t is a complex white noise variable, which is independent of H m-1,n , with variance σ 2 H . The parameter α t is the time autocorrelation coefficient, which is given by the zero-order Bessel function of first kind α t = r t [1] = J 0 (2πf d t s ), where f d is the Doppler frequency [START_REF] Gans | A power-spectral theory of propagation in the mobile-radio environment[END_REF].

Similarly, if we just consider the frequency domain, the correlated channel can also be represented as a frequencydomain AR1 [START_REF] Sun | Asymptotic capacity of multicarrier transmission with frequency-selecive fading and limited feedback[END_REF] 

H m,n = α f H m,n-1 + 1 -α 2 f W f , (4) 
where W f is a complex white noise variable, which is independent of H m,n-1 , with variance σ 2 H . The parameter α f determines the correlation between the subchannels, which is given by α

f = r f [1] = 1 √ 1+(2πfs∆) 2
, where ∆ is the root mean square delay spread [START_REF] Gans | A power-spectral theory of propagation in the mobile-radio environment[END_REF].

B. Differential Feedback Model

The system model with differential feedback is illustrated in Fig. 1. By using differential feedback scheme, the receiver just feeds back the differential CSI. We suppose that there are N t and N r antennas at the transmitter and receiver, respectively. The received signal vector at the mth symbol interval and the nth subchannel is given by y

m,n = H m,n x m,n + n m,n . (5) 
In the above expression, y m,n denotes the N r × 1 received vector at the mth symbol interval and the nth subchannel. H m,n , a N r × N t channel fading matrix, is the frequency response of the channel. The entries are assumed independent and identically distributed (i.i.d.), obeying a complex Gaussian distribution with zero-mean and variance σ 2 H . Different antennas have the same characteristic in temporal and spectral correlations, α t and α f , respectively. Besides, there is no spatial correlation between different antennas. x m,n denotes the N t × 1 transmitter signal vector and is assumed to have unit variance. n m,n is a N r × 1 additive white Gaussian noise (AWGN) vector with zero-mean and variance σ 2 0 . Both x m,n and n m,n are independent for different m's and n's.

Through CSI quantization, the feedback channel output is written as [START_REF] Zhang | On the minimum feedback rate of MIMO block-fading channels with time-correlation[END_REF]- [START_REF] Zhang | On the minimum differential feedback rate for time-correlated MIMO Rayleigh block-fading channels[END_REF] 

H m,n = Hm,n + E m,n , (6) 
where Hm,n denotes the channel quantization matrix, and E m,n is the independent additive quantization distortion matrix whose entries are zero-mean and with variance D NrNt , where D represents the channel quantization distortion constraint.

The differential feedback is under consideration as shown in Fig. 1. We can use the previous CSI to forecast the present CSI H m,n at the transmitter

Ĥm,n = a 1 H m-1,n + a 2 H m,n-1 , (7) 
where a 1 and a 2 are the coefficients of the channel predictor which will be calculated by using the minimum mean square error (MMSE) principle in the next section. Meanwhile, the receiver calculates the differential CSI, given the previous ones. The differential CSI can be formulated as

H d = Diff (H m,n |H m-1,n , H m,n-1 ) , (8) 
where H d represents the differential CSI which obviously is the prediction error, and Dif f (•) is the differential function.

Then through limited feedback channel, H d should be quantized and fed back. Finally, The CSI reconstructed by combining the differential one and the channel prediction is utilized by the channel adaptive techniques. In this paper, we adopt the water-filling precoder, however, the analysis and conclusions given in this paper are also valid for other adaptive techniques.

The channel quantization matrix is decomposed as Hm,n = Ū Σ V+ using singular value decomposition (SVD) at the transmitter. Ū and V are unitary matrixes, and Σ is a nonnegative diagonal matrix composed of eigenvalues of Hm,n .

With the water-filling precoder, the closed-loop capacity can be obtained as [START_REF] Zhang | On the minimum feedback rate of MIMO block-fading channels with time-correlation[END_REF]- [START_REF] Zhang | On the minimum differential feedback rate for time-correlated MIMO Rayleigh block-fading channels[END_REF] 

C erg = E log det I Nr + J • J + F -1 , (9) 
where J = Hm,n VZ , J e = E m,n VZ , and

F = 1 A 2 I Nr + E [J e J + e |J],
where A represents the amplitude of signal symbol, and Z denotes a diagonal matrix determined by waterfilling [START_REF] Zhang | On the minimum feedback rate of MIMO block-fading channels with time-correlation[END_REF]

-[15]        z2 i = μ -(γ 2 i,i A 2 ) -1 , 0, γ2 i,i A 2 ≥ μ-1 otherwise Nt i=1 z2 i A 2 = N t A 2 , power constraint , (10) 
where γi,i , i = 1, 2, ..., N t are the entries of Σ, μ denotes a cut-off value chosen to meet the power constraint.

It is obvious from ( 9) that the closed-loop ergodic capacity is determined by H m,n and Hm,n , and the loss of capacity is mainly caused by the quantization error. Therefore, given the limited feedback channel, the capacity can be enhanced by exploiting the channel correlations to reduce the quantization error.

III. MINIMAL DIFFERENTIAL FEEDBACK RATE

In this section, exploiting the temporal and spectral correlations, we study the minimal feedback rate that denotes the minimal feedback bits required per block to preserve the given channel quantization distortion.

We first describe the feedback rate using normal quantization. Without differential feedback scheme, the receiver feeds back H m,n to the transmitter. The information entropy of a Gaussian variable X with variance σ 2 is represented as [START_REF] Mceliece | The Theory of Information and Coding[END_REF] 

h (X) = 1 2 log 2πeσ 2 . ( 11 
)
Thus, the feedback load has positive relation with σ 2 H . Furthermore, taking quantization of the channel matrix into consideration, the feedback rate is determined by the rate distortion theory of continuous-amplitude sources [START_REF] Mceliece | The Theory of Information and Coding[END_REF] 

R = inf I H m,n ; Hm,n : E d H m,n ; Hm,n ≤ D , (12) 
where inf{•} denotes infimum function, I H m,n ; Hm,n denotes the mutual information between Hm,n and H m,n , and d H m,n ; Hm,n = H m,n -Hm,n 2 denotes the channel quantization distortion which is constrained by D.

Since the entries of H and H are i.i.d. complex Gaussian variables, the feedback rate can be written as

R = inf N t N r I H m,n ; Hm,n : E[d(H m,n , Hm,n )] ≤ d , ( 13 
) where d = D
NtNr is the one-dimensional average channel quantization distortion. H m,n and Hm,n represent the entries of H m,n , Hm,n , respectively. Also, from (6) the one-dimensional channel quantization is written as

H m,n = Hm,n + E m,n . (14) 
The mutual information can be written as

I H m,n ; Hm,n = h (H m,n ) -h H m,n Hm,n , . (15) 
Combining ( 14), ( 15) can be rewritten as

I H m,n ; Hm,n ≥ h (H m,n ) -h (E m,n ) . ( 16 
)
Substituting [START_REF] Li | Robust channel estimation for OFDM systems with rapid dispersive fading channels[END_REF] and ( 16) into [START_REF] Zhang | On the minimum feedback rate of MIMO block-fading channels with time-correlation[END_REF], we obtain

R = N r N t log σ 2 H d . (17) 
From ( 17), the feedback rate required for the nondifferential feedback is very large. Nevertheless, by employing the temporal and spectral correlations, we can use the differential feedback scheme to reduce the feedback bits significantly. The transmitter can predict the present CSI H m,n depending on the previous ones in time domain H m-1,n and frequency domain H m-1,n . Then, the receiver quantizes H d ,or equivalently, the error of the channel prediction, and feeds back to the transmitter. Finally, the transmitter reconstructs the CSI by both the channel prediction and the differential CSI. It is obvious that the more accurate the channel is predicted, the less bits is fed back from the receiver. As H m-1,n , H m,n-1 and H m,n are correlated, an MMSE channel predictor can be constructed as [START_REF] Zhang | Cognitive Machine-to-Machine Communications: Visions and Potentials for the Smart Grid[END_REF], where the coefficients a 1 and a 2 are selected to minimize

MSE (a 1 , a 2 ) = E Ĥm,n -H m,n 2 . ( 18 
)
The MSE represents the statistical difference between the predicted value and the true one. We can obtain the minimized quantization bits by minimizing the MSE.

We can rewrite H m,n as

H m,n = Ĥm,n + H d = a 1 H m-1,n + a 2 H m,n-1 + H d , (19) 
where H d is the differential feedback load to minimize. By the orthogonality principle [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF], a 1 , a 2 are determined by

E [(H m,n -a 1 H m-1,n -a 2 H m,n-1 ) H m-1,n ] = 0 E [(H m,n -a 1 H m-1,n -a 2 H m,n-1 ) H m,n-1 ] = 0 .
(20) Since the entries of H m,n ,H m-1,n ,H m,n-1 are i.i.d. complex Gaussian variables, the orthogonality principle can be rewritten as

E [(H m,n -a 1 H m-1,n -a 2 H m,n-1 ) H m-1,n ] = 0 E [(H m,n -a 1 H m-1,n -a 2 H m,n-1 ) H m,n-1 ] = 0 .
(21) Moreover, the one-dimensional frequency response of the channel can be represented as

H m,n = Ĥm,n + H d = a 1 H m-1,n + a 2 H m,n-1 + H d , ( 22 
)
where H m,n , Ĥm,n , H m-1,n , H m,n-1 and H d represent the corresponding entries.

Direct calculation shows that (21) is equivalent to

r H [1, 0] -a 1 r H [0, 0] -a 2 r H [1, 1] = 0 r H [0, 1] -a 1 r H [1, 1] -a 2 r H [0, 0] = 0 . ( 23 
)
With the separation property of the correlations of the channel frequency response (2), and combining 23) can be simplified by

r t [0] = r f [0] = 1 and r t [1] = α t , r f [1] = α f , (
a 1 σ 2 H + a 2 α t α f σ 2 H -α t σ 2 H = 0 a 1 α t α f σ 2 H + a 2 σ 2 H -α f σ 2 H = 0 . ( 24 
)
From (24), a 1 , a 2 are given by

     a 1 = αt(1-α 2 f ) 1-α 2 t α 2 f a 2 = α f (1-α 2 t ) 1-α 2 t α 2 f . (25) 
Combing ( 25) and ( 22), the one-dimensional MSE of the channel estimator is

MSE = Var (H d ) = σ 2 H 1 -a 2 1 -a 2 2 -2a 1 a 2 α t α f . (26)
Finally, the channel estimator Ĥm,n is given by

Ĥm,n = α t 1 -α 2 f 1 -α 2 t α 2 f H m-1,n + α f 1 -α 2 t 1 -α 2 t α 2 f H m,n-1 . ( 27 
)
And combining ( 19) and ( 27), H m,n is given by

H m,n = α t 1 -α 2 f 1 -α 2 t α 2 f H m-1,n + α f 1 -α 2 t 1 -α 2 t α 2 f H m,n-1 + H d .
(28) Then, through the feedback channel, the error of the channel predictor H d can be fed back from the transmitter to the receiver. Similarly, from [START_REF] Li | Robust channel estimation for OFDM systems with rapid dispersive fading channels[END_REF], the feedback load is positive related with

Var(H d ) = σ 2 H 1 -a 2 1 -a 2 2 -2a 1 a 2 α t α f . Because ∂MSE ∂αt < 0, ∂MSE ∂α f
< 0, the feedback load can be much smaller than σ 2 H , the non-differential one, especially when the channel is highly correlated. For example, given α t > 0.75, α f > 0.75, then MSE| αt>0.75, α f >0.75 < MSE| αt=0.75, α f =0.75 = 0.28σ 2 H . From (28), taking quantization impact into consideration, the minimal differential feedback rate over doubly selective fading channels can be calculated by the rate distortion theory of continuous-amplitude sources in a similar way.

R = N r N t log a 2 1 + a 2 2 + 2a 1 a 2 α t α f d σ 2 H + V ar (H d ) d , (29) 
where the channel predictor coefficients a 1 , a 2 are determined by

a 1 = αt(1-α 2 f ) 1-α 2 t α 2 f and a 2 = α f (1-α 2 t ) 1-α 2 t α 2 f . The average power of H d is V ar (H d ) = σ 2 H 1 -a 2 1 -a 2 2 -2a 1 a 2 α t α f . The detailed derivation is given in Appendix A.
The above expression gives the minimal differential feedback rate simultaneously utilizing the temporal and spectral correlations. From (29), the minimal differential feedback rate is a function of α t , α f and the channel quantization distortion d, and much smaller than that of the non-differential one [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we first provide the relationship between the MSE of the predictor and the two-dimensional correlations in Fig. 2. The minimal differential feedback rate over MIMO doubly selective fading channels is given in Fig. 3. Then, a longitudinal section of Fig. 3 is presented, where we assume the temporal correlation and spectral correlation is equal. Finally, we verify our theoretical results by a practical differential feedback system with water-filling precoder and Lloyd's quantization algorithm [START_REF] Lloyd | Least-square quantization in PCM[END_REF].

A. MSE of the predictor and Minimal Differential Feedback Rate

For simplicity and without loss of generality, we consider N r = N t = 2, and σ 2 H = 1. Fig. 2 presents the MSE between the predicted value and the true value. As the temporal or spectral correlation increases, the MSE decreases. Furthermore, when either α t or α f comes to one, the MSE tends to zero. Additionally, because α t and α f could be any value, we provide one of the longitudinal section of Fig. 3 where the temporal correlation is equal to the spectral correlation in Fig. 4. For comparison, the differential feedback compression only using one-dimensional correlation and the non-differential feedback scheme are also included in Fig. 4. It is observed from Fig. 4 that the scheme using both temporal and spectral correlations is always better than the scheme using only one-dimensional correlation. As the correlations increase, the two-dimensional differential feedback compression exhibits a significant improvement compared to one-dimensional one. This performance advantage even reaches up to 67% with α t = α f = 0.95. 

B. Differential Feedback System with Lloyd's Algorithm

In this subsection, we consider the temporal correlation α t = 0.9, with carrier frequency 2 GHz, the normalized Doppler shift f d = 100 Hz and spectral correlation α f = 0.9, with ∆ = 8µs, which is a reasonable assumption [START_REF] Gans | A power-spectral theory of propagation in the mobile-radio environment[END_REF]. we design a differential feedback system using Lloyd's quantization algorithm to verify our theoretical results [START_REF] Lloyd | Least-square quantization in PCM[END_REF]. We use

Diff (H m,n |H m-1,n H m,n-1 ) = H m,n -a 1 H m-1,n - a 2 H m,n-1 as a differential function, where a 1 = αt(1-α 2 f ) 1-α 2 t α 2 f , a 2 = α f (1-α 2 t ) 1-α 2 t α 2 f
in the two-dimensional differential feedback compression and a 1 = α t , a 2 = 0 in the one-dimensional one.

The feedback steps can be summarized as follows. Firstly, based on Lloyd's quantization algorithm, the channel codebook can be generated according to the statistics of the corresponding differential feedback load at both transmitter and receiver. Secondly, the receiver calculates the current differential CSI H d . Thirdly, the differential CSI is quantized to the optimal coodbook value Hd according to the Euclidean distance. Finally, the transmitter reconstructs the channel quantization matrix by H m,n = a 1 H m-1,n + a 2 H m,n-1 + Hd .

In Fig. 5, we give the simulation results of the ergodic capacity employing Lloyd's algorithm. The theoretical capacity results are also provided in Fig. 5. We can see from Fig. 5 that the performance of the two-dimensional one are always better than the one-dimensional one, which verifies our theoretical analysis. As shown in Fig. 5, with the increase of feedback rate b, the ergodic capacities increase rapidly when b is small, and then slow down in the large b region, because when b is large enough, the quantization errors tend to zero. Also, the capacities of Lloyd's quantization are lower than the theoretical ones. The reasons are as follows. The Lloyd's algorithm is optimal only in the sense of minimizing a variable's quantization error, but not in data sequence compression while the channel coefficient H is correlated in both temporal and spectral domain. However, the imperfection reduces as b increases, because the quantization errors of both Lloyd's algorithm and theoretical results tend to zero with sufficient feedback bits b.

V. CONCLUSIONS

In this paper, we have designed a differential feedback scheme making full use of both the temporal and spectral correlation and compared the performance with the scheme without differential feedback. We have derived the minimal differential feedback rate for our proposed scheme. The feedback rate to preserve the given channel quantization distortion is significantly small compared to non-differential one, as the channel is highly correlated in both temporal and spectral domain. Finally, we provide simulations to verify our analysis.

APPENDIX A DERIVATION OF THE MINIMAL DIFFERENTIAL FEEDBACK RATE USING TEMPORAL AND SPECTRAL CORRELATIONS

The minimal differential feedback rate over MIMO doubly selective fading channel can also be derived by the rate distortion theory. Given Hm-1,n and Hm,n-1 at the transmitter, the differential feedback rate can be represented as (31)

The one-dimensional channel quantization equality can be written as

H m-1,n = Hm-1,n + E m-1,n H m,n-1 = Hm,n-1 + E m,n-1 . (32) 
Similarly, (28) yields

H m,n = a 1 H m-1,n + a 2 H m,n-1 + H d , (33) 
where Now we give the derivation of the correlation function of two noise terms r (E m-1,n , E m,n-1 ). From (32), the quantization error can be decomposed into two parts

a 1 = αt(1-α 2 f ) 1-α 2 t α 2 f , a 2 = α f (1-α 2 t ) 1-α 2 t α 2
E m-1,n = σ 2 H -σ 2 H σ 2 H H m-1,n + ψ m-1,n E m,n-1 = σ 2 H -σ 2 H σ 2 H H m,n-1 + ψ m,n-1 , (39) 
where ψ m,n-1 = Hm,n-1 -

σ 2 H σ 2 H H m,n-1 ψ m-1,n = Hm-1,n - σ 2 H σ 2 H H m-1,n , (40) 
ψ is a Gaussian variable with zero-mean and variance 
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 1 Fig. 1. System model of the differential feedback over MIMO doubly selective fading channel
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 2 Fig. 2. The MSE of the predictor at the transmiter, for Nr = 2, Nt = 2, σ 2 H = 1 and D = 0.1.
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 3 Fig.3plots the relationship between the minimal differential feedback rate and the two-dimensional correlations with the channel quantization distortion D = 0.1. It is very similar to the MSE shown in Fig.2, because it presents the minimal bits required to quantize the differential CSI.
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 3 Fig. 3. The minimal differential feedback rate, for Nr = 2, Nt = 2, σ 2 H = 1 and D = 0.1.
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 4 Fig. 4. The relationship between the minimal feedback rate and temporal and spectral correlations, when they are equal, for Nr = 2, Nt = 2, σ 2 H = 1 and D = 0.1.
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 5 Fig. 5. The relationship between the ergodic capacity and feedback rate with Lloyd's algorithm in AR1 model for Nr = 2, Nt = 2, σ 2 H = 1 and SNR = 5dB.

  R=inf I H m,n ; Hm,n | Hm-1,n , Hm,n-1 :E d H m,n ; Hm,n ≤D .(30) Since the entries are i.i.d. complex Gaussian variables, (30) can be written as R=inf I H m,n ; Hm,n | Hm-1,n , Hm,n-1 :E d H m,n ; Hm,n ≤D .

f.

  The conditional mutual information I H m,n ; Hm,n | Hm-1,n , Hm,n-1 can be written asI H m,n ; Hm,n | Hm-1,n , Hm,n-1 =h H m,n | Hm-1,n , Hm,n-1 (34) -h H m,n | Hm,n , Hm-1,n , Hm,n-1 .First, we calculate h H m,n Hm-1,n , Hm,n-1 . Substituting (32) into (33), it yields thatH m,n =a 1 Hm-1,n +E m-1,n +a 2 Hm,n-1 +E m,n-1 +H d .(35) Substituting (35) into (34), we obtainI=h(a 1 E m-1,n +a 2 E m,n-1 +H d )-h E m,n | Hm-1,n , Hm,n-1 . (36) Considering inequality h E m,n | Hm-1,n , Hm,n-1 ≤ h(E m,n )(36) can be written asI ≥ h (a 1 E m-1,n + a 2 E m,n-1 + H d )h (E m,n ) . (37)Since E m-1,n , E m,n-1 and H d are complex Gaussian variables, and the information entropy of a Gaussian variables with variance σ 2 is h (X) =1 2 log 2πeσ 2 , we calculate the variance of a1 E m-1,n + a 2 E m,n-1 + H d V ar (a 1 E m-1,n + a 2 E m,n-1 + H d ) =a 2 1 d + a 2 2 d (38) +V ar H d 2 + 2a 1 a 2 r (E m-1,n , E m,n-1 ).

  Then the correlation function of E m-1,n and E m,n-1 can be calculated asr (E m-1,n , E m,n-1 ) = V ar (a 1 E m-1,n + a 2 E m,n-1 + H d ) = a 2 1 d + a 2 -2a 1 a 2 α t α f .

					Substituting (41) into (38), we obtain
						2 d	(42)
					+σ 2 H d + 2a 1 a 2	d 2 H σ 2	α t α f .
					From (31), (37) and (42), it yields that
					R = N r N t log a 2 1 + a 2 2 + where a 1 = αt(1-α 2 f ) 1-α 2 t α 2 f , a 2 = 2a 1 a 2 α t α f d σ 2 H α f (1-α 2 t ) 1-α 2 t α 2 f σ 2 H 1 -a 2 1 -a 2 2	+ and V ar (H d ) = V ar (H d ) , d (43)
	σ 2 H (σ 2 H -σ 2 H )				
	σ 2				
	σ 2 H -σ 2 H σ 2 H	2	α t α f =	d 2 σ 2	(41)

H

, independent with H.

H α t α f .
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