
HAL Id: hal-00933581
https://centralesupelec.hal.science/hal-00933581

Submitted on 20 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulations of some Doubly Stochastic Poisson Point
Processes

Bernard Picinbono

To cite this version:
Bernard Picinbono. Simulations of some Doubly Stochastic Poisson Point Processes.
Communications in Statistics - Simulation and Computation, 2014, 43 (7), pp.1700-1713.
�10.1080/03610918.2012.742107�. �hal-00933581�

https://centralesupelec.hal.science/hal-00933581
https://hal.archives-ouvertes.fr


Simulations of some Doubly Stochastic

Poisson Point Processes

B. Picinbono

Laboratoire des Signaux et Systèmes 1,
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Abstract

Computer simulations of point processes are important either to verify the re-
sults of certain theoretical calculations that can be very awkward at times, or to
obtain practical results when these calculations become almost impossible. One of
the most common methods for the simulation of nonstationary Poisson processes is
random thinning. Its extension when the intensity becomes random (doubly sto-
chastic Poisson processes) depends on the structure of this intensity. If the random
density takes only discrete values, which is a common situation in many physical
problems where quantum mechanics introduces discrete states, it is shown that the
thinning method can be applied without error. We study in particular the case
of binary density and we present the kind of theoretical calculations that then be-
come possible. The results of various experiments realized with data obtained by
simulation show a fairly good agreement with the theoretical calculations.

Some key words. Point processes, lifetime, counting.

1 Introduction

Point processes (PP) play an important role in various domains of Science,

Technology and Economics. In the one-dimensional case, which is the only one

considered in the following pages, they are convenient to describe events that

arrive randomly in time either at a microscopic scale (emission of photons or

electrons) or at a macroscopic scale (traffic problems). There exists abundant

literature for their presentation as, for example (Cox et al., 1980; Snyder et

al., 1991; Lowen et al. 2005). Explicit calculations of mathematical properties

of PPs are often very complicated to the effect that, in a number of cases,

1Unité mixte de recherche (UMR 8506) du Centre national de la recherche scientifique
(CNRS), de l’École supérieure d’électricité (Suplec) et de l’Université de Paris-Sud 11 (UPS).

1



the only possible approach for their study is by using simulation procedures,

which is one of the main purposes of this paper.

They exist various papers or books devoted to simulation of Poisson processes.

In the stationary case the problem is quite straightforward because the dis-

tances between successive points are IID positive random variables (RV) with

an exponential distribution. The simulation of a stationary Poisson process is

then reduced to the generation of a sequence of IID positive exponential RVs,

which is a very simple problem.

The question becomes more difficult in the case on nonstationary (or non-

homogeneous) Poisson processes. A nonstationary Poisson process is entirely

defined by its density λ(t), (λ(t) ≥ 0), sometimes also called intensity or

rate function. It is often useful to introduce the cumulative rate function

Λ(t) =
∫ t
0 λ(θ)dθ, which is the mean value of the number of points of the process

in the interval [0, t]. If the inverse function Λ−1(s) of Λ(t) can be calculated

explicitly, this provides a simple simulation method because the nonstationary

Poisson process can be obtained by an inversion procedure from a stationary

Poisson process. The use of this method, however, is often impossible because

of the lack of knowledge of Λ−1(s).

In this case, the most convenient method for the simulation of a nonstation-

ary Poisson process is by using the thinning procedure. As said in (Devroye,

1986), p. 251, “the major work on simulation of nonhomogeneous Poisson

processes is (Lewis, 1979)”. Until recently various authors have presented some

improvements concerning simulations of nonstationary Poisson processes, es-

pecially for applications in problems related to insurance and risks (Harrod et

al., 2006, Burnecki et al., 2004) and also in biology (Shinomoto, 2001).

In this paper we are interested in simulation problems of doubly stochastic

Poisson processes (DSPP). This expression refers to nonstationary Poisson

processes in which the density λ(t) becomes a positive random signal λ(t, ω),

where ω stands for randomness. The first and most important use of such PPs

was for Statistical Optics (Saleh, 1978; Lowen et al., 2005; Picinbono et al.,

2010), which was the origin of various studies in optical communications and

information theory, some of them being summarized in (Snyder et al., 1991).

DSPPs, however, are not limited to physics, and also appear in numerous other

domains such as, for example, management, economics, finance and traffic
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problems (Burnecki et al., 2004; Centanni et al., 2006; Lowen et al., 1995).

Since DSPPs are extensions of nonstationary Poisson processes, it seems

natural to extend for their simulation the thinning method introduced in the

original and basic paper (Lewis et al., 1979). This was explicitly announced in

the last sentence of this paper saying “It is also possible to extend the method

of thinning to simulation of doubly stochastic or conditioned Poisson processes.

This will be discussed elsewhere.” At least to our knowledge, this intention

was never realized but realized some years late in (Ogata, 1981). Another

attempt in this direction was presented in (Apanasovich et al., 1993), but the

results are not convincing and the theoretical presentation is rather obscure.

We shall below indicate other more recent approaches of this problem.

The paper is organized as follows. In Section 2 we recall the principles

of the thinning method introduced in (Lewis et al., 1979) for the simulation

of nonstationary Poisson processes. We indicate how this procedure can be

extended for DSPPs and we present the problems appearing for this extension

due to the fact that the density of a DSPP is random. In Section 3 we present

a statistical model of random density for which these problems can be solved

without approximation. This model is constructed with the help of a random

process called random telegraph signal (RTS) widely used in many other areas

of physics and signal processing. In Section 4 we calculate some statistical

properties of the integral of the RTS that are useful for the following mathe-

matical analysis. Various computer simulations confirm the validity of these

calculations. In Section 5 we show that the model of random density with

discrete values allows us to use the thinning method for the computer simula-

tions of a DSPP and various experimental measurements on these simulations

are presented in the last section. We show especially that measurements of

moments of the random number of points in some time intervals or of PDFs

of the lifetimes of such PPs yield results very similar to those obtained from

the calculations.

2 Principles and problems of the

thinning method

The principle of the thinning method is derived from the following result.

Consider a Poisson stationary point process PPS of density µ and let λ(t) be
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a bounded nonnegative function satisfying λ(t) < µ. Let Ti be the random

points (or time instants) of PPS noted in increasing order (Ti < Ti+1). To each

Ti we associate a thinning coefficient Ri which is a Bernoulli RV taking only

the values 0 or 1. We assume that these RVs are independent of each other and

also independent of PPS. Furthermore we suppose that, for a given realization

of PPS in which the Tis take the values Ti = ti, the probability that Ri = 1

is equal to λ(ti)/µ. Finally we suppose that if Ri = 0 the point ti is erased

and that it is not erased if Ri = 1. The non erased points of PPS constitute

a new point process P and it results from all these assumptions that P is a

nonstationary Poisson process of density λ(t) (Lewis et al., 1979).

From this result there are various ways to obtain P from computer simu-

lations. The simplest one is to adapt to this problem the techniques already

used for the analysis of dead time effects in PPs (Picinbono, 2009) which also

leads to a problem where an initial PP PI is transformed into another one P

by thinning. In this last case, however, the statistical properties of the coeffi-

cients Ri are defined from the physical structure of the dead time effects, while

in our problem they are defined from the previous assumptions.

Suppose now that P is a DSPP defined by a random density λ(t, ω). This

means that for each value of ω, P is a nonstationary Poisson process of density

λ(t, ω). We can then apply the thinning method indicated above to generate

a trajectory of a DSPP from that of a pure stationary Poisson process PPS of

density µ. The validity of this procedure was shown by (Ogata, 1981).

Two problems however immediately appear. The first one comes from the

principle of this method. Indeed we have seen that one of its basic assumptions

is that the density λ(t) of the PP P to be simulated must be bounded. When this

density becomes random, [λ(t, ω)], it has in general no reason to be bounded,

which makes impossible to satisfy the conditions of validity of the thinning

procedure. For example if λ(t, ω) is the square of a normal signal, it is positive

but not bounded. This is the reason why we shall study in the following

statistical models of random density ensuring that it is bounded.

The second problem concerns the calculation of the coefficients Ri used in

the thinning procedure. We have seen above that the probability that Ri = 1

is equal to λ(ti)/µ. For a given value of ω, or for a given trajectory of the

random density of the PP to be simulated, we must then calculate λ(ti, ω).
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The instants ti are the points in the time axis of a realization of a stationary

Poisson process PPS of density µ and in simulation procedure they are obtained

from a realization of a sequence of IID positive exponential RVs. Consider now

the calculation of λ(ti, ω). If the analytic expression of this function is known,

which is often the case when λ(t) is not random, this can easily be done. On

the other hand when λ(t) becomes random, the analytic expression of each

trajectory is very rarely known and it is in general described only from some

of its statistical properties.

In simulation experiments we must work with a density also obtained by

simulation and this implies that in most of the cases this density is in practice

only known at certain time instants τi coming from the simulation procedure.

These instants have no relation with the tis coming from the simulation of the

PP PPS. Then, starting from times ti we must estimate λ(ti, ω), while we have

at our disposal the values λ(τi, ω). This requires the use of some approxima-

tions introducing a systematic bias in the procedure. Similar problems also

appear with other simulations methods and some are discussed in (Giesecke

et al., 2011). As seen below, this disadvantage completely disappears when

using random densities taking only two possible values, which is a limit case

of a piecewise-constant density used in (Harrod et al., 2006).

As we shall see later, it is possible to overcome without approximation the

two previous difficulties of the thinning method for the simulation of DSPPs

by using a binary density. Furthermore such a density is a rather good ap-

proximation of various physical situations. For example signals taking only

two possible values are widely used in digital communications and information

theory and in optical digital communications a point process with a binary

intensity corresponds to various physical devices.

It is however interesting to note that DSPP are recently widely used in

mathematical analysis of financial markets playing an essential role in the

evolution of the world economic situation. A long list of papers appears in the

reference list of (Giesecke, 2011 a and b). As in statistical physics many studies

require the use of simulation procedures and there are various attempts in order

to simulate Poisson processes with random intensity. The two papers cited

above present the most complete overview of the results obtained in this field.

Looking at this literature, the first point that clearly appears is that discrete
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valued intensities are not at all appropriate in this field for the description of

random intensities of PPs. The fluctuations of the financial parameters studied

are more conveniently described by diffusion or Brownian motion processes.

Furthermore the purpose of the simulation are rarely the properties of the

simulated PP and more often some particular quantities especially interesting

in financial problems such as loss or gain or evaluation of the risks. This

is also the case of papers in the domain of insurance business. Even with

this difference of perspective, the two problems appearing in the simulation of

DSPPs and presented above are well noted and an attempt for their solution

is introduced in the two papers of Giesecke cited in references. By using very

abstract mathematical procedures of measure and martingale theory, Giesecke

introduces a specific model of diffusion for the random intensity. It becomes

then possible to use the thinning method for the simulation of DSPPs even for

unbounded density, which is the case of diffusion processes, and to suppress the

bias in the estimation of the sampling of the random intensity. The algorithms

deduced from the theoretical analysis are appropriate for the domain of the

paper but seem without interest in statistical physics, in such a way that the

is almost no overlapping between these methods and those discussed below.

3 Doubly stochastic Poisson processes with

binary density

Let us begin by showing the origin of the theoretical difficulties that appear

in almost all the calculations with DSPPs, which justifies the necessity of a

simulation approach. Consider for example the case of counting analysis which

is one of the most common ways to study PPs. Let N be the random number

of points of a PP in some interval which can arbitrarily be [0, T ]. If the PP is

a Poisson process of density λ(t), the probability pn that N = n, where n is an

arbitrary nonnegative integer, is pn = exp(−m)mn/n! where m =
∫ T
0 λ(θ)dθ.

In the case of a DSPP, m becomes random, because of the randomness of

λ(t, ω), in such a way that

pn = E

[

exp(−M)
Mn

n!

]

with M =
∫ T

0
λ(θ, ω)dθ, (1)

where E means the expected value with respect to ω specifying the randomness

of the density of the PP. As said on p. 171 of (Saleh, 1978), where this problem
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is discussed, “To find the statistics of an integral over a stochastic process is,

in general, a formidable task”. This is effectively the origin of the difficulty of

the calculations of the probabilities pn because of the lack of knowledge of the

statistics of the random variable M appearing in (1).

Various attempts have been made to solve this problem. However the num-

ber of cases where an explicit solution can be found remains very limited. The

first approach in the domain of statistical optics was presented in (Bédard,

1966) and an overview of some other cases is given in (Saleh, 1978). This

requires in general a Karhunen Loeve expansion for which it is necessary to

solve an integral equation and explicit analytical expressions are rarely ob-

tained. Another simplification is often used in optics in the so-called long

coherence time case. This means that the variations of λ(t, ω) are very small

in intervals of duration of the order of T in such a way that in (1) the integral

over [0, T ] can be replaced by λ(0, ω)T , which in a number of cases makes it

possible to calculate of the probabilities pn.

Let us now present an example of random density in which the previous

difficulties concerning the conditions of simulation by thinning or the mathe-

matical calculations disappear. This density is defined by a general expression

of the form

λ(t, ω) = λ0[1 + αB(t, ω)], (2)

where B(t, ω) is a random perfect clipped signal taking only the values ±1, the

changes of signs appearing at the points of a PP PB assumed to be stationary.

It is first clear that, whatever the nature of PB, if |α| < 1, then the random

density λ(t, ω) is positive and bounded, which ensures that the first condition

of validity of the thinning method is satisfied.

Let us show that this is also the case for the second condition. Let Si

denote the ordered sequence of the random points of PB and si a particular

realization of this sequence. It results from the definition of B(t) that in the

interval si < t < si+1 it remains constant and equal to B(s+
i ), the value of B(t)

obtained immediately after the change of sign appearing at si. As a result, if

B(s+
0 ) is known we have B(t) = B(s+

0 )(−1)i for any t satisfying si < t < si+1.

From an algorithmic point of view we see that in order to calculate B(t) we

must associate to any value of t the integer i(t) such that si(t) < t < s[i(t)+1].

Applying the previous relation we obtain B(t) = B(s+
0 )(−1)i(t), valid for any
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t. There are various ways to obtain i(t), the simplest one coming from the

fact that i(t) is the only integer such that the product [t − si(t)][t − s[i(t)+1]] is

negative. This exact knowledge of the values of B(t) for any value of t allows

one to use the thinning algorithm, according to the previous discussion.

It remains to show that in some cases this model introduces the possibility

to make analytical calculations which in general are almost impossible. This

is especially the case when the PP PB is a stationary Poisson process defined

by its density ν.

In this specific case the signal B(t) introduced above becomes the random

telegraph signal (RTS), widely used in random signal theory. It is introduced on

p. 334 of (Picinbono, 1993) and studied as a particular case of ordered signals

in (Picinbono, 1999). The main property is that all its moments of order

higher than two have a simple mathematical expression, in such a way that,

as shown in the next section, the calculation of various statistical properties of

the integral appearing in (2) becomes possible. It is worth pointing out that

the RTS is not only a simple mathematical extension of Poisson processes, but

also a rather good statistical model to represent physical phenomena in which a

system makes random transitions between two states, which is a very common

situation (Efros et al., 1997). It is also widely used in binary communications,

which is the origin of its name, and densities such as (2), where B(t) is a RTS,

can be used in a description of binary optical communications.

4 Statistics of the integral of the RTS

Let B(t) be the RTS of a stationary Poisson process PB of density ν and Z

the integral

Z(t, T )
△
=

∫ t+T

t
B(θ)dθ. (3)

Because of the stationarity of PB the statistical properties of Z do not depend

on t. The moment of order k of Z is given by

MZk
=

∫

...
∫

D
E[B(θ1)B(θ2)...B(θk)]dθ1dθ2...dθk, (4)

where D is a k-dimensional cube of edge length T . The expression of the high

order moments of B(t) appearing in (4) is well known (see Picinbono, 1999).

The moments of odd order are zero and for even order we have

E[B(θ1)B(θ2)...B(θ2k)] = exp[−2ν(θ̄2 − θ̄1 + θ̄4 − θ̄3 + ... + θ̄2k − θ̄2k−1)], (5)
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where {θ̄i} is the ordered permutation of {θi}, satisfying θ̄j < θ̄j+1, ∀j, 1 ≤

j < 2k − 1. After what are sometimes rather complicated calculations it is

possible to deduce from (5) the values of the moments MZk
defined by (4). For

example the moments of order 2 and 4 are given by

MZ2
= (1/ν)[T − (1/2ν)(1 − e−2νT )] (6)

and

MZ4
= (3/2ν4)[3 − 4νT + 2(νT )2 − (3 + 2νT )e−2νT ]. (7)

Let us now see how the integral (3) can be calculated in a computer simulation

experiment. Let ξi be the distances between successive points in the Poisson

process PB. As indicated above the instants si of this PP are then defined by

the recursion si = si−1 + ξi. It results from the structure of the RTS that for

any arbitrary positive integer N

Z(si, si+N − si) =
∫ si+N

si

B(θ)dθ = B(s+
i )

N
∑

k=1

(−1)k−1ξi+k, (8)

where B(s+
i ) is defined above. Then the integral of the RTS over an interval

between two points of PB is reduced to a sum of N terms, where N − 1 is the

number of points of the PP between si and si+N . Consider now the calculation

of Z(si, T ). It is clear that si + T is almost surely not a point of PB. There

exist however simple algorithms that make it possible to calculate the number

Ni of points of PB appearing in the interval [si, si + T ] and they are deduced

from the inequalities si+Ni
< si + T < si+Ni+1. As a result we have

Z(si, T ) = Z(si, si+Ni
− si) +

∫ si+T

si+Ni

B(θ)dθ. (9)

Since si+Ni
is the last point of PB before si+T , there is no change of sign of B(θ)

in the interval defining the last integral of (9). Then it is equal to B(ss+

i
+Ni

)∆θ,

where ∆θ = si+T−si+Ni
. As the ξis are the intervals between successive points

of PB defined recursively by si+1 = si+ξi+1, we have si+Ni
= si+ξi+1+...+ξi+Ni

,

which allows us to calculate Z(si, T ) uniquely from the sequence of M values

ξi, which are M realizations of IID positive exponential RVS. This the starting

point of the statistical analysis that follows in which M is of the order of 106.

In Table 1 we present results concerning the first four moments of Z(t, T ).

Their theoretical values are given above by (6) and (7) and furthermore MZ1
=
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MZ3
= 0. These moments are calculated and measured for two values of T

and several values of the density ν of PB The theoretical and experimental

results are noted MZk
and M̂Zk

respectively. This table shows a very good

agreement between the theoretical and experimental values. The precision of

the method decreases when νT increases which comes from the structure of the

algorithm of simulation. Indeed, as said above, for each i we have to calculate

the numbers Nis defined above which are RVs of mean value νT . In order to

reduce the duration of the calculation the Ni greater than a certain limit are

deleted. This clearly introduces a bias in the measurements which increases

with νT . It can obviously be reduced but at the price of longer calculations.

Table 1. Moments of the Integral of the RTS.

ν MZ1
M̂Z1

MZ2
M̂Z2

MZ3
M̂Z3

MZ4
M̂Z4

T = 1
0.5 0 0.0004 0.7358 0.7356 0 0.0005 0.6836 0.6836
1.0 0 −0.0002 0.5677 0.5678 0 −0.0002 0.4850 0.4852
1.5 0 −0.0003 0.4555 0.4553 0 −0.0003 0.3559 0.3558
2.0 0 0.0003 0.3773 0.3775 0 0.0002 0.2692 0.2693
2.5 0 −0.0006 0.3205 0.3206 0 −0.0004 0.2091 0.2093
3.0 0 −0.0004 0.2779 0.2783 0 −0.0002 0.1663 0.1668

T = 2
0.1000 0 0.0001 3.5160 3.5158 0 −0.0016 13.6777 13.6771
0.3000 0 −0.0002 2.7844 2.7845 0 −0.0007 10.1823 10.1814
0.5000 0 0.0012 2.2707 2.2701 0 0.0033 7.7598 7.7594
1.0000 0 −0.0016 1.5092 1.5089 0 −0.0009 4.3077 4.3086
1.5000 0 −0.0025 1.1117 1.1130 0 −0.0048 2.6601 2.6689

Let us now present some results concerning measurements of probability

density functions (PDF). Our purpose is to determine by computer simulated

experiments the PDF of the RV Z(t, T ). This PDF does not depend on t

because of the assumption that PB is stationary. We can a priori expect that

the distribution of Z contains a discrete part. Indeed if there is no point of PB

in the interval [t, t+T ] the possible values of the RV Z are ±T because there is

no change of sign of the function B(θ) in the interval of integration. Since PB

is a Poisson process, the probability that the interval [t, t+T ] does not contain

points of PB is exp(−νT ). Then we have Pr(Z = ±T ) = exp(−νT ). This

probability can also be obtained from computer simulation by using the same

kind of experimental approach as previously and the results appear in Table

2. For two values of T we present the theoretical value of Pr(Z = ±T ) and

the results of four independent experiments. The agreement between theory

and experiment is quite good.
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On the other hand there is no simple theoretical expression of the continu-

ous part of the PDF pZ(z) of Z given by (3). This PDF can be measured and

the results appear on Fig. 1 obtained for ν = T = 1. The experimental values

of the PDF are located with a rather good precision on the curve −0.1z2+0.54,

which does not have a simple explanation.

Table 2. Probability that Z of (3) is equal to ±T

T = 1 T = 2
Th. 0.3679 0.1353
Exp. 0.3676 0.1353

0.3682 0.1352
0.3678 0.1358
0.3681 0.1355

5 Algorithms for the simulation of a DSPP

with binary density

Following the definitions introduced in Section 3 we shall now present the

sequences of algorithms used for the simulation of a DSPP with a binary

density given by (2) where B(t) is the RTS defined from a stationary Poisson

process PB.

The first step is to generate a sequence of N ordered points ti of the sta-

tionary Poisson process PPS of density µ. This is a straightforward standard

task. Indeed the intervals between the successive points of this process are

IID positive RVs with the exponential distribution µ exp(−µx) easily obtained

from various computer programs.

The second step is quite similar and yields the sequence of ordered points

sj of another stationary Poisson process PB of density ν. These points are the

instants at which the RTS B(t) changes its value from ±1 to ∓1.

The third step is to associate to each ti of PPS the point sj(i) of PB such that

the product (ti−sj(i))(ti−sj(i)+1) is negative. This can be done in two ways. In

the first, indicated above, for each ti we calculate the N products (ti−sj)(ti−

sj+1) and j(i) is the only value of j for which this product is negative. This

procedure however requires very long calculation times because there are of

the order of N2 products to calculate which yields in our experiments an order

of 1012 multiplications. With standard computers this can require more than

several hundred hours of calculations. It is then more appropriate to introduce
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a recursive procedure which is much less time consuming. Its principle is as

follows.

Suppose that sj(i) is known and consider the difference dn(i + 1) = ti+1 −

sj(i)+n. It is clear that j(i + 1) = j(i) + n if and only if dn(i + 1) > 0 and

dn+1(i + 1) < 0. This yields that

j(i + 1) = j(i) +
∞
∑

n=1

nFn(i), (10)

with

Fn(i) = u[dn(i + 1)]v[dn+1(i + 1)], (11)

where u(x) is the unit step function equal to 1 if x > 0 and to −1 otherwise,

and v(x) = u(−x). The advantage of (10) seems weak, because the presence

of a series of an infinite number of terms. It appears however that this number

is in practice very small. In particular when the densities of the PPs PPS

and PB satisfy ν << µ, which is a very common situation, a short calculation

shows that there is practically only one term corresponding to n = 1 in the

series of (10), and for each set of experiments we have introduced a procedure

ensuring that replacing the series by a sum of a finite number of terms does

not introduce an error in the calculation of (10).

The fourth step is to calculate the value of the thinning coefficient Ri defined

in the first paragraph of Section 2. It is a Bernoulli RV and the probability

that the point ti be not erased, event corresponding to Ri = 1, is λ(ti)/µ.

This requires the knowledge of λ(ti). It is the value of the density (2) for

t = ti which is known when B(ti) is known. For this we use the expression

B(t) = B(s+
0 )(−1)i(t) indicated in Section 3. It results from the definition of

sj(i) that B(ti) = B(s+
0 )(−1)j(i). Using the values of B(ti), and then of λ(ti),

associated with each point ti of PPS, we can apply the thinning procedure

and the non erased points from this procedure constitute a trajectory of the

simulated DSPP to be used for the following experiments.

6 Presentation of experimental results

Since it is very rarely possible to carry out theoretical calculations of statisti-

cal properties of DSPPs, our first task is to introduce computer experiments

in which the results can be compared to those obtained from a mathematical
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analysis. This is especially the case for the study of the moments of the ran-

dom number of points counted in a given time interval (counting experiments).

As indicated in various papers, it is necessary, except for Poisson processes, to

make a clear distinction between relaxed and triggered counting experiments.

In the relaxed case the beginnings of the counting time intervals have no rela-

tion with the PP analyzed, while in the triggered case they depend on this PP,

the simplest example being the one where the counting intervals are open by

a point of the PP. Since the theoretical analysis is much more complicated for

the triggered case, we shall only present results concerning relaxed counting

experiments, which are also in general simpler to realize than the triggered

ones.

Let us note N the number of random points of a stationary DSPP in

an interval [t, t + T ]. It is a positive RV and the main purpose of counting

experiments is to determine some properties of its probability distribution. Its

theoretical calculation is in general very difficult, even for the particular model

of random density introduced in this paper. On the other hand, we shall now

verify that the results obtained in the previous sections make the theoretical

analysis of the moments of the RV N much simpler.

The first four moments of a Poisson RV N of mean m are given by

E(N) = m, (12)

E(N2) = m + m2, (13)

E(N3) = m + 3m2 + m3, (14)

E(N4) = m + 7m2 + 6m3 + m4. (15)

If N is now the number of points of a DSPP recorded in the arbitrary time

interval introduced above (relaxed counting), its moments are simply obtained

by replacing the quantities mk of these relations by E(Mk), where M is given

by (1) in which 0 and T are replaced by t and t + T respectively. For the

calculation of these expected values we start from (2) which introduces values

of the integral of the RTS calculated above. By using the notations previously

introduced we obtain

E(M) = λ0T, (16)

E(M2) = λ2
0

[

T 2 + α2MZ2

]

, (17)
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E(M3) = λ3
0

[

T 3 + 3α2TMZ2

]

, (18)

E(M4) = λ4
0

[

T 4 + 6α2T 2MZ2
+ α4MZ4

]

, (19)

where MZ2
and MZ4

are given by (6) and (7) respectively. Replacing mk by

E(Mk) in Eqs (12) to (15) yields the theoretical values mk = E(Nk) of the

moments of order k of the random number of points of the DSPP considered.

These moments can also be measured by a procedure described in (Picinbono,

2012) applied to a computer simulation of this PP obtained by the procedure

introduced above. The experiment is realized with the parameters µ = 1,

λ0 = 1/2 and T = 2 in such a way that the mean value of the random number

of points is 1. Furthermore various values of the parameter α defining the

variance of the fluctuations of the random density of the PP are taken in

consideration. For α = 0 the DSPP becomes a pure Poisson process. The

results appear in Table 3.

Table 3. First Four Moments of the Number of Points

m1 m2 m3 m4

α = 0
Th. 1 2 5 15
Exp. 0.99 1.99 4.99 15.04

α = 0.5
Th. 1.0000 2.1948 6.1687 21.0844
Exp. 1.001 2.196 6.168 21.083

α = 0.8
Th. 1.0000 2.4987 7.9919 30.7596
Exp. 1.004 2.504 7.995 30.735

α = 0.9
Th. 1.0000 2.6311 8.7867 35.0470
Exp. 1.007 2.645 8.809 35.036

The first two lines correspond to the value α = 0, which means that the

DSPP is a Poisson process. The first four moments are 1, 2, 5, and 15. The

experimental values obtained are almost the same. For the other values taken

by the parameter α there is also quite a good correspondence between the

theoretical and experimental values of the moments. This means that the

moment analysis of the relaxed number of points of the PP in a time interval

correctly exhibits the properties of a DSPP defined by the random density (2).

By using the procedure described in (Picinbono, 2012) it is also possible to

measure the PDFs of the time intervals between successive points (lifetimes).
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Unfortunately, even for this particular case of DSPP the theoretical calcula-

tions of these PDFs are almost impossible and initially we shall only present

the results of computer experiments. They appear in Fig.2. In this figure the

points represent experimental measurements of the PDFs of the lifetimes ob-

tained for two values of α. For α = 0 the DSPP becomes a Poisson Process, as

already verified in other experiments carried out previously. It results from (2)

that since λ0 = 1/2 and since the mean value of B(t) is zero, then the density

of the Poisson process obtained by this particular mode of thinning is also

equal to 1/2, which implies that the PDF of the lifetime is exponential with

the density p(x) = 0.5 exp(−0.5x). This clearly appears on the figure where

the points are the results of experimental measurements while the continuous

curve corresponds to this theoretical DDP. On the other hand, as indicated

above, there is no theoretical result concerning the PDF of the lifetime when

α 6= 0 and the figure presents experimental results obtained for a DSPP defined

by α = 0.9. The only fact that exhibits this PDF is that there are two kinds

of exponential behaviour corresponding approximately to the two values taken

by the random density λ(t) given by (2). We shall now conduct a more precise

analysis of this point in a case where some calculations become possible.

This case, already introduced above, is often used in the interpretation of

experimental results of statistical optics and corresponds to the so-called long

coherence time approximation. This means that the fluctuations of B(t) in (2)

are sufficiently slow so that in integrals such as (3), B(t) remains constant and

becomes a RV, which greatly simplifies the calculation of the statistical prop-

erties of this integral, which, without this assumption, is the major difficulty of

the theoretical analysis. Looking at (2) we see that this approximation can be

expressed in terms of the densities µ and ν of the PPs PPS and PB respectively

by the relation µ >> ν. In the previous experiments these values were µ = 1

and ν = 0.2, which do not satisfy this inequality. The last experiments of this

paper, on the other hand, are realized with the values µ = 1 and ν = 10−3,

which does correspond much better to the previous inequality. From this ap-

proximation we can deduce that the random density is now given by (2) where

B(t) is simply a RV taking the values ±1 with the same probabilities 1/2.

By using this approximation we can use a method introduced on p. 345 of

(Picinbono, 1993) in order to calculate the PDF of two distinct time intervals

15



appearing in the study of PPs. The residual lifetime is the random distance

between an arbitrary point A and the first point of the process posterior to A,

while the lifetime or order one is the distance between two successive points

of the PP. In general, it is almost impossible to calculate the PDFs of these

RVs noted pRL(x) and pL(x) respectively. But under the assumption intro-

duced just above and by using the methods introduced in (Picinbono, 1993)

we obtain

pRL(x) = (1/2)[λ1 exp(−λ1x) + λ2 exp(−λ2x)], (20)

pL(x) = λ2
1 exp(−λ1x) + λ2

2 exp(−λ2x), (21)

where

λ1 = λ0(1 + α), λ2 = λ0(1 − α). (22)

The results of experimental measurements of the PDFs of simulated data are

presented in Fig. 3. For these experiments we have used 5106 samples of

exponential RVs for the generation of the PP PPS of density µ = 1. The

density ν of the Poisson process generating the RTS B(t) was 10−3 and finally

α = 0.9.

The theoretical values give by (20) and (21) are represented by continuous

curves while the results of PDF measurements appear as points in the figure.

The agreement between the theoretical analysis and experimental results is

rather good. There is a small difference between them and we have verified

that it results from the insufficient approximation of the calculation. The

results are better if we take ν < 10−3, but the duration of the experiment also

increases and obtaining greater precision would require more memory than we

can obtain in our experiment. Nevertheless the main point that clearly appears

from this experiment is the difference between the statistics of the lifetime and

the residual lifetime, as predicted by the theoretical analysis.
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Figure 1: Probability density functions pz(z). Points: experiment, continuous
curves: −0.1z2 + 0.54.
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Figure 2: Probability density functions p(x) of lifetimes of a DSPP for various
values of a. Points: experiment, continuous curves: theory.
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Figure 3: Probability density functions of the lifetime and of the residual
lifetime in the case of long coherence time with α = 0.9. Points: experiment,
continuous curves: theory.
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