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ABSTRACT 

 

The transport of radionuclides in fractured media plays a fundamental role in 

determining the level of risk offered by a radioactive waste repository in terms of 

expected doses. Discrete Fracture Networks (DFN) methods can provide detailed 

solutions to the problem of modeling the contaminant transport in fractured media. 

However, within the framework of the performance assessment (PA) of radioactive 

waste repositories, the computational efforts required are not compatible with the 

repeated calculations that need to be performed for the probabilistic uncertainty and 

sensitivity analyses of PA. In this paper, we present a novel upscaling approach, which 

consists in computing the detailed numerical fractured flow and transport solutions on 

a small scale and use the results to derive the equivalent continuum parameters of a 

lean, one-dimensional Dual-Permeability, Monte Carlo Simulation (DPMCS) model by 

means of a Genetic Algorithm search. The proposed upscaling procedure is illustrated 

with reference to a realistic case study of Pu
239  migration taken from literature.  

 

Keywords: Radioactive waste repository; performance assessment; fracture networks; 

Upscaling; Monte Carlo simulation; genetic algorithms. 
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1. INTRODUCTION 

 

The modeling of solute transport through networks of fractures is of extreme importance for the risk 

assessment of radioactive waste repositories [1][2][3][4][5].  

Multiple-continuum models, based on advection-dispersion equations, allow to approximately 

describe the transport phenomena on large scales but may fail to capture certain non-Fickian 

features on small scales. [6][7]. These models assume uniform dispersion, which is not always 

satisfied in fractured networks where flow and transport can take place in highly localized channels 

[6][7] and may even give rise to apparent scale dependence of the dispersivity [6][7][8][9]. 

Single-continuum models based on equivalent parameters may in general be exploited in case of 

very regular and well connected fracture networks, which can be approximated by a porous 

medium; however, significant biases may be introduced when more realistic fractures geometries 

are taken into account [10]. 

A detailed characterization and mapping of the fractured fields is usually not feasible due to the 

high degree of complexity and heterogeneity of the network, and information on geometric and 

conducting properties can be obtained only in terms of probability distributions and correlation 

functions [6][7][10][11][5]. 

Discrete Fracture Network (DFN) methods allow handling the high degree of complexity and 

heterogeneity of the networks of fractures [12][13]. These methods do not rely on volume averaging 

techniques, but solve the flow and transport problem in individual fractures by accounting for both 

anisotropy and stochasticity [13][14]. Nevertheless, an important drawback of these methods is 

related to the high degree of complexity of the modeling which requires an intensive computational 

effort and thus limits their range of applicability to near-field scales [6][7][14][5], and actually 

prevents the use in the probabilistic uncertainty and sensitivity analyses required in the PA of 

radioactive waste repositories.  

Another approach proposes a stochastic continuum model which deterministically incorporates the 

major fracture planes and resorts to multiple statistical populations to model the statistical 

distribution of the hydraulic conductivity [4]; the model has been successfully applied to a three-

dimensional flow and transport problem in a fractured domain of the order of tens of meters, at the 

expense, again, of very large computational times and numerical problems due to the solution of the 

groundwater flow over a large domain in presence of very steep conductivity gradients. 

An approach recently proposed to overcome these problems [15] is the “hybrid approach” [7]. It 

consists in carrying out detailed flow and transport simulations over small domains, thus limiting 
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the numerical flow solution problems, and using the results to determine equivalent properties for 

continuum models to be used on larger scales [6][7][15][16]. When adopting this “upscaling” 

approach, the underlying assumption implicitly made is that the small domain is representative of 

the properties of the network and the results can be employed to upscale the conducting properties, 

i.e. to extend them to larger domains [6][7]. 

In this paper, an upscaling procedure is developed to determine the equivalent parameters of a lean, 

one-dimensional Dual-Permeability, Monte Carlo Simulation (DPMCS) model [17][18][19] of 

radionuclide migration at the field scale. Monte Carlo simulation is adopted because of its 

flexibility, necessary to account for the complex phenomena and geometries typically encountered 

in realistic Performance Assessments (PAs) [20][21]. On the other hand, the model one-

dimensionality is chosen in view of it utilization for fast dose predictions, within computationally 

demanding sensitivity and uncertainty analyses. 

Specified probability distributions of fracture characteristic parameters are taken as input and 

numerical experiments are performed to collect reference data for the parameter calibration 

procedure. Different realizations of fracture fields are generated on small sub-domains by random 

sampling from the assigned distributions and by mapping into continuum grids with constant cell 

size, according to a recently suggested methodology [5][22]. Then, the MODFLOW and MT3DMS 

solvers [23][24] are employed to get detailed flow and transport solutions over these sub-domains 

[5]. These are used to compute a mean breakthrough curve which serves as a reference for the 

identification of the equivalent parameters of the DPMCS model. The parameters identification is 

performed by a Genetic Algorithm search aimed at minimizing the mean squared error between the 

DPMCS estimated breakthrough curve and the mean one of reference. Once the DPMCS model 

parameters are identified, they can be implemented in a new DPMCS model upscaled to a larger 

domain, as demonstrated in the application concerning Pu
239  migration in a fractured medium.  

The paper is organized as follows. In Section 2 the parameter identification strategy and the 

resulting upscaling procedure are illustrated with reference to the DPMCS model, whose principal 

features are recalled. The results of the application of the procedure to the PA problem under 

consideration are reported in Section 3. Conclusions on the capabilities of the proposed method are 

drawn in Section 4. 
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2. GENETIC ALGORITHM-BASED UPSCALING PROCEDURE OF A DPMCS MODEL 

FOR TRANSPORT IN FRACTURE NETWORKS 

 

Fracture networks do not in general behave like a continuum [13]: channeling of flow and other 

phenomena may occur, which cannot be accounted for in continuum models. Only when the density 

and the connectivity of the network are large enough, equivalent descriptions can be found. In this 

case each fracture, if connected to the others, contributes to the overall permeability of the network; 

however, this is not simply the sum of the permeability of each individual fracture [8][13][25]. 

Moreover, the high degree of spatial variation of the conductivity of the fractures influences the 

velocity field, which in turn causes an increment in the spreading of the dissolved contaminants. 

This phenomenon causes an apparent increase of the dispersivity [8], which can even be found to 

vary with the observed scale [8][9]. It is therefore clear that even if an equivalent description is 

possible, the evaluation of the equivalent parameters of the network to solve flow and transport 

problems is far from being trivial. In certain cases, analytic expressions for equivalent properties 

can be obtained by using equivalent media and percolation theories [25][26][27], but the extension 

of these methods to realistic networks, whose parameters are described by realistic probability 

distributions, is burdensome. In such cases, if the network is not poorly connected, it is possible to 

resort to upscaling procedures which consist in carrying out detailed simulation of contaminants 

migration over small fractured sub-domains, assumed to be representative of the global properties 

of the network, and from these results determine the parameters for the equivalent continuum 

problem [6][7].  

In this work, an upscaling procedure is developed in three main steps: i) a set of fracture networks is 

generated in a small sub-domain, by random sampling the characteristic parameters of each 

individual fracture, i.e. position, orientation, length and conductivity, from the corresponding 

distributions; these parameters are shown to be sufficient to determine a fracture network whose 

geometry is geometrically similar to that observed [10][11]; ii) each fracture network is mapped 

into continuum grids with constant cell size [5] and the corresponding flow and transport problems 

are solved by a detailed numerical model; and iii) the parameters of the DPMCS model are 

identified on the basis of the results of the detailed numerical model. The DPMCS model with the 

identified parameter values previously identified can then be applied to a larger, fractured domain. 

In what follows, the details of the upscaling procedure are provided with reference to the migration 

of a single species of non-reactive contaminant, for simplicity. 



5 

 

 

Fracture network generation 

Assuming that the individual properties are not correlated [22], fractures are generated in two 

groups, of fixed orientation (
1

 , 
2

 ), with position uniformly distributed in a two-dimensional 

domain, and length (
f

L ) and conductivity (
f

K ) distributed according to power laws, such as: 
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where 
fL

w  and 
fK

w are normalization coefficients, and 
fL

a  and 
fK

a  are empirical parameters 

whose values are found to range between 1 and 3 for 
fL

a  and around 0.4 for 
fK

a  [22]. 

In order to limit the fracture spatial densities in the domain, the maximum density is controlled to 

decide whether the realization can be used or not. By choosing a small power law exponent for the 

fracture length distribution, the following criterion can be adopted to control maximum spatial 

density [22]: 
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where A  is the area of the domain, 
if

l
,
 is the length of the thi   fracture and N  is the total number 

of fractures in the domain. 

The lower limit is not computed by evaluating the percolation threshold; rather, here, in analogy 

with [22], it is instead determined indirectly by carrying out trial numerical simulations on the flow 

field in order to determine a value which guarantees a certain degree of connectivity and allows for 

a flow in the fractures from one side of the domain to the other. 

According to the distributions and the constraint described above, a total number of 
fr

M  two-

dimensional fracture network realizations is generated by random sampling. 

 

Flow and transport solution in a fractured sub-domain by MODFLOW and MT3DMS 
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The non-reactive single species flow and transport problems are solved for each 
fr

M  fractured 

network realization by means of the finite element solvers MODFLOW and MT3DMS [23][24]. 

The corresponding rates of release outside the domain (i.e. the breakthrough curves) are 

subsequently averaged to obtain a mean breakthrough curve, whose the shape ultimately depends on 

the statistical properties assumed for the fracture field. An analysis is performed to assess whether 

the number of field realizations 
fr

M  guarantees the convergence of the mean of the breakthrough 

curve. 

 

Parameter identification and upscaling 

The mean breakthrough curve is used as reference for the identification of the equivalent flow and 

transport parameters of a continuum model. In this case, a DPMCS model is employed [19], whose 

main features are summarized as follows. In general the model can be one-, two- or three-

dimensional but here, for simplicity of illustration and without loss of generality, a one-dimensional 

spatial representation of the migration domain along the horizontal direction is considered.  

The domain along which the transport occurs is subdivided in 
x

N  discrete zones, 
x

Nx ...,,2,1 . 

The thN
x

 1  compartment is an absorbing state representing the “environment”. In each zone the 

amount of contaminant in the porous matrix and in the fracture system is to be determined. To this 

aim two categories of particles are introduced: the solutons, i.e. the particles of contaminant in the 

porous matrix, and the fracturons, i.e. the particles of contaminant travelling in the fracture system.  

In an elementary time interval dt , each one of these two particles can either travel to one of the 

neighboring zones, 1x  or 1x , with transition rates 
s

f , 
f

f  (forward) and 
s

b , 
f

b (backward) 

respectively, or undergo a transition to the other domain in the same zone x , thus transforming into 

the other particle with corresponding rate 
xfs

r
,

 (for a soluton becoming a fracturon) or 
xsf

r
,

 (for a 

fracturon becoming a soluton). Finally, each contaminant particle might undergo a radioactive 

decay or a chemical reaction with rate  . For simplicity of illustration, we assume that the daughter 

of the decay or of the chemical reaction is neither radioactive nor contaminant, so that it is of no 

further interest in the analysis.  

By assuming that the process is i) linear (i.e. each particle is independent from the others), ii) 

markovian (i.e. the future state depends only on the present one) and by exploiting the properties of 

the probability generating functions (pgfs), a system of )1(2 
x

N  coupled Kolmogorov’s equations 
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for the expected values of the numbers of solutons (S) and fracturons (F) at time t  in each zone 

1...,,2,1 
x

Nx  can be obtained [17]:  
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(3.b) 

 

with 
x

Nx ,...,2,1'  and where we assume to have one soluton in zone x at time 0t  (
xs ,

1 ). 

In analogy to [18], the transition rates of the Kolmogorov-Dmitriev model may be related to the 

advection-dispersion model parameters. In this case, however, two sets of properties are needed, 

one describing the matrix and the other the fractures system to alternatively determine the solutons 

and the fracturons transition rates. For this reason, an analogy can be drawn with the dual 

permeability advection-dispersion model [28][29][30][31] (see Appendix A for more details).  

The stochastic process of radionuclide migration across domains modeled by the system of partial 

differential equations (3.a) and (3.b) represents a continuous-time Markov process [32], whose 

solution is the probability of finding the m-th contaminant particle in compartment 'z  at time t . To 

account for realistic conditions, e.g. to account for non-homogeneities in time and space [33] or 

non-linear phenomena [20][21], a solution by Monte Carlo simulation may be quite adequate, 

whereby the stochastic migration of a large number M  of contaminant particles in the domain are 

simulated by repeatedly sampling their births, from the release sources and their transitions across 

the medium compartments, from the proper probability density functions.  

Let us denote by )(tX
m

 the state variable representing the position at time t  of the m-th 

contaminant particle ( fsm ,  for a soluton or a fracturon, respectively) in the discretized domain, 

i.e., ntX
m

)(  implies that at time t  the m-th particle is in cell 1....,,2,1 
x

Nn . The random 

walk of the individual radionuclide is simulated either until 1)( 
xm

NtX , i.e. until it exits the 

domain to the “environment”, that is an absorbing state from which the particles are not allowed to 

come back to the migration domain, or until Tt  , i.e. its lifetime crosses the time horizon T  of the 

analysis. For computational purposes, the time horizon T  is discretized in 
t

N  equally spaced time 

instants, with time step t ; two different counters,  knCount
s

,  and  knCount
f

, , are associated to 
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each compartment 1....,,2,1 
x

Nn  and each discrete time 
t

Nk ....,,2,1 . During the 

simulation, a one is accumulated in the counters  knCount
s

,  and  knCount
f

,  if a soluton or 

fracturon, respectively, resides, during its random walk, in compartment n  at time k . At the end of 

the M  simulated random walks of the contaminant particles, the values accumulated in the 

counters allow estimating the time-dependent probabilities of cell occupation by a soluton or a 

fracturon, )(
,

tP
sn

 and )(
,

tP
fn

 respectively:  

 

 
 

M

knCount
kP

s

sn

,
,

  
(4.a) 

 
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M

knCount
kP

f

fn

,

,
  

(4.b) 

 

The total probability that a contaminant particle occupies cell n  at time k  is: 

 

 

 
     

M

knCount

M

knCountknCount
kP

fs

n

,,,



  

(5) 

 

Similarly, the probability density function of the release into the environment (breakthrough curve), 

)(kpdf
env

, can be estimated as: 

 

 

tM

kNCount
kpdf

x

env





,1
)(  

(6) 

 

As anticipated above, the aim is that of identifying the parameters of the DPMCS model so that it is 

capable of approximating the mean breakthrough curve obtained on the small sub-domain by the 

MODFLOW and MT3DMS suite. In particular, the DPMCS model parameters to be determined 

are: i) the equivalent conductivity of the fractures network, 
eq

K , which allows determining the 

velocity in the equivalent-continuum fracture system, 
eq

v , from Darcy’s equation; ii) the equivalent 

dispersion coefficient in the fractures, 
eq

D ; iii) and the mass exchange parameters (
xsf

r
,

 and 

xfs
r

,
) describing the process of retardation due to solute interaction with the matrix. The values of 

these parameters allow computing the transition rates of the DPMCS model (see Appendix A for 
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details). In general, the method allows considering advective transport also in the porous matrix, 

but, in this modeling, for simplicity and without loss of generality, this is neglected and only the 

retardation due to diffusion into the matrix pores is considered.  

A Genetic Algorithm [34] search is performed to find the equivalent DPMCS model parameters. 

The objective guiding the search is to minimize the mean squared error between the breakthrough 

curve obtained by the DPMCS model for the small sub-domain and the mean curve obtained by the 

MODFLOW and MT3DMS solutions of the 
fr

M  fracture field realizations on the same small sub-

domain. The optimization procedure entails running the DPMCS model several times in 

correspondence of properly chosen sets of values for the inputs 
eq

K , 
eq

D , 
xsf

r
,

 and 
xfs

r
,

 and 

computing the associated mean squared error with respect to the mean output of the MODFLOW 

and MT3DMS. 

The parameter values found are implemented in the upscaled DPMCS model, which can be applied 

to larger, fractured domains. An exemplary application of this procedure is described in the next 

Section. 

 

 

3. UPSCALING APPLICATION ON A REALISTIC CASE STUDY 

 

The proposed procedure is applied to a case study from literature [35] concerning the release of 

Pu
239  from a near surface repository, whose design concept was studied by ENEA [35][36] and has 

similarities with the currently operative disposal facility of El Cabril, Spain [37]. As the 

radionuclides exit the repository floor, they migrate through the unsaturated zone, whose most 

important effect is that of retarding the infiltration towards the saturated zone (refer to [38] for 

further details). Then, as in [36], radionuclide migration in the groundwater domain is described to 

occur within a highly fractured limestone layer exhibiting extensive karstic phenomena. In this 

work, the equivalent parameters of the fracture network are estimated by adopting the upscaling 

procedure described in Section 3. For the properties of the fractures, the distributions of equations 

(1.a) and (1.b) are assumed with the parameters reported in Table 1. The criterion of equation (2) is 

considered for the maximum spatial density. The corresponding networks are sparsely fractured 

domains dominated by a few long fractures connecting their boundaries [22]. Moreover, the 

following correction is applied to the sampled value of the conductivity in order to account for the 
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“stair step” pattern of the velocity field, which causes an apparent decrease of the hydraulic gradient 

from cell to cell in MODFLOW [22]: 

 

|)|cos||(sin   KK
MODFLOW

 (7) 

 

Table 1: Stochastic parameters for the generation of the fracture fields 

Orientation  


21

8
1
 , 

7

5
2
  

Length 5
fL

w , 28.1
fL

a  

Conductivity  4
10




fK
w , 4.0

fK
a  

 

Numerical experiments, consisting in the generation of many different realizations of a 2-D fracture 

field, are carried out to collect reference data to be used for determining the equivalent conducting 

properties for larger scales application. The size of the elementary domain, adopted to compute the 

upscaling parameters, is m50  × m50 , discretized into cells of m1  × m1 ; the right and left 

boundaries are given constant hydraulic head, whereas the upper and lower boundaries are set to no-

flow condition. To avoid boundary effects, the source is placed 5 cells, i.e. m5 , from the upstream 

boundary and the breakthrough curve is computed 5 cells, i.e. m5 , before the downstream 

boundary. Therefore, the actual distance along the horizontal direction is m40 . A planar source is 

employed, whose length is set equal to m40  in the vertical direction. These dimensions are 

comparable to those adopted in [6]. For simplicity’s sake, in the determination of the equivalent 

parameters, the migration of a single species of a non-reactive tracer is considered, characterized by 

a retardation factor 1R  (no adsorptions). The transport is simulated over a period of h300  and 

the injection is assumed to be impulsive, i.e. all the particles are released at time 0t . A total of 

100
fr

M  realizations of the fracture field are generated and, for each realization, the flow and 

transport are solved by MODFLOW and MT3DMS numerical methods. The hydrological 

parameters used for the simulations are summarized in Table 2.  

 

Table 2: Hydrological parameters 

Matrix conductivity  smK
m

/103
7

  



11 

 

Dispersivities mm
TmTfLmLf

101    

Effective porosity 15.0
fm

  

Upstream boundary hydraulic head mh
up

300  

Downstream boundary hydraulic head mh
down

290  

Molecular diffusion coefficients smDD
mmfm

/101
29

,,


  

 

The mean breakthrough curve over the different realizations is computed, together with its 1 

standard deviation bands (Figure 1, solid line). This curve is considered as a reference for the 

calibration of the parameters of a small scale DPMCS model, which will be later exploited for 

developing an upscaled DPMCS model. 

To promote model simplicity for repeated use in PA probabilistic analyses, a one-dimensional 

model is considered. The parameters to be determined are, then, the equivalent conductivity of the 

network 
eq

K , the equivalent dispersion coefficient 
eq

D  and the absorption and desorption 

coefficients 
xsf

r
,

 and 
xfs

r
,

. A Genetic Algorithm search is performed to determine the optimal 

values of the parameters of the one-dimensional, DPMCS model. A constraint is set on Peclet’s 

number to preserve the physics of the problem (
D

uL
Pe   where u  is the velocity, L  is a 

characteristic length and D  is the dispersion coefficient): a substantial change in this parameter 

would, in fact, result in the passage from an essentially advective problem to a predominantly 

diffusive problem. Therefore, instead of optimizing both 
eq

K  and 
eq

D , the equivalent conductivity 

and the reciprocal of the Peclet’s number are encoded in the first two genes of the GA. The value of 

eq
D  can, then, be indirectly computed from these two parameters: 

 

1
 Pex

dx

dhK
D

eq

eq


 (8) 

 

where x  is the discretization length in the horizontal direction (set equal to mx 1 ) and 
dx

dh
 is 

the average hydraulic gradient over the domain. As mentioned in Section 3, the transport in the 

matrix subsystem is neglected because of the low permeability value (see Table 2).  
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The range of variability of each gene for the search is determined by computing the minimum and 

maximum values of the corresponding physical quantities over all the generated fracture field 

realizations. As these values vary more than one order of magnitude, a logarithmic search is 

performed for all parameters apart from the reciprocal of the Peclet’s number, whose variation is 

kept linear. The search ranges are set equal to ]2,5[   for )ln(
eq

K , ]15,0[  for 1
Pe , ]2,7[   for 

)ln(
, zsf

r


 and )ln(
, zsf

r


; the number of bits for their binary representation is 10. A population of 

100 chromosomes evolving for 200 generations is employed.  

The GA search recursively solves the Monte Carlo scheme of Section 2, where 4
10M  fracturon 

particles are injected in the first upstream compartment of a dual-permeability, one-dimensional 

array of 40
x

N  compartments of equal width mx 1 , and simulated over a time horizon of 

hT 300 , divided into 100
t

N  equal time steps of constant width ht 3 . At the end of every 

simulation, the computed breakthrough curve, i.e. )(kpdf  (see equation (6)) is compared with that 

obtained from the MODFLOW and MT3DMS simulations and the fitness parameter, i.e. the mean 

squared error, is computed. To enhance its variability, the fitness parameter is set in logarithmic 

scale.  

The optimal curve found with the GA procedure, i.e. the one with the minimum mean squared error, 

is reported in Figure 1 (dashed line). For the small-scale DPMCS model, the optimal values of the 

parameters found by the GA search are: smK
eq

/101.1
4

 , smD
eq

/104.1
23

 , 

15

,
104.1




 sr

xsf
 and 

16

,
100.3




 sr

xfs
. The general behavior follows that of the mean curve 

obtained by MODFLOW and MT3DMS, lying well within the 1 bands. It shows good 

predictions for the peak’s value and time, whereas it is less satisfactory for the tail of the curve. This 

is expected, because of the one-dimensionality of the DPMCS model. In fact, the shape of the peak 

predicted by the detailed MODFLOW and MT3DMS is mainly due to the fastest tracer particles 

which are transported by advection along the main fractures and rarely interact with the matrix nor 

change their fracture direction. To intuitively describe this process, we can assume that, in a 

sparsely fractured domain dominated by a few long fractures connecting its boundaries, as the one 

under consideration [22], the advective transport is driven by a single fracture, e.g. with orientation 


21

8
1
  and average hydraulic conductivity smK

f
/101.1

3
 ; then, we can write the average 

time   one of these particles takes to exit the domain boundary as: 
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ff
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1

1
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





















  (9) 

 

which is very close to the actual peak time obtained with MODFLOW and MT3DMS. Since the 

advection of the tracer particles along a main, straight fracture is well represented by a one-

dimensional process, then the DPMCS model, which is intrinsically one-dimensional, is capable of 

satisfactorily capturing this behavior. On the other hand, the shape of the tail of the curve is due to 

hydrodynamic dispersion, both at the microscale of the pores and macroscale of the fracture 

network, and to matrix interaction. The DPMCS model satisfactorily represents the matrix 

interaction phenomena, as demonstrated by the rather flat tail mainly due to those particles which 

are trapped in the matrix and then slowly released (see [19]); on the contrary, the differences in the 

tails predicted by the two models is mainly due to hydrodynamic dispersion, which is an 

intrinsically two-dimensional phenomenon (three-dimensional in more general applications). The 

larger spread of the particle release in the MODFLOW and MT3DMS due to dispersion is more 

evident at earlier times when the advection process is dominant, giving rise to the initial 

underestimation before 150 h; then, simple mass conservation considerations explain the successive 

overestimation. The equivalent dispersion coefficient 
eq

D  in the one-dimensional DPMCS model is 

capable of partially capturing this behavior, but cannot exactly reproduce it. However, DPMCS tests 

carried out with different values of 
eq

D , not reported here for brevity’ sake, show that the tail can be 

better reproduced at the expense of a decrease in the model peak accuracy and an increase in the 

total mean squared error [19][35].  
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Figure 1: Comparison of MODFLOW and MT3DS mean breakthrough curve (solid line) and Monte Carlo curve 

(dashed line) on the 50m  50m domain 

 

For demonstrating the upscaling capabilities, the simulation of Pu
239  migration in groundwater is 

carried out on a m200  by m50  fractured domain, generated with the input distributions of 

Section 3 and respecting the density criterion of equation (2). The same transport problem is solved 

both with MODFLOW and MT3DMS in two dimensions, whose results will be assumed as 

reference, and with a new, one-dimensional DPMCS model characterized by a different spatial 

discretization than the previous one but the same optimized values of the parameters.  

In MODFLOW, a m40 long planar source representing the repository is placed m5  from the 

upstream boundary and the breakthrough curve is computed in the vicinity of the downstream 

boundary, at a distance of m190 . The Pu
239  particles are injected in the groundwater according to 

the release rate computed in [35] and the migration in the domain is assumed to occur under linear 

isothermal conditions with retardation factor equal to 5667R  [36]. Radioactive decay of Pu
239

 is 
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considered, with 15
10876.2239


 y

Pu
  but, for simplicity’s sake, the daughter of the decay is not 

further considered in the transport analysis. Both upstream and downstream boundaries are given 

constant hydraulic head with total difference on the domain mh 40 ; the dispersivities are set to 

m
LmLf

10  and m
TmTf

1  ; all other hydrological parameters are left unchanged with 

respect to the previous case (Table 1). The spatial domain is discretized into 200 x 50  cells of m1  

by m1 , and the top and bottom boundaries are set as no-flow. 

For the Monte Carlo simulation, a total of 6
10M  fracturon particles are injected in the first 

upstream compartment of a dual permeability, one-dimensional array of 19
x

N  cells of equal 

length mx 10 , and their migration is simulated over a time horizon of yT 1000 , divided into 

equal time steps of constant width yt 10 . The coarser spatial discretization employed for the 

Monte Carlo simulation is allowed by the equivalent parameters, which are valid at the scale of tens 

of meters.  

In Figure 2, the breakthrough curve computed with the DPMCS model (dashed line) is compared 

with the reference one (solid line) obtained by averaging 10 simulations performed with 

MODFLOW and MT3DMS in correspondence of different fracture network realizations; the 

errorbars indicate the 1 ( = standard deviation) variability of the results obtained with different 

networks. Overall satisfactory agreement is achieved: the peak height and time are well captured, as 

in the results of the calibration phase, since they are, again, mainly due to the one-dimensional 

average advective transport component. The shape of the curve is more symmetric than before, 

probably because the matrix interaction effects are “covered” by those due to dispersion, which is 

larger now due to the larger domain. The width of the curve is very similar to that of the reference 

one, which shows that 
eq

D  well describes the average longitudinal dispersion effects. On the other 

hand, the differences in the rising and descending parts of the curve are related to the asymmetry of 

the reference curve, which is the result of the intrinsic two-dimensional effects of the macroscopic 

dispersion at the full-scale domain due to the fractures. These effects cannot be captured unless a 

more complicated two dimensional DPMCS model is developed, but this is out of the scope of this 

work. 

The apparent temporal upscaling is actually due to the fact that in the parameter calibration phase an 

instantaneous source of tracer particles with retardation factor 1R  (no adsorption) is employed, 

whereas in the full-scale simulation the more realistic Pu
239  source taken from [35] spreads 
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approximately over a 1500 y time horizon; moreover, the Pu
239  retardation factor becomes 

3
107.5 R , thus largely slowing down the transport process. Simulations carried out on the same 

full-scale domain with instantaneous source and 1R , not shown here for brevity, does not show 

significant differences in the model behavior, although the time scales become comparable to that 

of the calibration simulations. 
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Figure 2: breakthrough curve at 200 m from the source: comparison between MODFLOW and MT3DMS (solid 

line) and DPMCS model (dashed line) 

 

The entire procedure has been carried out with a 6GB RAM computer with an INTEL® CORE™ i5 

CPU M520 @ 2.40GHz processor. The calibration procedure requires a total of 

s
4

1017.1  ( s
3

10392.1   for fracture field realization generation and computation of the mean 

curve, and s
4

10030.1   to calibrate the parameters with the Genetic Algorithm). This procedure, 

however, needs to be performed only once and the results can subsequently be employed to solve 

the upscaled migration problem with a much faster and “leaner” model, which lends itself to be 
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used for the repeated calculations of probabilistic uncertainty and sensitivity analysis of PA. In the 

case of the m200   m50  domain, for instance, it takes s
3

1024.5   to compute the solution by the 

DPMCS model and s
5

1093.7   by the MODFLOW and MT3DMS solver. Note that computational 

advantage increase as the domain becomes larger.  

 

 

4. CONCLUSIONS 

 

The assessment of the safety performance of a nuclear waste repository stands on the use of 

quantitative models for the prediction of the release and transport of radionuclides on extended time 

and spatial scales. In the transport process, fractures play a relevant role which must be properly 

evaluated and accounted for. 

In this paper, we propose a novel approach for upscaling fracture networks properties into a 

continuum model. The approach consists in computing detailed solutions of the flow and transport 

problems in a two-dimensional sub-domain of the fractured medium with the finite difference 

solvers MODFLOW and MT3DMS, and using the results to determine the equivalent conducting 

properties to be employed in a one-dimensional Dual-Permeability, Monte Carlo Simulation 

(DPMCS) model. These properties are determined by means of a Genetic Algorithm search which 

minimizes the mean squared error between the breakthrough curve found with MODFLOW and 

MT3DMS and the one computed with the Monte Carlo scheme.  

The approach is employed to carry out realistic simulations of Pu
239  release from a radioactive 

waste repository and migration within a fractured domain. By inserting the calibrated parameters in 

the Monte Carlo scheme, good agreement is found with the corresponding solution computed with a 

reference, detailed MODFLOW and MT3DMS simulation. 

The proposed approach allows to drastically simplify the numerical model, by coarsening the spatial 

discretization and thus reducing the computational time. The procedure does require a certain effort 

but, once the equivalent parameters are found, they can be employed to solve transport problem on 

domains of any size, where the detailed solutions would become too expensive and even fail to 

reach convergence.  

The choice of a one-dimensional model reduces the required computational times, so that the 

approach becomes attractive with respect to the fundamental PA tasks of uncertainty and sensitivity 

analyses on the physical parameters governing the radionuclides migration in groundwater. On the 
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other hand, this choice affects the accuracy of the results, in particular due to the impossibility of 

fully capturing the two-dimensional (or, more generally, three-dimensional) dispersion patterns. A 

two-dimensional model would probably provide improved estimation accuracy. It is to be noted, 

however, that this would be at the cost of increased computational times, so that the model would 

not be effective from an uncertainty and sensitivity analyses viewpoint. Nonetheless, due to the 

flexibility offered by the Markovian modeling, investigations are currently being carried out in this 

regard. 

 

 

APPENDIX A 

 

In dual permeability and dual porosity models, the transport phenomenon is assumed to occur in 

two domains: the porous matrix and the fracture system. In particular, dual porosity models divide 

the medium in a mobile and an immobile region, assuming that flow occurs only in the larger 

permeability zone, whereas dual-permeability models assume the flow occurs in both subsystems. 

The model describes the heterogeneous porous media as a system made up of two different coupled 

subsystems and therefore the properties of the bulk medium depend on those of the different porous 

subsystems. Thus, following the notation of [30][31], the transport of solute in this system can be 

described by two coupled advection-reaction-dispersion equations, where the subscript m  refers to 

the matrix subsystem and f  to the fractures: 

 

f

s

fff
f

f
f

fff

w
ccc

t

cR 








)()(

)(
ff

qD  
(A1.a) 

m

s

mmm
m

mm

mmm

w
ccc

t

cR 








)()(

)(
m

m qD  
(A1.b) 

 

where D  is the dispersion tensor,   is the decay or chemical reaction term, R  is the retardation 

coefficient, w  is the relative volume of the pore system (
fm

ww  1 ),   is the water content, q  is 

the Darcy’s velocity, c  is the solute concentration and 
s

  is the exchange term between the porous 

matrix and the fracture system. According to [30][31], assuming that only the diffusive contribution 
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to the exchange process is taken into account and that the flow field is at steady-state, the exchange 

term 
s

  can be expressed as: 

 

)( mfmmss ccw    (A2) 

 

The coefficient 
s

 in equation (A2) is [30][31]: 

 

as D
a

2


   

(A3) 

 

where 
a

D  is the effective diffusion coefficient at the interface,   is a semi-empirical geometric 

factor and a  is the characteristic half-width of the porous matrix. The terms in equations (4.a) and 

(4.b) are all referred to the relative volume of the corresponding subsystem, with the exception of 

s
 , which is defined as the mass of solute per unit volume of bulk soil per unit time [Gerke and van 

Genuchten 1993a]. For the general form of equations (A1.a), (A1.b) and (A2) the interested reader 

should refer to [30][31].  

Then under the hypotheses of: i) one-dimensional domain, ii) no retardation ( 1R ) and iii) 

constant water contents (
m

  and 
f

 ), constant pore velocities 
m

m

m

q
v


  

f

f

f

q
v


  (where 

m
  and 

f
  

are the porosities of the matrix and the fractures system, respectively), constant dispersion 

coefficients 
m

D  and 
f

D  and constant reaction rates  
fm

, it is possible to write equations 

(4.a) and (4.b) in terms of the concentrations referred to the total bulk volume (
ffff

cwC   and 

mmmm
cwC  ) and, subsequently, discretize them in space by a centered Euler method: 
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These equations are formally identical to (3.a) and (3.b); thus, by comparing the two systems of 

equations it is possible to write the following relationships for the forward and backward rates of 

the solutons and the fracturons: 
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(A5.b) 

 

Note that, since the backward transition rates 
s

b  and 
f

b cannot be negative, equations (A5.a) and 

(A5.b) require an upper limit for the spatial discretization cell: 
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Analogously to the forward and backward rates, the exchange rates can be expressed as: 
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The difference in the exchange rates depends mainly upon the different relative volume of each 

system: the larger the volume of the subsystem is, the less probable the transition to the other 

subsystem is.  
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