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Average number of significant modes excited in a
mode-stirred reverberation chamber

Florian Monsef,Member IEEE, Andrea Cozza,Senior Member IEEE

Abstract—Although the number of significant modes is in-
tuitive, this concept has never been clearly defined, and this,
mainly because of the unbound number of modes involved in
modal overlap. In the present paper, we show that, for a perfect
stirring process, the effect of modal overlap can be modeledas
an equivalent filtering formulation. By introducing the statistical-
bandwidth concept we show that the electromagnetic field statis-
tics due to an infinite number of modes can be summarized by a
finite number of significant modes. The case of the electric-energy
density in an mode-stirred reverberation chamber (MSRC) has
been considered and a new expression of its variability has
been established. The good agreement found between the new
expression and experimental and simulation results support the
several concepts introduced in this paper.

Index Terms—reverberation chamber (RC), electromagnetic
compatibility (EMC), modal analysis, parametric statistics, cavity
resonators.

I. I NTRODUCTION

M ODE-stirred reverberation chambers (MSRC) aremi-
crowave complex environments in which it is of com-

mon use to regardthe electromagnetic fieldas a random
process. This approach is all the more justified when the
chamber is overmoded, i.e., when a large number of modes
of the chamber are excited. Indeed, in that case tests indicate
that the ratios of peak to average values of the field remain
approximately the same[1] [2] [3] throughout the central part
of the chamber. However, for metrology purposes the degree
of uniformity of such ratios need to be assessed, and this, even
for the undermoded case, i.e., near the lowest usable frequency
(LUF), for which field statistics differ from the overmoded
case.

An important part of the measured-field uncertainty is
directly due to the medium complexity. This is why the study
of MSRC is based on statistical tools [4] [5] [6] andaims
at establishing statistical models able to describe the electro-
magnetic field from the undermoded to the overmoded regime.
The most common approach in the community consists in
finding probability density functions (pdf ) able to describe
the statistics of field-related quantities [7] [8] [9] from the
LUF to the overmoded case. An alternative approach consists
in modeling the field by using a modal expansion [10] [11];
the pdf s to choose are this time those applied to modal
parameters. In [10] the derivation was based on a finite number
of modes to which a limit to infinity was applied as required
by modal theory, whereas in [11] the modal expansion was
only including a finite number of contributing modes.
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The notion of contributing mode is intuitively linked to
the modal density but the concept has never been clearly
defined. In [11] for instance this number was arbitrarily set
to the average number of modes overlapping in the average
modal bandwidth. In [10], the bandwidth over which this
number had to be considered was defined but not quantitatively
specified as the aim was to include all the modes. The need
to determine this significant number of modes is all the more
important that it would provide a metric linked to the degree
of overmodedness (or undermodedness) of an MSRC.

To clarify the significant mode concept, we need to regard
modal overlap from an alternative point of view; to this end,
we will present in section II how the overlap in the frequency
domain of an infinite number of modes can be summed up to
the frequency response of a single mode. In section III, we
will show that the concept of statistical bandwidth provides
a statistical criterion that highlights the frequency range over
which the number of significant modes must be considered.
This finding allows revising the expression of the variability of
the electric energy density, referred to asς2W , derived in [10],
by highlighting some key terms intervening in its expression.
However, the number of significant modes cannot be directly
assessed experimentally. This notwithstanding, as shown in
section IV, the validation ofς2W ’s law allows us to validate
the assessment of the number of significant modes.

II. REVISITING MODAL OVERLAP

The aim of this section is to revisit the way in which we
commonly represent and regard the modal overlap effect. To
this end it is convenient to consider the statistics of a field-
related quantity, such as the square modulus of the field in
an MSRC or, equivalently, its corresponding electric-energy
density referred to asW . This choice has the advantage to
provide a link with a previous work [10] dealing with the
problem of considering modal overlap in the derivations of
the statistical moments ofW ; to improve the readability with
that previous work, we adopt the same notations as much as
possible and we invite the reader to refer to the aforementioned
paper.

To conduct this study we need to consider a modal approach
in which the electric fieldE at a positionr and at an operating
frequencyfw can be expanded as follows,

E(r, fw) =

∞
∑

n=1

γn ψn(fw) en (r) , (1)

where en (r) is the eigenvector of the nth mode,γn is the
modal weight, i.e., the coupling constant of the excitation
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source to thenth eigenmode andψn is the frequency response
of the nth mode.

If we express, on the one hand,en (r) = en (r) ξ̂n (r) where
ξ̂n (r) is the unitary polarization vector of the nth mode, and
use, on the other hand,{γ̃n} referred to as equivalent modal
weights and defined as,

γ̃n (r) = γnen(r), (2)

expression (1) can be expressed in the following convenient
form,

E(r, fw) =

∞
∑

n=1

γ̃n (r) ψn(fw) ξ̂n (r) , (3)

where the frequency responseψn (f) reads,

ψn(f) =
−jf

f2 − f2
n − jf fn/Qn

. (4)

Under the composite quality factor approximation [12],Qn ≃
Q(fn), whereQ(f) is the composite quality factor, a function
of frequency. High Q resonances obtained in MSRC are such
that the most contributing part ofψn(f) come from working
frequencies “close” to the eigenfrequencyfn, so that (4) can
be approximated by,

ψn(f) ≃
2(f − fn) + jBM

4(f − fn)2 +B2
M

, (5)

whereBM is the modal bandwidth related to the composite
quality factor. As it will be stressed hereafterBM will be
approximated by the modal bandwidth assessed at working
frequency, i.e.,BM ≃ fw/Q(fw).

The concept of significant mode is studied here in a statis-
tical sense. To position the problem of modal overlap within
this framework, let us consider the average ofW (Eq.19 in
[10]) expressed herein as follows,

E [W ] ≡ Efn,|γ̃n|2 [W ]

= Efn,|γ̃n|2

[

∞
∑

n=1

|γ̃n|
2 |ψn(fw)

]

,
(6)

whereEx [·] stands for the ensemble-average operator linked
to the stirring process and applied to the random variablex;
note that the spatial dependence of the|γ̃n|

2 has been omitted
for the sake of brevity.

The difficulty of defining the number of significant modes
lies in the infinite number of tails of frequency responses that
overlap at working frequency. The upper plot in Fig. 1 depicts
the case of a random realization based on a set of frequency
responses of excited modes, weighted by a set of equivalent
squared modal weights|γ̃n|2 (vertical arrows); the excitation
level of the frequency responses at working frequency are
highlighted by black dots.

Now, the discrete sum in (6) consists in summing the values
indicated by the black dots weighted by the corresponding
|γ̃n|

2. As already done in [10], each frequency response in
Fig. 1 is expressed by means of a frequency templateψ0(f)
defined as,

ψn(f) ≃ ψ0(f − fn). (7)

The use of such template could appear as a way of simplify-
ing the derivation with a degree of approximation that can
be questioned, because of the well-known variation of the
composite Q-factor with frequency. In fact, as shown in (4)
and (5), the important parameter to consider inψn(f) is the
modal bandwidth (i.e., the ratiofn/Qn) which, given the local
quasi-linear variation ofQ with frequency, does not change
significantly. The experimental data presented in section V
show that the deviation of the average modal bandwidth is of
0.7% over a 100 MHz bandwidth centered about 800 MHz.
So the results obtained by using (7) are expected to ensure a
reasonable level of accuracy.

Using (7) in (6) allows us to approximate the discrete sum
(of (6)) as follows,

∞
∑

n=1

|γ̃n|
2 |ψn(fw)|

2 ≃ |γ̃ (f) |2|ψ0(f − fw)|
2, (8)

where|γ̃ (f) |2 is a discrete random signal for a given realiza-
tion.

In order to further recast (6), it is worth recalling that
the ensemble average operator stands for an average over an
ideally infinite number of stirring states. Moreover, sincea
stirring process consists in displacing resonance frequencies
over a small frequency range, referred to as∆f (see lower
plot of Fig. 1), the vertical dashed line in the upper plot of
Fig. 1, as well as the initially discrete frequency template, will
both become continuous under perfect stirring conditions.

Note that the random signal|γ̃ (f) |2 is analog to a power
spectrum density (PSD). This one will become continuous
in the frequency domain with an average amplitudeµ2 =
E
[

|γ̃n|
2
]

.
Accordingly the ensemble average overW can be approx-

imated by a frequency average expressed as follows,

E [W ] ≃ lim
Be→∞

1

∆f

∫

(Be)

|γ̃(f)|2 |ψ0 (f − fw) |
2df, (9)

whereBe is the frequency range centered aboutfw; an infinite
Be allows including all the modes.

If (6) is compared to (9) an ergodic-like property is
exhibited. When dealing with the first-order moment, this
property consists usually (in its strict sense) in considering
that a statistical average coincide with a temporal average; in
the present case the statistical average can be approximately
assessed by a frequency average.

Equation (9) shows that the modal overlap effect can be
restated as a simple filtering formulation of a random signal
characterized by a PSD|γ̃(f)|2 applied to a filter with a
frequency response|ψ0 (f − fw) |

2.
The approach presented in this section can be extended to

other statistical moments. For instance, it is easy to show that
E
[

W 2
]

can be restated in a similar way to (9) where the
filter response would be|ψ0 (f − fw) |

4 and the PSD would
be |γ̃(f)|4 with an average valueµ4 = E

[

|γ̃n|
4
]

.
Note that if one is interested in the derivation of relative

or normalized variance ofW , one will have to deal with the
following typical ratio,

R =
< |γ̃(f)|4|ψ0 (f − fw) |

4| >F

(< |γ̃(f)|2|ψ0 (f − fw) |2| >F)
2 , (10)
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where< · >F stands for the frequency average as defined in
(9).
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Fig. 1. Due to modal overlap all resonant frequenciesfn are involved
in the ensemble statistics of a given field-related quantityat given working
frequencyfw (black dots in the upper plot). Each frequency response is
weighted by a corresponding|γn|2 (vertical arrows). As illustrated, the black
dots of the upper plot are contained in the template|ψ0(f − fw)|2 (lower
plot). This illustrates the ergodic principle stating thatexpected values on the
eigenfrequencies ensemble converges to the one found usinga single-mode
frequency response in the whole frequency domain.

III. STATISTICAL BANDWIDTH AND SIGNIFICANT MODES

According to the previous section|ψ0 (f − fw) |
2 and

|ψ0 (f − fw) |
4 can be regarded as weighting functions acting

on |γ̃(f)|2 | and |γ̃(f)|4, respectively.
Weighting functions are common tools in signal processing

and instrumentation. A classic application deals with the
estimation of the PSD of a signal [13] based on analogsignal
processing. The estimation of the PSD at a given frequency
fw consists in measuring the power of the signal at the output
of a perfect filter, i.e., a filter with anideally flat frequency
response of widthB1. Due to the finite bandwidth of the
filter, the estimation error is unavoidable and is characterized
by its normalized relative error. In practice however, the
filter used for such estimation is of Lorentzian shape and
the resulting estimated error may vary. To relate the impact
of using such filter instead of the ideal one, the concept of

statistical bandwidth, referred to asBs, is introduced. The
latter corresponds to the bandwidthB1 that would provide the
same RV than the one obtained in practice.

Although the application is different in the present context,
the scenario is quite similar if the normalized relative error is
regarded as the relative variance (RV) of an unbiased estimator.
Moreover, as stated previously,|γ̃(f)|2 being the PSD of a
random signal, we can easily show that theRV to compute
corresponds toR given by (10). By using the statistical
bandwidth concept it follows that,

R =
∆f

Bs

µ4

µ2
2

, (11)

whereBs is the statistical bandwidth defined as [13] [14],

Bs =

(

∫∞

0 |ψ0(f − fw)|
2
df

)2

∫∞

0
|ψ0(f − fw)|

4
df

. (12)

Considering the frequency response given by(5) we obtain,

Bs = πBM . (13)

The interest of the statistical bandwidth lies in the fact that
the contribution, in a statistical sense, of an infinite number
of |γ̃n|

2 weighted by a Lorentzian spreading on a infinite
frequency range, can be summed up by a finite number of
un-weighted|γ̃n|

2 in a finite bandwidthBs.
Within the statistical bandwidth model, it follows thatthe

number of significant modes, referred to asM , reads finally,

M = πMM , (14)

whereMM refers to the number of modes overlapping in the
modal bandwidthBM that can be expressed as,

MM = m(f)BM , (15)

wherem(f) is the modal density inHz−1.
The conditionV (f/c)3 ≫ 1 being met, the simplest form

of the modal density [15] can be used, such that

m (f) ≃
8πV f2

c3
, (16)

whereV andc are the volume of the MSRC and the speed of
light, respectively.

It is worth stressingthat the modal density is, in a strict
way, a fluctuating quantitywhose variance will not be taken
into account in the present work. We will only consider its
approximated median value given by (16).

IV. A SSESSMENT OFM

The concept and the number of significant modes is difficult
to validate since it cannot be “counted” in practice. However,
as shown in [10] the variability ofW is governed by the
number of modesMM . With the concepts introduced in the
previous sections, studying the variability ofW consists in
assessingς2W for a finite numberM of modes spreading over
Bs. This is exactly the result given by Eq.(24) in [10], where
Be was at that stage regarded as a finite bandwidth over which
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M modes spread. Adapting the result is then straightforward,
yielding,

ς2W =
Bs

M

µ4

µ2
2 πBM

+
M − 4

3M

=
1

3
+

2

3πMM

,

(17)

for µ4/µ
2
2 = 2, keeping the assumption thatγ̃i are normally-

distributed complex random variables.
A quick glance at the final expression ofς2W in [10]

shows a difference of a factor 3 in the second term of the
right-hand term. In fact, in order to include all the modes
the initially finite bandwidthBe was logically extended to
infinity, but M/Be was improperly substituted by the modal
densitym(f) - indeed this substitution can only be justified
if Be is sufficiently small. This is the advantage provided by
the statistical-bandwidth concept which, given the order of
magnitude ofBs, allows substitutingBs/M by 1/m(f) in
(17).

SinceBs andM only exist in the framework of an equiv-
alent statistical model, the validation of these as pertinent
(and useful) quantities cannot be performed, but indirectly,
by validating the analytical expression ofς2W .

V. CONCEPTS AND MODEL VALIDATION

In order to validate the analytical expressionof ς2W found in
(17), we will compare the relative variance to the one obtained,
on the one hand, by Monte Carlo (MC) simulations and on
the other hand, experimentally.

A. Monte Carlo simulation setup

The importance of the results obtained by MC simulation
should not be underestimated over those obtained experimen-
tally. Indeed, beyond the flexibility that the MC method allows,
it is a very convenient way to check the self-consistency of our
analytical expressions with respect to the assumptions made
on the different parameters intervening in (3).

The statistical distributionsare such thatthe real and imag-
inary parts of the equivalent modal weights were assumed to
follow a Normal law; a uniform distribution was assumed for
both the polarization of the modes, over4π sr.

As stated by (17), the only parameter that can vary is the
number of modes overlapping in the modal bandwidthBM .
As shown by (16), this number can be modified by considering
a variable volume and/or a variable frequency. As shown in
[16], the two approaches are equivalent. In order to simplify
MC computations, we pick out the method consisting in fixing
a modal bandwidth and adapting a (virtual) volume to ensure
the desired number of overlapping modes. In the present work
a 1-MHz modal bandwidth is arbitrarily set.

Each MC simulation consisted in generating twenty sets of
50000 independent random realizations of the electric field
described by (3), and this for the following values ofMM : 1,
2, 3, 5, 10, 15, 20, 25, 30, 35. The number of simulated modes
was taken over a bandwidth of51BM [16]. The resulting
estimated variance was averaged over the twenty values.

B. Experimental setup and chamber characterization

In order to make the comparison more sensible with [10],
the same measurements areconsidered herein. As a brief
reminder, and to provide some more details, the setup takes
place in the 13.3m3 (3.08 m×1.84 m×2.44 m)RC equipped
with a 100-step mechanical stirrer blade of 50 cm wide; its
LUF is around 550 MHz. The relative variance is studied over
the frequency range of 0.7-3 GHz.

The RC was used in two configurations. In the first one the
RC was empty; in the second one it was loaded by inserting
an hybrid absorber made up of four pyramids of about 30 cm
high, standing in the center of the RC.

The loaded and empty cases provide respective advantages.
When the RC is not loaded, losses are minimized, allowing
us to visualize, as clearly as possible, the transition ofς2W
towards its well-known asymptotic value of 1/3. The interest
of the loaded case is to provide another configuration of the
chamber and to have enough overlapping modes in order
to approach the asymptotic value, i.e., to attain very well-
overmoded conditions.

For the empty and loaded scenarios, we can show that
the maximum average modal bandwidths are 150 kHz and
375 kHz, respectively. On the frequency range of interest, 1000
linearly-spaced frequency bins are used, inducing a 2.3 MHz
frequency space between each point. This frequency space is
much larger than the maximum value of the modal bandwidths
previously mentioned, allowing each measured point to be
considered as uncorrelated between one another.

The variabilityς2W will be estimated with an inevitable un-
certainty. The latter, i.e., the uncertainty, can be minimized by
applying a moving average over 5 contiguous points, followed
by a decimation whose factor equals 5 accordingly. Average
values are therefore obtained over 10-MHz bandwidths.
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N
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Fig. 2. Estimated number of independent stirrer positions as a function
of frequency for the empty (solid line) and the loaded (dashed line) cases,
respectively.

It is worth recalling that modal bandwidths and the modal
density are two parameters that can fluctuate considerably.The
moving average followed by the decimation aim at extracting
the average trend, in order to be consistent with the model
used herein that neither takes into account the variance of the



5

number of modes [17] nor the variance of the quality factors
[18] [15].

In order to make the validation reliable, we need to estimate
some useful preliminary quantities such as the number of
uncorrelated stirrer positions, referred to asNsp.

The number of uncorrelated stirrer positions can be assessed
when the correlation coefficient is below a certain threshold
that depends on the number of stirrer positions [1]. For 100
positions the threshold is found around 20%. For this correla-
tion level, Fig. 2 shows the resulting number of “independent”
number of stirrer positions as a function of frequency for
the empty (solid line) and loaded (dashed line) scenarios,
respectively.
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Fig. 3. Composite quality factor obtained by averaging over10-MHz
bandwidths in the empty case (blackuppercurve) and the loaded case (grey
lower curve), respectively. Straight lines stands for first-order approximated
median values in a least-square sense.
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Fig. 4. Number of overlapping modes in the -3-dB bandwidth obtained
when the RC is empty (blacklower curve) and loaded (greyupper curve).
Solid lines are first-order approximated median values in a least-square sense.

In the validation process, the number of overlapping modes
MM is also a key quantity resulting from the knowledge of
the composite quality factor. Accordingly, a special care must
be taken with the estimation ofQ. As the field probe used
was phase sensitive, we were able to compute the composite
quality factor for the chamber over the entire frequency range
of test, by postprocessing the frequency-spectrum data in time
domain. The frequency spectrum used was made up of 60000
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Fig. 5. Fluctuations of the estimatedMM values, obtained in Fig. 4, about
the approximated median values, for the empty case (solid grey line) and the
loaded case (black dotted line), respectively.

bins over the entire frequency range of interest. Composite
quality factors were estimated on 1-MHz frequency bands. In
order to be consistent with the process applied toς2W ,Q values
were averaged on 10-MHz frequency bands; the uncertainty
was further minimized by using the data obtained on the three
field components.

Fig. 3 shows the resulting composite quality factors obtained
for the empty (blackuppercurve) and loaded cases (greylower
curve), respectively. In order to extract the mean trend forboth
cases, a first-order fit was performed in a least-square sense
(straight lines). The measured quality factors, as a function of
frequency, allow to compute modal bandwidths.
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Fig. 6. Estimated relative variancêς2
W

of the electric-energy density (left
y-axis) and the relative deviation from the asymptotic value of 1/3 (right
y-axis), as a function of frequency. Experimental results (grey markers) and
analytical results (solid line) are reported; dashed line stands for the analytical
expression derived in [10].

The knowledge of (average) modal bandwidths allowed us
to derive the numberMM of overlapping modes by using (15).
Accordingly, Fig. 4 shows the numberMM for the empty
(black lower curve) and loaded cases (greyupper curve),
respectively. Solid lines provide the mean trends resulting
from those obtained forQ. Note that the fluctuations ofMM
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observed in Fig. 4 results from the fluctuations of the estimated
composite quality factor and are not due to local modal-density
fluctuations; as explained in section III, these have not been
considered in the present work.

In order to have an estimation of the fluctuations ofMM

about mean values, Fig. 5 shows the normalized dispersion
obtained for the empty case (solid grey line) and the loaded
case (black dotted line), respectively. A dispersion of about
±7% is observed for both cases.

This characterization of the chamber in both scenarios
allows us to proceed to the validation of the relative variance
of the electric-energy density.
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Fig. 7. Estimated relative variancêς2
W

(left y-axis) of the electric-energy
density, as a function of the number of modesMM for the empty (upper
plot) and loaded (lower plot) scenarios, respectively. Corresponding relative
deviation from the asymptotic value of1/3 (right y-axis). Experimental results
(grey symbols), MC results (black dots) and analytical results (solid line) are
reported. The dashed line stands for the analytical expression derived in [10].
Vertical bars is related to the uncertainty of the experimental measurements
considered on a 95% confidence interval. Horizontal bars stands for the
dispersion ofMM around its mean value.

C. Results

We present in Fig. 6 the estimated values ofς2W , referred
to as ς̂2W , obtained experimentally (left y-axis) as a function
of frequency (grey markers) with the corresponding relative
deviation from its asymptotic value (right y-axis). For clarity,
and in order to well visualize the transition of the relative
variances towards their asymptotic values, only the empty

case is reported in Fig. 6. We superimposed the analytical
expression obtained in (17) (solid line) and the analytical
result obtained in [10] (dashed line). We can observe that
the expression given by (17) is in very good agreement with
measurements, whereas the relative varianceς̂2W obtained in
[10] (dashed line) tends to overestimate the degree of non-
uniformity of W .

In order to compare these results to those obtained with the
MC approach, the number of modes assessed experimentally
for the empty and loaded scenarios (see Fig. 4) must be used.
This allows to transpose and superimpose the experimental
results to those obtained by MC simulation. Variabilities are
shown (left y-axis) accordingly in Fig. 7, where experimental
results (grey markers), MC results (black dots) and analytical
results (solid line) have been reported. Deviation ofς2W from
its asymptotic value is also shown (right y-axis).

However, when experimental variances are estimated from
sets made up of finite number of samples, directly related
herein to the numberNsp of independent stirrer positions,
an unavoidable uncertainty has to be taken into account. To
estimate the latter, MC simulations were used again; this
merely consisted in computing 5000 times, for a givenMM

value, estimated relative variances ofW obtained over sets
composed ofNsp realizations.

Recalling that ς̂2W plotted in Fig. 6 was deduced from
averages performed over 5 contiguous points, the 5000 MC
values were rearranged in5×1000 values in order to perform
averages over 5 contiguous points. From these averages, 95%
confidence intervals of̂ς2W have been computed, and corre-
spond to the uncertainty bars reported in Fig. 7, for the empty
case (upper plot) and the loaded case (lower plot), respectively.

Finally, we need to recall thatMM are mean estimated
values for which 7% fluctuations were observed (see Fig. 5);
accordingly, horizontal uncertainty bars onMM have been
added in Fig. 7.

We can observe a very good agreement between the results
obtained analytically, numerically and those obtained experi-
mentally. For the latter, we note remarkable agreement even
with uncertainty bars, especially for the empty case.

We stress the interest of using an MC approach, since the
good agreement found ensures in some way that analytical
results are consistent with the assumptions made on the
different parameters and their related statistical laws.

VI. CONCLUSION

The concept of significant modes has been revisited and
highlighted. The bandwidth over which this number is defined,
depends inevitably on the statistical quantity of interest. In the
present work, a quantitative assessment of this number has
been carried out on the basis of the variability of the electric-
energy density. This notwithstanding, the approach presented
in the present work can be extended to other statistical
quantities.

Linking the concept of significant modes to previous work
allowed us to derive a new expression of the variability of the
electric-energy density. The good agreement found with exper-
imental results and simulation supports the different concepts
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introduced in the present paper. From a more practical point
of view, it provides an answer to the pending question dealing
with the assessment of the average number of significant
modes to consider at a given frequency in an MSRC.
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the Université Paris-Sud, Orsay, France. He entered
the Ecole Normale Supérieure de Cachan in elec-
trical engineering and computer science. He did a
thesis on electron transport in IV-IV heterostructures
and obtained his PhD in electronics from Université
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Description of the changes in the final manuscript 

An sentence has been added in the 2§ of the introduction 

“An important part of the measured-field uncertainty is directly due to the medium complexity” 

The two last sentences of the introduction has been reformulated as follows 

“However, the number of significant modes cannot be directly assessed experimentally. This notwithstanding, as 
shown insection IV, the validation of  ςw’s law allows us to validate the assessment of the number of significant 
modes.” 
 

For clarity equation (1) has been recast in a more conventional way. The text following (1) has been 
restated as follows, 

“where $\mathbf{e}_n\left(\mathbf{r}\right)$ is the eigenvector of the n\emph{th} mode, $\gamma_n$ 
is the modal weight, i.e., the coupling constant of the excitation source to the $n$th eigenmode and 
$\psi_n$ is the frequency response of the $n$th mode. 

If we express, on the one hand, 
$\mathbf{e}_n\left(\mathbf{r}\right)=e_n\left(\mathbf{r}\right)\hat{\mathbf{\xi}}_n\left(\mathbf{r}\rig
ht)$ where $\hat{\mathbf{\xi}}_n\left(\mathbf{r}\right)$ is the unitary polarization vector of the 
n\emph{th} mode, and use, on the other hand, $\{\tilde\gamma_n\}$ referred to as equivalent modal 
weights and defined as,” 

The ex Equation (1) has been displaced. Its label is now equation (3). 

In the first column of page 2 last paragraph “black-dots values” replaced by “values indicated by the 
black dots” 

For the sake of improving the grammar and style the paragraph following equation (7) has been re-
written as follows 
“In order to further recast (6), it is worth recalling that the ensemble average operator stands for an 
average over an ideally infinite number of stirring states. Moreover, since a stirring process consists in 
displacing resonance frequencies over a small frequency range, referred to as $\overline{\Delta f}$ (see 
lower plot of Fig. 1, the vertical dashed line in the upper plot of Fig. 1, as well as the initially discrete 
frequency template, will both become continuous under perfect stirring conditions. 
 
Note that the random signal $|\tilde\gamma\left(f\right)|^2$ is analog to a power spectrum density 
(PSD). This one will become continuous in the frequency domain with an average amplitude 
$\mu_2=\mathrm{E}\left[|\tilde\gamma_n|^2\right]$.” 
 
After  equation (8) (now eq.(9)) the sentence was recast as follows 
“where Be  is the frequency range centered about fw an infinite Be allows including all the modes.” 
 
The acronym PSD has been been added in section II to make the link clearer with concepts introduced in 
section III. Accordingly, |γ(f)|² is referred to as a PSD in the paragraph preceding eq.(9). 



The text “Relation (8) exhibits another point showing that the modal overlap effect in the computation of 
the E [W] can be restated as a simple filtering problem of a random signal |˜(f)|2 |; the frequency 
response of the filter being |ψ0 (f − fw) |².” Has been replaced by 
“Equation (9) shows that the modal overlap effect can be restated as a simple filtering formulation of a 
random signal characterized by a PSD |γ(f)|² applied to a filter with a frequency response |ψ0 (f − fw) |².” 
 
The text before Eq (9) (now Eq(10)) has been restated as follows 
“Note that if one is interested in the derivation of relative or normalized variance of W, one will have to 
deal with the following typical ratio,” 
 
In section III the first paragraph has been split into 2 paragraphs for clarity. The following statement has 
been deleted “error, which, for an unbiased estimator, can be regarded as a relative variance (RV).” 
 
The paragraph preceding eq (10) (now eq (11)) has been restated as follows 
“Although the application is different in the present context, the scenario is quite similar if the 
normalized relative error is regarded as the relative variance (RV) of an unbiased estimator. Moreover, as 
stated previously, |γ(f)|2 being the PSD of a random signal, we can easily show that the RV to compute 
corresponds to R given by (10). By using the statistical bandwidth concept it follows that,” 
 
Paragraph preceding eq.(15) (now eq.(16)) has been shortened as follows, 
“The condition V (f/c)3 >>1 being met, the simplest form of the modal density [15] can be used, such 
that” 
 
For the sake of clarity the following sentence has been added at the end of section III 
“Since Bs and M only exist in the framework of an equivalent statistical model, the validation of these as 
pertinent (and useful) quantities cannot be performed, but indirectly, by validating the analytical 
expression of ς²W .” 
 
The two first paragraphs of the conclusion has been joined by shortening the first (ex-) first paragraph.  It 
follows that the first paragraph is such that, 
“The concept of significant modes has been revisited and highlighted. The bandwidth over which this 
number is defined, depends inevitably on the statistical quantity of interest. In the present work, a 
quantitative assessment of this number has been carried out on the basis of the variability of the 
electric-energy density. This notwithstanding, the approach presented in the present work can be 
extended to other statistical quantities.” 
 


