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Abstract 

We look at different prognostic approaches and the way of quantifying confidence in equipment Remaining 

Useful Life (RUL) prediction. More specifically, we consider: 1) a particle filtering scheme, based on a 

physics-based model of the degradation process; 2) a bootstrapped ensemble of empirical models trained on 

a set of degradation observations measured on equipments similar to the one of interest; 3) a bootstrapped 

ensemble of empirical models trained on a sequence of past degradation observations from the equipment of 

interest only. 

The ability of these three approaches in providing measures of confidence for the RUL predictions is 

evaluated in the context of a simulated case study of interest in the nuclear power generation industry and 

concerning turbine blades affected by developing creeps. 

The main contribution of the work is the critical investigation of the capabilities of different prognostic 

approaches to deal with various sources of uncertainty in the RUL prediction. 

 
Keywords: Prognostics, uncertainty, particle filtering, bootstrap ensemble, turbine blade, creep. 
 
1 Introduction 

In prognostics the current system condition is projected in time by a predictive model [1-2]. Since the 

prediction of the Remaining Useful Life (RUL) of degrading equipment is performed in the absence of future 

measurements concerning equipment degradation and operational conditions, the prognostic task is 

necessarily affected by large uncertainty. In this work, the sources of uncertainty affecting the RUL 

prediction are classified in three categories: 

A. Randomness in the future degradation of the equipment. This intrinsic uncertainty in the degradation 

process has several causes such as the unknown future load profile, and operation and environmental 

conditions. 

B. Modeling error, i.e., inaccuracy of the prognostic model used to perform the prediction. In model-based 

prognostic approaches, this source of uncertainty takes into account the assumptions and simplifications 

made on the form and structure of the model, and the uncertainty on the model parameters. In data-

driven approaches, it relates to the incomplete coverage of the data set used to train the empirical model. 

                                                      
1 P. Baraldi is with the Politecnico di Milano, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano, Italy (phone:+39 02 23996355; fax: +39 02 

23996309; e-mail: piero.baraldi@polimi.it).  
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C. Uncertainty in current and past equipment degradation data, which are used by the prognostic model to 

elaborate the RUL prediction. These data are usually acquired by sensors with some measurement noise 

or derived from diagnostic systems assessing the equipment health state with some degree of uncertainty. 

Other possible sources of uncertainty, which are not considered in this work, are the imperfect knowledge of 

the value of degradation beyond which the equipment can no longer perform its functions (failure threshold), 

Table I: nomenclature 

Symbol Description Symbol Description 

ti i-th time instant h reference index of the ensemble models 

di equipment degradation at time ti H number of empirical models 

zi physical observations related to di s
ir  prediction residual obtained in correspondence 

of the input s
iz  RULi random variable (rv) representing system RUL 

at time ti χ empirical model for the prediction of the 
residuals variance  δi difference between RULi and its expected value 

E[RULi] 
id̂  prediction of di at time ti 

rul i realization of RULi η(ti) empirical model for the prediction of di 

f(zi) prognostic model for the prediction of rul i dj,j’  vector of the degradation states at tj and tj’  

rûl i prediction of rul i ∆tj,j’  rv representing the time interval to evolve 
from dj to dj’  2

ˆ ilurσ  prediction error variance  

2
Aσ  prediction error variance due to randomness in 

the future degradation of the equipment 
)(~

', jjdη  empirical model for the prediction of ∆tj,j’  

',
ˆ

jjt∆  estimate of ∆tj,j’  

2
Bσ  prediction error variance due to modeling error 

', jjt∆δ  difference between ∆tj,j’  and its mean value  
2
Cσ  prediction error variance due to uncertainty in 

equipment degradation data  
r j,j’  prediction residual obtained in correspondence 

of the input dj,j’  

s index of the equipment εj creep strain at time tj 

S
 

number of equipments Q creep activation energy 

Ls 
failure time of the s-th equipment ωj turbine rotational speed 

dth 
failure thresholds K constant relating the load to ωj  

Pr(x) probability distribution function of the rv x R ideal gas constant  

Pr(x|y) conditional probability distribution function of 
the rv x given y 

Tj blade operating temperature at time tj 

jδϕ  stress fluctuations 

µx mean value of the rv x υj creep strain measurement noise 

σx standard deviation of the rv x εth creep strain failure threshold 

g transition function of the degradation state hh
1,01,0 / βα

 

coefficients of the h-th empirical model of 
approach 2/3 γj process noise vector 

2ˆ xσ  estimate of 2
xσ  λγ /2,1,0  

coefficients of the empirical model of the 
residual variance χ of approach 2/3 p index of the Monte Carlo sampled particle 

P number of particles ∆εj,j’  degradation increment from tj to tj’  
p
iw

 
weight of the p-th particle at time ti ', jjz∆  observed degradation increment from tj to tj’  

D dataset made by the observations zi α significance level of the confidence interval 

Di/o dataset of the input/output pairs (siz , s
irul ) )(supinf/ αiC

 
inferior/superior bound of the (1-α)-
confidence interval for the RUL prediction trn/val apex/subscript indicating training/ validation 

sets of data α
confc

 
(1-α/2) percentile of a Student’s t-distribution 
with H degrees of freedom Ntrn/val number of training/validation patterns 
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or the time at which the degradation process starts (degradation initiation). Furthermore, in this work we 

assume that the equipment degradation is caused by a single degradation mechanism, not considering the 

uncertainty on the degradation caused by the onset of other, possibly competing, mechanisms [3]. 

The challenge of managing uncertainties associated with prognostics has been recently addressed in [1-2,4-

5]. Uncertainty management in prognostics entails to identify, classify and analyze uncertainty sources with 

the aim of associating to the RUL predictions provided by a prognostic model an estimate of its uncertainty 

[4-7], i.e., a measure of the expected degree of mismatch between the real and predicted equipment failure 

time. This information, provided in the form of a probability distribution of the equipment RUL, can be used 

by the decision maker to confidently plan maintenance actions, according to the desired risk tolerance [2].  

In this context, the objective of the present paper is to contribute to the way of investigating the capabilities 

of different prognostic approaches to deal with the uncertainty in the RUL prediction. To this aim, the 

analysis is performed with respect to three previously developed approaches [8]. 

A first approach, hereafter named “approach 1”, is based on a mathematical model of the degradation 

process for the RUL prediction [9], embedded in a filtering method capable of accounting for the 

stochasticity of the process (source of uncertainty A) and the noise affecting the measurements (source of 

uncertainty C). Most filtering approaches rely on Bayesian methods and provide the probability distribution 

of the RUL [10-11]. The exact Kalman filter has been largely used in case of linear state space models and 

independent, additive Gaussian measurements and modeling noises, whereas analytical or numerical 

approximations of the exact solution (such as the Extended Kalman filter, the Gaussian-sum filters or the 

approximate grid-based filters [12]) have been applied in cases where the dynamics of degradation is non-

linear and/or the associated noises are non-Gaussian [13]. Numerical approximations based on the Monte 

Carlo sampling technique have gained popularity for their flexibility and ease of design [14-17]. Among 

them, Particle Filtering (PF) is often considered a state-of-the-art technology in the prognostic field and used 

as a term of comparison for newer approaches. The model-based particle filter approach here considered was 

firstly applied to state estimation for diagnostics [18-19] and then applied to prognostics [20-21]. According 

to the particle filtering scheme proposed in [20], the RUL distribution prediction is performed by considering 

the stochastic model of the degradation process and the on-line observations of the equipment degradation. 

In [22], this particle filtering-based prognostic approach is discussed with respect to the design of a 

predictive maintenance strategy, whose advantages are then compared with those of other maintenance 

strategies.  

We consider also two data-driven approaches [23], based on statistical models that ‘learn’ trends from 

historical data. In particular, we consider bootstrap ensemble approaches [24-25], which are based on the 

aggregation of multiple model outcomes and have gained interest due to their ability of estimating the 

uncertainty in the predictions. These approaches allow estimating the model uncertainty (source of 

uncertainty B) by considering the variability in the predictions of the diverse models of the ensemble [24]. 

On the other hand, the estimate of the uncertainty due to the stochasticity of the degradation process (source 

A) and the input noise (source C), requires to investigate the relation between the input and the error of the 
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prognostic model based on its performance on a validation dataset. In what we will refer to as “approach 2”, 

a bootstrap ensemble model is built to estimate the equipment RUL based on sequences of observations of 

evolution to failure of a set of similar equipments operating under similar conditions; in what we will refer to 

as “approach 3”, a bootstrap ensemble model is built based on a sequence of degradation observations only 

of the equipment whose RUL we want to predict. Although approaches 2 and 3 are both based on the 

development of an ensemble of bootstrap models, they differ for the type of model used. Whereas in 

approach 2 we can directly model the RUL as a function of the observed parameters, in approach 3 we have 

to model the degradation evolution as a function of time, since direct RUL observations are not available. 

The three approaches are investigated with reference to the creep growth process in the turbine blades of a 

Gas Turbine Modular Helium nuclear Reactor (GT-MHR) [26-27]. The data used in this case study have 

been numerically simulated using a traditional model of the creep growth. Artificial data have been used in 

order to allow testing the three approaches on a large number of different blade degradation trajectories and 

thus evaluate their capability of correctly estimating the uncertainty on the provided RUL prediction.  

The remainder of the paper is organized as follows: Section 2 presents the terminology used in the paper and 

the problem setting; in Section 3, the decomposition of the prediction error variance into three terms 

corresponding to the randomness in the future degradation of the equipment, the modeling error, and the 

uncertainty in current and past equipment degradation measures is reported; in Section 4, the three 

considered prognostic approaches are described; in Section 5, the problem of blade creeping in high 

temperature turbines is illustrated and the capability of uncertainty management of the three prognostic 

approaches are discussed; finally, in Section 6 some conclusions are drawn and potential future work 

suggested. 

 
2 Terminology and problem setting 

In this work, we assume that the equipment is subject to a single degradation mechanism described as a 

random process; we do not consider the effects that other competing degradation mechanisms can have on 

the equipment degradation. Also, we assume that degradation cannot exceed a maximum acceptable level, 

hereafter referred to as “failure threshold”, dth, which is fixed and identical among similar equipment. Notice 

that in prognostics the failure threshold does not necessarily indicate complete failure of the system, but, for 

safety margins, it is often set at a conservative value of the degradation limit beyond which the risk of 

complete failure exceeds tolerance limits or the performance of the system does not fulfill the requirements 

[28]. Since the failure threshold is usually derived from expert knowledge or from experimental 

measurements of the equipment degradation at failure, its estimate is typically affected by uncertainty which 

contributes to increase the RUL prediction error variance. Methods to deal with the uncertainty on the failure 

threshold have been proposed in [29-30], and, for this reason, this aspect is not considered in the present 

work. 

We indicate by di the equipment degradation level at time ti and we assume that its direct measure is not 

available, but some physical observations zi related to it are obtained. We indicate by z1:i=(z1, z2, …, zi) the 

past and present observations taken at times ittt ...,, 21  for the equipment whose RUL we want to predict. In 
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some cases, also the sequences of observations of evolution to failure of a set of S similar equipments 

operating under similar conditions are available and we will indicate by s
Ns:1z , s=1,…,S, the observations 

taken at times 
sNtt ,...,1  for the s-th equipment whose failure time is sL , where 

sNs tL ≥ . 

The objective of prognostics is the estimation of the equipment RUL, i.e., the time left from the current time 

it  before the equipment degradation, currently of value di, crosses the failure threshold dth. As degradation 

evolves randomly in time, the equipment RUL at time ti is a random variable which will be referred to as 

RULi. Thus, the objective of applying prognostics to an equipment of current degradation level di is to 

estimate the probability density function (pdf) )|Pr( ii dRUL . The uncertainty described by such distribution 

regards the future stochastic evolution of the equipment degradation and, thus, it is irreducible. 

A realization irul  of the random variable iRUL  can be written as: 

 idRULi ii
rul δµ += |  (1) 

where 
ii dRUL |µ  is the RUL expected value of the equipment with degradation di at time ti, and δi is a random 

variable with zero mean and variance 2
Aσ  which represents the uncertainty on the future evolution of 

degradation (source of uncertainty A). 

Furthermore, in practice, the ‘exact’ model, g, of the equipment degradation process is not available (source 

of uncertainty B) and the degradation di at time ti is not exactly known (source of uncertainty C). In this 

setting, the complete distribution of iRUL  cannot be derived and prognostics is limited to estimating: 

• the expected value of RULi 

• the variance of the prediction error as a measure of the accuracy with which the estimated expected 

value predicts the actual RUL value. 

With respect to the estimate of the expected value of RULi, it will be indicated by rûl i and considered as our 

RUL prediction. The prognostic model which generates at time ti the estimate rûl i of RULi on the basis of the 

observations zi will be referred to as f, i.e. rûl i=f(zi). Finally, we indicate by 2
ˆ ilurσ  the estimate of the 

prediction error variance, defined by ])ˆ[( 22
ˆ iilur RULlurE

i
−=σ . 

 

3 Prediction error variance 

According to [24], the prediction error variance 2ˆ ilurσ  can be decomposed into two terms: 2
Aσ , the variance  

related to the uncertainty on the future degradation of the equipment whose degradation at time ti is di 

(source of uncertainty A), and 2 CB+σ , the variance related to the imprecision of the model )( if z  (source of 

uncertainty B) and the noise on the data iz  (source of uncertainty C): 

 ( )[ ] ( )[ ]2
|

2
|

2222
ˆ

)(

])ˆ[(

idRULdRULi

CBAiilur

fERULE

lurRULE

iiii

i

z−+−=

=+=−= +

µµ

σσσ
 (2) 
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In some applications, it can be useful to distinguish the uncertainty due to the modeling error (source B) from 

that due to the noise on the input data (source C). To this aim, we introduce the quantity 
iiRUL z|µ  which 

represents the RULi expected value of a degrading equipment for which at time it  we have the observations 

iz , and we assume that )( if z  is an unbiased estimator of 
iiRUL z|µ .Thus we obtain: 

 

( )[ ] ( )[ ]
( )[ ] ( )[ ]

22

2
||

2
|

2
|||

2
|

2

)(

))()(

CB

dRULRULRULi

dRULRULRULidRULiCB

iiiiii

iiiiiiii

EfE

fEfE

σσ

µµµ

µµµµσ

+=

−+−=

−+−=−=+

zz

zz

z

zz

 (3) 

Combining eqs. (2) and (3), one obtains: 

 ( )[ ] ( )[ ] ( )[ ]
222

2
||

2
|

2
|

22
ˆ

)(

])ˆ[(

CBA

dRULRULRULiidRUL

iilur

iiiiiiii

i

EfERULE

RULlurE

σσσ

µµµµ

σ

++=

−+−+−=

=−=

zzz  (4) 

Notice that these results have been obtained by assuming that the different components of the prediction 

error are independent and thus the expected values ))]()([( || idRULdRULi fRULE
iiii

z−− µµ  and 

)])()([( ||| iiiiii dRULRULRULifE µµµ −− zzz  in eqs. (2) and (3), respectively, are zero. 

 
4 Modeling approaches for RUL prediction 

This Section illustrates briefly the three modeling approaches considered for RUL prediction. 

 
4.1 Approach 1: Particle Filtering 

In approach 1, a Monte Carlo-based filtering technique, called particle filtering [10,12], is used to predict the 

pdf )|Pr( :1iiRUL z  of the equipment RUL at time ti. The prediction is based on the following information: a 

sequence of observations i:1z  related to the equipment degradation at times t1, t2, …, ti, the (observation) 

equation describing the relation between zi and the degradation level di at time ti, the failure threshold thd , 

and the (stochastic) model of the equipment degradation dynamics, e.g., described by a first-order Markov 

process:  

 ),( 11 −−= jjj dgd γ ; 0d ~ )Pr( 0d , ,...2,1=j  (5) 

where  )Pr( 0d  is the initial distribution of the degradation at time 0t , g  is the possibly non-linear state 

transition function and jγ  is the noise vector.  

The estimation of the probability distribution )|Pr( :1iid z  of the degradation id  at time it  given the set of 

observations i:1z  is obtained by a recursive computational procedure divided into successive prediction and 

update stages [12]. In the prediction stage, supposing that the probability distribution function (pdf) 

)|Pr( 1:11 −− iid z  at time 1−it  is available, the transition probability distribution )|Pr( 1−ii dd  derived from the 

model in eq. (5) is used to obtain the prior pdf of the degradation state )|Pr( 1:1 −iid z  at time step it  via the 

Chapman–Kolmogorov equation [12]. In the update stage, the posterior distribution )|Pr( :1iid z  is obtained 
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using the incoming measurement iz  to update the prior distribution via the Bayes rule, based on the 

likelihood function )|Pr( ii dz  defined by the observation equation [12]. The updated posterior probability 

distribution )|Pr( :1iiRUL z  can then be computed as the probability 

]|)(Pr[)|Pr( :1:1 ithiiii dRULtdRUL zz >+=  that the degradation level at time ii RULt +  exceeds the failure 

threshold thd  [20-21,31]. 
The recursive computation of the posterior )|Pr( :1iid z  involves an integral which in practical cases does not 

have a closed-form solution. For this reason, approximated solutions have been proposed, like the Extended 

Kalman Filter, the Gaussian sum filter, and grid-based methods [32-33]. Also, Monte Carlo sampling 

techniques have become of increasing interest. Among these, particle filtering provides a solution by 

approximating the integrals in the Bayesian recursive procedure with weighted summations over a high 

number of samples called particles [10,12].  

The application of the particle filtering procedure to the estimation of )|Pr( :1iiRUL z  is detailed in the 

pseudo-code given in Figure 1. The P particles Pp ,...,1=  are future degradation trajectories built by 

recursively sampling the particle degradation state p
jd  at time jt  from the transition probability distribution 

)|Pr( 1
p
j

p
j dd −  derived from the degradation model, until the failure threshold thd  is exceeded and the length 

of life pL  of the particle is recorded. The value pirul  of the particle RUL at time step it  can then be 

computed from ipp
i tLrul −= . When an observation iz  is collected, each particle is assigned a weight p

iw  

proportional to the likelihood )|Pr( p
ii dz  of observing iz  given the degradation level pid  reached by the 

particle at the time it  [20]. The distribution )|Pr( :1iiRUL z  is then approximated by an histogram of the P 

weighted values p
irul  of the particle RULs at time it ; the weighted average and the weighted standard 

deviation of the values p
irul , Pp ,...,1=  represent the prediction ilur ˆ  of the expected value iRULµ  of iRUL  

and the estimate 2ˆˆ
ilurσ  of the prediction error variance 2

irulσ , respectively.  
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Figure 1: Particle filtering operative procedure for RUL estimation [8]. 
 
The sampling importance resampling (SIR) algorithm is used to avoid the degeneracy problem of the particle 

filtering algorithm, which consists in having all but one of the importance weights close to zero after several 

weight updates [12]. This algorithm requires sampling, after one or more updates of the particle weights, a 

new set of particles from the old one with probability for a particle to be sampled proportional to its weight 

(see pseudo-code in Figure 2). New degradation trajectories have to be sampled starting from the degradation 

state p
id  of each particle resampled at the observation time it  and new values of the particles duration of life 

pL  are recorded. For more details the interested reader may refer to the specialized literature (e.g., [10,12]). 

 

FOR p=1:P 

1. Sample 0d ~ )Pr( 0d  

2. j=0; 0tt j =  

WHILE thj dd <  

3. j=j+1; ttt jj ∆+= −1  

4. sample p
jd ~ )|Pr( 1

p
j

p
j dd −  

END WHILE 

5. Register the particle failure time j
p
f tt =  

END FOR 
FOR i=1:N 

6. Collect the observation iz  

FOR p=1:P 

7. Compute the RUL of the particle i
p
f

p
i ttrul −=  

8. Compute the weights:  

IF 0<p
irul  set 0=p

iw  

ELSE )|Pr(1
p
ii

p
i

p
i dww z⋅= −  

END FOR 

9. Normalize the weights ∑
=

=
P

k

k
i

p
i

p
i wwwn

1

 

10. Build the probability density function of the equipment RUL at 

time it  as the histogram of the P weighted particle RULs p
irul . 

11. Compute )Mean(ˆ p
ii rullur =  

12. Compute )Var(ˆ 2
ˆ

p
i

ilur
rul=σ  

END FOR 
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Figure 2: Procedure for performing resampling at time it  [8]. 

Notice that by this approach the distribution )|Pr( :1iiRUL z  is estimated, which is different from the 

distribution )|Pr( ii dRUL  of the equipment RUL at time ti, given that the equipment has degradation di at 

that time. However, in the Bayesian framework, this is the maximum information we can have on RULi. 

As for the uncertainty in the RUL prediction, in this approach the randomness of the degradation process 

(source of uncertainty A) is described by the model, whereas the observation equation accounts for the 

observation noise (source of uncertainty C). Thus, these two causes of uncertainty are accounted for in the 

RUL prediction through the procedure of particle sampling and weights updating, respectively. On the 

contrary, the contribution of model uncertainty to the RUL prediction uncertainty is not directly considered 

(source of uncertainty B), since it is assumed that the degradation dynamics model and the observation 

equation are exactly known. The effects of this uncertainty on the RUL prediction will be further discussed 

in Section 4.3.1. Notice, however, that if the uncertainty on the model parameters can be quantified and a 

probability distribution assigned to the value of the uncertain model parameter, the PF approach can be 

adjusted to handle also this source of uncertainty [34]. 
 

4.2 Approach 2: bootstrapped ensemble of empirical models trained on sequences of degradation 

observations and life time data  

Approach 2 is based on the development of an empirical model f representing the relationship between the 

degradation observations iz  available at time  and the corresponding equipment RUL. The empirical 

model is built considering the observations of a set of S trajectories s
Ns:1z , s=1,…,S, of similar equipments 

which have each reached failure in a time Ls discretized in Ns steps. The empirical model receives in input 

the observations iz  and produces as output the RUL prediction, ilur ˆ . In order to develop the model, a dataset 

of input/output pairs }:1;1);;{(/ s
s
i

s
ioi Ni,…,S s=rul == zD  is extracted from the set of observations s

Ns:1z  

by associating to the observations s
iz  at time it  along the s-th trajectory to failure the corresponding 

 

At time it  

1. Compute p
irul  and p

iwn  as in Figure 1 
FOR p=1:P 

2. Sample a particle k with probability equal to its weight 
k
iwn  

3. set k
i

p
i dd = , j=i and ij tt =  

WHILE thj dd <  

4. j=j+1; ttt jj ∆+= −1  

5. sample p
jd ~ )|Pr( 1

p
j

p
j dd −  

END WHILE 

6. Register the new particle failure time j
p
f tt =  

END FOR 

7. Assign equal weights to each particle Pwn P
i 1:1 =  

8. Build the RUL probability density function and compute its 

moments ilur ˆ  and 2
ˆ

ˆ
lurσ  as in Figure 1. 

it
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realization of RULi, i.e., iss
i tLrul −= . The dataset oi /D  can then be used to train an empirical model based 

on one among the many data-driven modeling methods existing today (e.g., polynomial regression, non-

parametric regression, neural networks, etc.). In their basic form, these methods provide in output a point 

prediction ilur ˆ  of the RUL without any information on the uncertainty of the estimate [35]. To overcome this 

limitation, the bootstrap method for estimating the accuracy in the prediction of a stochastic output whose 

mean value and variance are unknown functions of the input is used in this work. Under the hypothesis that 

the model  is as an unbiased estimator of 
iiRUL z|µ , i.e., iiRULifE zz |)]([ µ= , the model error 

variance 2
Bσ  can be rewritten as follows [24,36]: 

 

( )[ ]
( )[ ] ( )[ ]
( )[ ]2

2
|

2

2
|

2

)]([)(

)]([)]([)(

)()(

ii

RULiii

RULiiB

fEfE

fEEfEfE

fE

ii

ii

zz

zzz

zz

z

z

−=

−+−=

−=

µ

µσ

 (6) 

An estimate of the model error variance, 2
Bσ , is then obtained from an ensemble of models )|( /

h
oii

hf Dz , 

h=1,…,H trained using bootstrapped replicates h
oi /D  of a training dataset trn

oi /D , drawn from oi /D . Given a 

generic input iz , the models of the ensemble generate H different predictions )|(ˆ /
h

oii
hh

i flur Dz= ; their 

variance is assumed as the estimate )(ˆ 2
iB zσ  of the model error variance )(2

iB zσ  [24,37], whereas their 

average is taken as the best estimate ilur ˆ  of the equipment RUL. 

With respect to the estimate of the remaining part of the RUL prediction variance, which is caused by the 

randomness of the degradation process and the observation noise (sources of uncertainty A and C ), i.e. 

222
CACA σσσ +=+ , an independent validation dataset val

oi /D  is used. In particular, the ensemble of empirical 

models )|( /
h

oii
hf Dz is applied to the observations in the validation dataset val

oi /D . The obtained RUL 

predictions s
Ns

lur :1
ˆ , s=Strn+1,…,S are used to calculate, for each validation observation sval

i
,z , the prediction 

residuals s
ir : 

 )(ˆ)ˆ( ,22 sval
iB

s
i

s
i

s
i rullurr zσ−−=  (7) 

The set of input/output pairs obtained by associating to the observations sval
i

,z , valSs ,...,1= , i=1,…,Ns, in 

val
oi /D  the corresponding residuals s

ir  is used for training an empirical model )(ˆ)( 2
iCAi zz += σχ  of the 

residual variance approximating the unknown relation between the input iz  and the variance of the residuals 

[24,38]. 

When a new observation iz  is collected, the following procedure is applied in order to obtain the estimate 

ilur ˆ  of the equipment RUL and of the corresponding variance 2
ˆˆ

ilurσ : 

• Compute the output h
ilur ˆ  of each models )|( /

h
oii

hf Dz  of the ensemble; 

• Compute the point estimate of the RUL: 

ii lurf ˆ)( =z
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 ∑
=

=
H

b

h
oii

h
i f

H
lur

1
/ )|(

1
ˆ Dz  (8) 

• Compute the RUL prediction uncertainty as follows:  

 )()]|(var[)(ˆ)(ˆˆ /
222

ˆ i
h

oii
h

iCAiBlur f
i

zDzzz χσσσ +=+= +  (9) 

Then, 2
ˆ

ˆ
ilurσ  accounts for all three sources of uncertainty listed in Section 1. 

However, the degradation measurements depend on the entire past trajectory of degradation, which means 

that training and validation data taken from the same trajectory are not independent, causing an 

underestimation of the variance. For this reason, the validation dataset val
oi /D  is made by input/output pairs 

);( s
i

s
i rulz , s=1,…,Sval, i=1,…,Ns, taken from trajectories different from those used in training. Furthermore, 

to ensure enough diversity of the models in the ensemble, the bootstrapped training datasets h
oi /D , h=1,…,H, 

are sampled from trn
oi /D  as follows: first, Strn training trajectories are randomly sampled with replacement 

from the Strn different trajectories of trn
oi /D ; then, trnN  input/output pairs );( s

i
s
i rulz  are sampled with 

replacement from the total amount of input/output pairs in trn
oi /D . 

 

4.3 Approach 3: Bootstrapped ensemble of empirical models trained on a sequence of past 

degradation observations from the equipment of interest only 

Approach 3 is based on the development of an empirical model of the degradation process based on the time 

series of its past observations i:1z  and used for identifying the time at which the degradation will exceed the 

failure threshold. For simplicity of illustration the observations i:1z  are assumed to be direct measures of the 

degradation d1:i, eventually affected by noise. 

The approach differs from approach 1 in that the stochastic model describing the dynamics of the 

degradation process is not available and actually the point is to develop it empirically. Coherently, the 

estimate of the prediction error variance )(2
ˆ ilur i

zσ  should account also for the error of approximation of the 

empirical model. 

The approach differs from approach 2 in that there are no available pairs );( ii rulz  for which irul  is known 

for training and validating the prognostic model )|( / oiif Dz . 

Empirical modeling of the degradation process can be achieved by fitting the most suited degradation model, 

e.g., linear and non-linear regression models, general degradation path models, etc. [39] to the available data. 

Let us call )(ˆ
jj td η=  a generic model of the equipment degradation, derived from the sequence of data i:1z . 

The prediction ilur ˆ  of the equipment RUL at time it  can be simply obtained from the relation 

thii dlurt =+ )ˆ(η . Once again an estimate of the prediction error variance )(2
ˆ ilur i

zσ  is needed, but cannot be 

obtained by means of the method proposed for approach 2 since there are no available pairs );( ii rulz  for 
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which irul  is known, and thus eq. (7) cannot be used to calculate the value of the prediction residual ir  in 

correspondence of the observation iz . 

Let us, instead, consider a model )(~ˆ
',', jjjjt dη=∆  receiving in input a vector of two degradation values 

],[ '', jjjj dd=d  and returning in output the estimate ',ˆ jjt∆  of the time interval needed to reach degradation 

jd  starting from 'jd . Notice that model )(~
', jjdη  can be derived, in general, from model )( jtη : 

 )()()(~ 1
'

1
',', jjjjjj ddt −− −==∆ ηηη d  (10) 

The prediction ilur ˆ  is then obtained from this model by setting ijd z=  and thj dd =' , which means that the 

RUL prediction at time it  corresponds to the estimate of the time interval thit ,∆  needed to increase the 

degradation from id  to the failure threshold dth. 

The relation between the input ],[ '', jjjj dd=d  and the output ', jjt∆  of the model in eq. (10) is:  

 ',',', jjjj ttjjt ∆∆ +=∆ δµ  (11) 

where 
',', ', jjjj tjjt t ∆∆ −∆= µδ  is a zero mean random variable with variance 2

', jjt∆σ  representing the 

uncertainty in the evolution of the degradation process from jd  to 'jd  and ', jjt∆µ  is the mean value of the 

random variable ', jjt∆ . Both 2
', jjt∆σ  and ', jjt∆µ  are, in general, functions of the input ', jjd .  

The observations i:1z  are used to build input/output pairs )];,[( '','', jjjjjjjj ttt −=∆= zzd , 1,...,1 −= ij ; 

ijj ,...,1' +=  and the bootstrapping of approach 2 can be applied to estimate the variance of the prediction 

error of the model in eq. (10) by building training and validation datasets of input/output pairs. As underlined 

in Section 3.2, to avoid underestimating the prediction error, the validation datasets should not contain 

measurements belonging to degradation trajectories used for training. Since only a single trajectory is now 

available, the solution proposed is to partition the dataset D into two sequences of consecutive 

measurements, }{ :1 trnNtrn zD =  and }{ :1iNval
trn += zD  and to use trnD  for building the model )(ˆ td η=  and 

valD  for building the dataset of input/output pairs )};{( '',',/ jjjjjj
val

oi ttt −=∆= dD , 1,...,1 −+= iNj trn ; 

ijj ,...,1' +=  to be used for estimating the prediction error. 

An ensemble of models )|( hh t Dη , h=1,…,H, is trained using bootstrap replicates Dh of the training dataset 

Dtrn, and the ensemble of models )|(~
',

h
jj

h Ddη  is derived from eq. (10). The average and variance of the 

ensemble model prediction are retained as the estimates ',ˆ jjt∆  and )(ˆ ',
2

jjB dσ  of, respectively, the time 

interval ', jjt∆  and the error variance of model )|(~
', Dd jjη . The ensemble of models is applied to the 

validation dataset val
oi /D  in order to obtain a set of prediction residuals ', jjr : 

 )(ˆ)ˆ( ',
22

',',', jjBjjjjjj ttr dσ−∆−∆=  (12) 
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Finally, an empirical model )(ˆ)( ',
2

', jjCAjj dd += σχ , estimating the part of the error variance 2
', jjt∆σ  due to 

the stochasticity of the degradation process and the observation noise (sources of uncertainty A and C), is 

trained using the input/output pairs );( ',', jjjj rd . The sum of the RUL and noise variance equipments, 

)(ˆ 2
iCA z+σ , is then obtained from this model by setting ],[,', thithijj dzdd == .  

Notice that the training data );( ',', jjjj rd  used to build the models cover a range of values for the input ', jjd  

in general different from that of the input ],[, thithi dzd =  to which the model is applied to obtain the 

estimate )(ˆ 2
iCA z+σ . This can represents a limit to the quality of the estimate )(ˆ 2

iCA z+σ , since in general the 

performance of empirical models are good when applied to input regions well described by training data, and 

decrease moving away from these regions.  

When a new observation iz  of the degradation id  is collected at time it , the multiple RUL predictions 

]|[~ˆ ,
h

thi
hh

ilur Ddη=  and the RUL variance estimate )()(ˆ ,
2

thiiCA dz χσ =+  are used to obtain the prediction 

ilur ˆ  and the relative estimate 2ˆlurσ  of the prediction error variance: 

 ∑
=

=
H

h

h
ii lur

H
lur

1

ˆ
1

ˆ  (13) 

 )()]|(~var[)(ˆ)(ˆˆ ,,
222

ˆ thi
h

thi
h

iCAiBlur i
dDdzz χησσσ +=+= +  (14) 

As for approach 2, all three sources of uncertainty listed in Section 1 are taken into account in the estimate 

2
ˆˆ

ilurσ . 

 

5 Numerical application 

The three different approaches presented in Section 4 are verified with respect to the RUL prediction of a 

simulated turbine blade undergoing degradation. The application focuses on the turbine of a generation IV 

high temperature gas reactor, which is characterized by rather extreme turbine operational conditions such as 

working temperatures exceeding 900°C. The predominant damage mechanisms affecting turbines operating 

at such elevated temperatures include creep deformation, corrosion and fatigue [40]. The interaction of these 

and other mechanisms generates a degradation process that leads to crack initiation which rapidly leads to 

failure due to the quick accumulation of stress cycles caused by the high rotational speed. Notice that a 

turbine undergoing this degradation process can experience the loss of its blades, one of the most feared 

failure modes of turbomachinery since it is accompanied by abrupt changes in the power conversion 

equipment and in the reactor flow conditions [41]. Figure 3 shows an example of high-pressure turbine 

deblading occurred in a German power plant [42]. Also, fracture in rotary machines can result in turbine 

missiles, i.e., irregularly shaped projectiles travelling at high velocities which can impact on barriers in 

nuclear power plants causing severe damages to the facilities, and threatening public safety [43]. This and 

the high cost of turbine blade replacement are strong reasons for performing prognostics on creeping turbine 

blades. 



 

Figure 3: Deblading in a high pressure turbine 
 

Indeed, health monitoring and prognostics may allow scheduling maintenance actions before the blade 

degradation evolves into cracks. In this context, 

elongation of the turbine blade in the longitudinal direction with respect to its original length

an indicator of the blade degradation state [

reaches a pre-determined value, namely

below the desired safety limit. In [45

outlined and their possible application to turbine bl

particular, methods measuring blade tip clearance

and the casing [45], appear to be promising for measuring blade plastic elongation. In this respect, the main 

technologies available today are based on capacitive measurements, eddy current or microwave sensing.

Capacitive-based technologies [46-4

monitoring sensors to gas turbines used in the power gener
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: Deblading in a high pressure turbine [42]. 

ealth monitoring and prognostics may allow scheduling maintenance actions before the blade 

degradation evolves into cracks. In this context, the dimensionless quantity ε, defined as

longation of the turbine blade in the longitudinal direction with respect to its original length

an indicator of the blade degradation state [44]. The blade is discarded when the accumulated 

determined value, namely the failure threshold, which assures that the risk of blade failure is 

45] various sensing technologies for measuring blade deformations are 

possible application to turbine blade and disk health monitoring are

blade tip clearance (BTP), which defines the gap between the tip of blades 

appear to be promising for measuring blade plastic elongation. In this respect, the main 

available today are based on capacitive measurements, eddy current or microwave sensing.

47] are already on the market [48-49] and provide clearance and vibration 

monitoring sensors to gas turbines used in the power generation and aerospace industries. 

frequency eddy currents actively induced in passing blades, is tested on field trials 

is demonstrated the capability of generating online clearance measureme

blade. Similar results are obtained in [51] using a microwave sensing system, which is claimed to be capable 

of performing blade monitoring in the harsh environment of the first turbine stages.  

term trends in BTP can be measured and its future application to monitoring 

deformation is anticipated. In [44], the possibility of using BTP in blade failure risk 

analysis and diagnosis is analyzed and a blade prognostic approach based on BTP linear regression is 

a general framework for PHM of turbine blades is proposed, considering blade tip 

other damage indicators such as vibrations, blade angular position, etc.

advancements in blade tip clearance sensing technology, a sufficient amount of data 

for training and validation of prognostic models can be expected to be available in the

notice that the amount of real data necessary to validate the prognostic approaches deve

e-out cross-validation procedure [52]. 
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5.1 Degradation model 

Modeling the degradation of a turbine blade is a hard task, especially if one needs to take into account all 

mechanisms involved and their interactions. For the purpose of this work, we limit ourselves to considering 

the accumulation of creep damage. Creep is an irreversible deformation process affecting materials exposed 

to a load below their elastic limit for a protracted length of time and at high temperatures. In the high 

pressure turbine first stage, blades creep is a major problem due to the high operational temperatures, and is 

often the life-limiting process [53]. Blade elongation, ε, is taken as a measure of the blade creep strain. 

In this work, the creep evolution is modeled using the Norton Law discretized with a step =∆t 5 days, 

assuming that the dependence from the temperature follows the Arrhenius law [27,54]: 

 [ ] tK
RT

Q
A

n
jj

j
jj ∆⋅+⋅









−⋅+=+ δϕωεε 2

1 exp ,     00 =ε  (15) 

where jε  is the creep strain at time jt , Q  is the activation energy, A  and n  are material inherent 

characteristics varying from one blade to another, K  is a constant relating the load to the rotational speed 

jω , R  is the ideal gas constant, jT  is the blade operating temperature and jδϕ  is a random variable 

modeling the fluctuations in the stress applied to a specific blade, which are due to fabrication defects, aging 

and corrosion of the blade, vibrations of the equipment or turbulences of the gas flow. Oscillations of the 

rotational speed jω , and of the blade operating temperature jT , are represented by considering their 

deviations from the mean values ωµ  and Tµ  as noises. In practice, ωµωδω −= jj  and Tjj TT µδ −=  are 

Gaussian random variables with mean values zero and assigned standard deviations. Thus, the noise vector 

jγ  in eq. (5) can be set equal to ];;[ jjjj T δϕδδω=γ . 

The values of the parameters jT , jω  and K  have been set with reference to the helium gas turbine of a Gas 

Turbine Modular Helium Reactor (GT-MHR) developed by an international consortium, with a targeted 

286MWe generation per module [26]; the material inherent characteristics A and n are taken assuming that 

the blade is made of Ni-base cast Superalloy 713LC [26]. The distributions used for the parameters are 

reported in Table II.  

 
Table II: type of distribution, mean value and standard deviation used for the creep growth model parameters 

Variable Symbol Distribution Units 
Parameters of the 
distribution 

Activation energy Q Deterministic kJ/mol Q=290 
Norton Law parameters A Normal (N/m2)-n/day µA=7.2·10-3; σA=5% 
 n Normal - µn=6; σn=0.2% 
Operating temperature Tj Normal K µT=1100; σT=1% 
Rotational speed ωj Normal rpm µω=3000; σω=1% 
Load parameter  K Deterministic Kg/m ρ =1068 
Stress fluctuations δφ

 
Gamma MPa θ=2; k=10

 
 
Eq. (15) represents a stochastic process whose unknowable future evolution (cause A, Section 1) produces an 

irreducible uncertainty in the RUL prediction. Parameters A and n instead represent an uncertainty in the 

model (source B, Section 1). In fact, to a specific blade correspond fixed parameters A and n but their exact 
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values are not known in practice; to include this source of uncertainty in the model, we assume to know with 

a certain precision the range of values of these parameters and associate to them a probability distribution 

(Table II).  

For simplicity, it is assumed that it is possible to directly measure at inspection time tj the value of the creep 

strain εj. Thus, the observation equation is: 

 jjj υε +=z  (16) 

where jυ  is a white Gaussian measurement noise with standard deviation συ=0.02. Then, the likelihood 

)|Pr( p
jj dz  used in the particle filtering approach is Gaussian with mean p

jd  and variance 2
υσ . This noise 

represents a source of uncertainty (source C, Section 1) in the final RUL prediction.  

The failure threshold for creep strain thε  is set equal to the value of 1.5%. 

Given the unavailability of real experimental data, a sequence of creep strain measurements i:1z  on the blade 

of interest, hereafter called ‘test trajectory’, is simulated using eq. (15). The variation in time of the rotational 

speed ω, the gas temperature T and the stress fluctuations δφ are simulated by sampling their values ωj, Tj 

and δφj from the relative distributions (Table II) at each time instant tj. Every 30 days a measurement jz , 

corresponding to the creep strain jε , is simulated by using eq. (16). A total number of 87 creep strain 

measurements have been simulated for a turbine blade with parameters A=3·10-4 and n=6.  

In order to verify the performance of the prognostic approaches, the simulation of the test trajectory has been 

conducted until the time L at which the creep strain reaches the failure threshold. The difference between L 

and the time ti at which the prognosis is performed is the RUL of the turbine blade; it will be referred to as 

“true RUL”, and represented by the notation irul .  

Also, a number S=13 of historical creep growth trajectories of similar blades have been simulated using eq. 

(15). To induce variability in the behavior of the similar blades the values of the characteristic parameters A  

and n  from one blade to another have been sampled from normal distributions (Table II) at the beginning of 

each new simulated degradation trajectory. Some examples of simulated creep growth trajectory are shown 

in Figure 4. 

For each trajectory, a sequence of Ns direct creep strain measurement 
sN:1z , one every 30 days, are simulated 

according to eq. (16).  
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Figure 4: Examples of creep growth trajectories. 
 
5.2 Results 

During the life of the turbine blade, at every time it , the set of observations i:1z  is assumed to be available; 

the objective of the analysis is to predict at time it , i=1,…,87, the RUL distribution for the test trajectory. 

Three situations have been artificially constructed for the turbine blade case study described in the previous 

Section 4.1, corresponding to the three prognostic approaches of Section 3.  

In the PF approach 1, the model of eq. (15) is used to simulate a number 1000=P  of particles starting from 

00 =ε . Particle resampling is performed once every 5 measurements. Note that the particle filter has been 

preferred to the Kalman filter since the distribution of the process noise is not Gaussian as a consequence of 

the combination of speed, temperature and stress fluctuations in the creep growth process described by eq. 

(15). 

In the bootstrapped ensemble approach 2, which uses multiple sequences of degradation observations, 

Strn=10 trajectories among the S = 13 totally available are used for building an ensemble of H=25 linear least 

square models i
hhh

oii
h Dlur zz ⋅+= 10/ )|(ˆ αα , whereas the remaining Sval=3 trajectories are used to validate 

the ensemble and build the training dataset for the least squares model 2
210)( iii zzz ⋅+⋅+= γγγχ  

estimating the RUL variance 2 CA+σ .  

In the bootstrapped ensemble approach 3, which uses the time series of degradation observations, the 

prognostic model has been developed only after time 30t  in order to have available a dataset }{ :1izD =  of at 

least i= 30 direct creep strain measurements. This dataset has been partitioned into a training dataset Dtrn 

containing the first 75% of the available measurements and a validation dataset Dval containing the remaining 

25%. An ensemble of H=25 linear least square models j
hhh

j
h tt ⋅+= 10)|( ββη D  is built and the models 

h
jj

h
jj

h
1',', /]|[~ βη zDz ∆=∆  are derived from it. Notice that in a linear process, the time needed to increase 

the degradation level from jε  to 'jε  is proportional to the degradation increment jjjj εεε −=∆ '',  and does 

not depend on the initial and final degradation values. The ensemble of models is tested on the validation 

dataset made of input/output pairs { }jjjjjjjj
val

oi ttt −=∆−=∆= '','',/  ;zzzD , j=Ntrn+1,…,i-1, j'=j+1 ,…,i 

and the prediction residuals ', jjr  obtained are used to train the linear model ',', )( jjjj zz ∆=∆ λχ  for the 
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variance of ∆t. After time 30t , each time it , i=31,…,87, a new measurement becomes available, a new 

ensemble of models hη~  and a new model χ  for the prediction error variance are built. The predictions h
ilur ˆ  

and the estimate 2ˆ CA+σ  are obtained respectively from the models hη~  of the ensemble and from model χ  in 

correspondence of the input iththi zz −=∆ ε, . Since the data used for training model χ  concern creep strain 

increments which for the first two thirds of the trajectory are smaller than the increment iththi zz −=∆ ε,  

considered for obtaining the prognostic results, the empirical model )( ', jjz∆χ  is used in an input region not 

described by the training data.  

In all three approaches, in correspondence of each prediction ilur ˆ  we estimate the prediction interval 

])();([ supinf αα ii CC , i.e., the interval expected to contain the true RUL value irul  with a probability of 1-α. 

This interval is obtained as follows: 

• In approach 1, )(inf αiC  and )(sup αiC  are the 2/α  and 2/1 α−  percentiles, respectively, of the RUL 

distribution estimated by Particle Filtering. 

• In approaches 2 and 3, assuming that the prediction error has a Gaussian distribution, the value of 

)(inf αiC  and )(sup αiC  can be computed according to the theory of the bootstrap method [24] as: 

 ilurconfii clurC ˆ
inf ˆˆ)( σα α−=  and ilurconfii clurC ˆ

sup ˆˆ)( σα α+=  (17) 

where α
confc  is the 2/1 α−  percentile of a Student’s t-distribution with number of degrees of freedom 

equal to the number H of bootstrap models. 

Figure 5 shows the evolution of the true value rul i of the blade RUL (continuous thick line), its estimated 

value ilur ˆ  (dots) and the corresponding prediction interval for 32.0=α  (continuous thin line) obtained 

during the turbine blade life at times , i=1,…,87, by the three prognostic approaches.  

The prediction intervals provided by approach 3 are characterized by large oscillations and low accuracy, 

especially at the beginning of the trajectory, i.e., when few training data are available. Furthermore, the RUL 

prediction itself is noisy. This effect can be reduced by properly filtering the predictions. To this purpose, 

since the time evolution of the RUL is a linear process ( 1)1()( −−= trultrul ), and assuming a Gaussian 

noise of the prediction, Kalman filtering can be applied [27]. 

 

it
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Figure 5: true ruli (continuous thick line) of a turbine blade, predicted value ilur ˆ  (dots) and prediction interval 

])32.0();32.0([ supinf
ii CC  (continuous thin line) for the three prognostic approaches. 

 
5.3 RUL distribution and prediction interval 

The objective of this Section is to determine whether the estimates of the prediction intervals provided by the 

three approaches properly describe the uncertainty in the RUL predictions. In practice, we want to know 

whether the estimates 2ˆˆ
ilurσ  are satisfactory approximations of the real 2

ˆ ilurσ . According to eq. (4), 2
ˆ ilurσ  can 

be decomposed into the sum of three terms, due, respectively, to the process randomness, 2
Aσ , the model 

error, 2ˆ Bσ , and the noise on the observations, 2
Cσ . It is also of interest to consider the term 222

CACA σσσ +=+

, since all three approaches proposed do not estimate these two terms separately. The computation of the true 

value of 2
ˆ ilurσ  would ideally require the availability of an infinite number P of equipment degradation 

trajectories which at time ti are in the degradation state εi. Since in the case study here considered we can 

artificially generate degradation trajectories, an high number P=1000 of degradation trajectories has been 

used to numerically approximate the variance 2
ˆ ilurσ . For the p-th simulated trajectory, we have computed: 1) 

its true RUL, i
Pp

i tLrul −= , with Lp being the equipment life duration along the p-th trajectory, 2) the 

equipment RUL prediction, p
ilur ˆ , provided by the prognostic model in correspondence of the observations 

p
ii

p
i υε +=z  with p

iυ  a random Gaussian noise with variance 2
υσ . Then, 2

ˆ ilurσ  has been approximated by: 
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Similarly, the computation of the true value of ( )[ ]2
|

2
iRULA RULE p

ii
−= εµσ  is approximated by:  

 ∑
=

−≅
P

p

p
iRULA rul

P ii
1

2
|

2 ][
1

εµσ  (19) 

where the RUL expected value 
iiRUL εµ |  is approximated by ∑

=

−P

p

i
p

P

tL

1

. 

The real value of ( )[ ]2
|

2
iRULCA RULE

ii
−=+ zµσ  has been approximated by considering the P=1000 

equipment degradation trajectories which at time ti are in the degradation state εi and for which the 

observations p
iz  have been collected, and computing: 

 ∑
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+ −≅
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p
iRULCA rul
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p
ii

1
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|

2 ][
1

z
µσ  (20) 

where p
iiRUL z|

µ  has been approximated by simulating P′=1000 new degradation trajectories, each one 

starting from a different degradation state '' p
i

p
i

p
i υε −= z . This procedure allows to propagate the 

uncertainty on the true degradation state given the observation p
ii

p
i υε +=z  to the RUL mean value and to 

approximate p
iiRUL z|

µ  by: 
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iRUL

rul
P

p
ii z

µ  (21) 

Notice that the terms 2
Aσ  and 2

CA+σ  do not depend on the approach. In Figure 6 (left), the true RUL 

distribution )|Pr( iiRUL ε , approximated by the distribution of the 1000 simulated p
irul , is shown at the 

times 51518 == tt i  days, 135546 =t  days and 213573 =t  days, whereas in Figure 6 (right) the true values 

of the standard deviations Aσ  (continuous line) and CA+σ  (dots) are reported as a function of the blade 

creep strain level iε . 
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Figure 6: pdf )|Pr( iiRUL ε  of the RUL of a turbine blade at three different instances of the degradation trajectory (left) 

and evolution of the RUL standard deviations Aσ  (continuous line) and CA+σ  (dots) as a function of the creep strain iε  at 

time it . 

 

Differently from the variance terms 2Aσ  and 2
Cσ , the model error variance term 2Bσ  depends on the 

modeling approach used to estimate the RUL. Considerations on 2
Bσ  will be done in the following Sections 

5.3.1, 5.3.2 and 5.3.3. 

 

5.3.1 Prediction interval provided by the PF approach 1 

The specific blade undergoing the creep degradation process is characterized by fixed values of the 

parameters A and n in eq. (15), which in general are not known. In this Section, in order to evaluate the PF 

performance in the estimate of the prediction uncertainty, the approach is firstly applied assuming to know 

the exact value of these parameters. In Figure 7, the distribution )|Pr( :1iiRUL z  predicted by the particle 

filtering method (left, dashed line) and the estimate of the prediction error standard deviation ilur ˆσ̂  (right, 

dots), are compared to the true RUL distribution )|Pr( iiRUL ε  (left, continuous line) and standard deviation 

CA+σ  (right, continuous line) of Figure 6. In can be noticed that the method supplies an accurate prediction 

of the RUL distribution, and correctly estimates the prediction uncertainty for all values of the creep strain εi. 
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Figure 7: comparison of the pdf )|Pr( iiRUL ε  (left, continuous line) and the standard deviation CA+σ  (right, continuous 

line) with, respectively, the pdf )|Pr( :1iiRUL z  (left, dashed line) and the estimated standard deviation 
ilur ˆσ̂  (right, dots), 

obtained with the PF approach 1, assuming exact knowledge of the parameters A and n. 
 

The more realistic case where the exact values of parameters A and n are not known has then been 

considered. In this case, uncertainty in the prognostic model (source of uncertainty B) is introduced. The 

particle filtering approach 1 handles it by generating particles characterized by different values of A  and n 

randomly sampled from the distributions of Table II. In Figure 8, the true RUL distribution )|Pr( iiRUL ε  

(left, continuous line) and standard deviation CA+σ  (right, continuous line) of Figure 6 are compared to the 

distribution )|Pr( :1iiRUL z  provided by the method (left, dashed line) and the estimate of the standard 

deviation ilur ˆσ̂  (right, dots). 

 

 
Figure 8: comparison of the pdf )|Pr( iiRUL ε  (left, continuous line) and the standard deviation CA+σ  (right, continuous 

line) with, respectively, the pdf )|Pr( :1iiRUL z  (left, dashed line) and the estimated standard deviation 
ilur ˆσ̂  (right, dots), 

obtained with the PF approach 1, assuming to know only the distribution of the parameters A and n. 
 

 

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

RUL [days]

P
r(

R
U

L)

 

 
rul

18

rul
46

rul
73

Pr(RUL
 18

|ε
 18

)

Pr(RUL
 46

|ε
 46

)

Pr(RUL
 73

|ε
 73

)

Pr(RUL
 18

|z
 18

)

Pr(RUL
 46

|z
 46

)

Pr(RUL
 73

|z
 73

)

0 0.5 1 1.5
0

50

100

150

200

250

creep strain εi

σ 
[d

ay
s]

 

 Particle Filtering Estimate σrûl
i

True σA+C

^

 
0 500 1000 1500 2000 2500 3000

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

RUL [days]

P
r(

R
U

L)

 

 rul
18

rul
46

rul
73

Pr(RUL
 18

|ε
 18

)

Pr(RUL
 46

|ε
 46

)

Pr(RUL
 73

|ε
 73

)

Pr(RUL
 18

|z
 18

)

Pr(RUL
 46

|z
 46

)

Pr(RUL
 73

|z
 73

)

0 0.5 1 1.5
0

25

50

75

100

125

150

creep strain εi

σ 
[d

ay
s]

 

 

Particle Filtering Estimate σrûl
i

True σA+C

^



23 
 

It can be noticed that the estimated prediction error standard deviation ilur ˆσ̂  is larger than the actual RUL 

standard deviation CA+σ , especially for low values of iε , due to the model error variance 2Bσ . There are 

two main reasons for which the difference between ilur ˆσ̂  and CA+σ  decreases as the current creep strain gets 

closer to the failure threshold: i) the effect of the variability of the parameters A and n on the RUL 

distribution is lower if the gap between the degradation level iε  and the failure threshold thε  is smaller; ii)  

the SIR particle filtering method selects among the large set of particles initially created with random values 

of A and n those having the values of these parameters closer to those of the specific blade undergoing the 

creep degradation process. 

Figure 9 compares the estimated prediction error standard deviation ilur ˆσ̂  with the true prediction error 

standard deviation ilur ˆσ  for the PF approach 1. The results confirm that, as expected, the PF approach 1 

supplies accurate estimates of the prediction error variance 2
ˆ ilurσ , combining properly the contribution of the 

process stochasticity 2Aσ ,  the noise 2
Cσ  and the model error 2Bσ , described respectively by the degradation 

model (eq. (15)), the observation equation (eq. (6)) and the A and n parameters distributions (Table II). 

 

 

Figure 9: comparison of the estimated prediction error standard deviation ilur ˆσ̂  (dots), with the true prediction error 

standard deviation 
ilur ˆσ  (continuous line). 

 

5.3.2 Prediction interval provided by approach 2 

In order to estimate the real uncertainty affecting the RUL prediction of an ensemble of models, it is 

necessary to add the real model uncertainty 2
Bσ  to the noise and process randomness represented by 2

CA+σ  

(Figure 6, right). The real model uncertainty ( )[ ]2
|

2 ˆ iRULB lurE
ii

−= zµσ  can be approximated by following 

the procedure reported in Appendix A. Basically, M different ensemble models are trained using different 

sets of creep growth trajectories; then, for P′′ test trajectories, the observations '''' p
ii

p
i υε +=z , p′′=1,…,P′′ 

are simulated and the RUL predictions mp
ilur ,''ˆ  collected for each ensemble model m=1,…,M; finally, the 

0 0.5 1 1.5
0

50

100

150

200

250

300

creep strain εi

σ 
[d

ay
s]

 

 
Particle filtering estimate σrûl

i

True σrûl
i

^



24 
 

corresponding errors mp
iRUL

lurp
ii

,''
|

ˆ'' −
z

µ  are computed, and the square values of these differences are 

averaged over the P′′ trajectories and the M models to supply the numerical approximation of 2
Bσ : 

 ∑ ∑
= =

−≅
''

1'' 1

2,''
|

2 ]ˆ[
1

''

1
''

P

p

M

m

mp
iRULB lur

MP
p
ii z

µσ  (22) 

The continuous line in Figure 10 shows the real values of CA+σ  (left), Bσ  (middle) and 
ilur ˆσ  (right) during 

the life of a turbine blade as a function of its creep strain iε . It can be observed that the term )( iCA εσ +  

dominates the term )( iB εσ , except in the very proximity of the failure threshold where CA+σ  goes to zero, 

whereas the model error remains larger due to the uncertainty related to the unknown value of the failure 

threshold. 

The dotted lines in Figure 9 represent the estimates of these quantities provided by the bootstrap ensemble. 

 

 

Figure 10: comparison of the bootstrap estimates (dashed line) and true values (continuous line) of )( iB εσ  (left), 

)( iCA εσ +  (middle) and )(ˆ ilur i εσ  (right) during the life of a turbine blade for different values of its creep strain iε . 

 
The standard deviation CA+σ  estimated by the bootstrap ensemble is significantly larger than its real value. 

As in approach 1, this is due to the fact that the training trajectories have different values of parameters A 

and n and, thus, the empirical model learns the variance of a population of different blades instead of that of 

the specific blade with fixed values of A and n. 

In Figure 10, the estimate of the model error variance 2
Bσ  appears to be not very accurate. Figure 11 shows 

that the inaccuracy can be even more remarkable if other test trajectories are considered, characterized by 

values of A  and n far away from the mean value of their respective distributions ( 4103 −⋅=Aµ  and  

6=nµ ). Notice that the real model uncertainty depends on the test trajectory: the model trained on the 

historical trajectories tends to learn the ‘average’ behavior of the general creep growth trajectory; the 

consequence is that the model makes larger errors when the test trajectory is different from the ‘average’ 
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trajectory. On the contrary, the estimate, 2ˆ Bσ , of the model uncertainty provided by the bootstrap ensemble 

depends only on the value of iε , being independent from the specific values of A and n of the test 

trajectory. 

 

 

Figure 11: comparison of the bootstrap estimates (dashed line) and true (continuous line) values of Bσ  during the life of 

three turbine blades with different values of parameters A and n . 

 
Differently from approach 1, the ensemble approach 2 is not able to learn the true values of A and n of the 

current test trajectory. Furthermore, this limitation of the model is not properly described by the prediction 

interval provided by the ensemble. 

The reason for which the proposed bootstrap approach 2 is not able to correctly model the evolution of the 

error made by the model for a specific test trajectory is that the assumption that the predictive model )( if z  

is an unbiased estimator of the RUL expected value 
iRULµ , is not fully verified. In fact, if we build several 

ensemble models trained with different randomly chosen datasets and perform the RUL prediction with each 

one of them, we notice that the average RUL prediction ilur ˆ  over the different ensemble models is different 

from the RUL mean value computed over a set of creep growth trajectories with fixed values of A  and n. 

This is shown in Figure 12 where the distribution )|ˆPr( iilur z  of the prediction ilur ˆ  obtained at 4.0=iε  by 

several ensemble models is compared to the true RUL distribution )|Pr( iiRUL ε  for 3 different values of 

parameters A and n: 1) -4102.85⋅=A , 5.99=n ; 2) -4103.00⋅=A , 6.00=n ; 3) -4103.15⋅=A ; 6.01=n . 
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Figure 12: comparison of the distributions of the prediction ilur ˆ  with the distribution of the actual RUL of three turbine 

blades with different values of parameters A and n  at 4.0=iε . 

 
On the other side, the models trained on the historical trajectories are unbiased estimators of the RUL of the 

generic turbine blade with random values of A and n as it can be seen by comparing the distribution of the 

RUL prediction ilur ˆ  with the distribution of the actual RUL of a population of turbine blades with randomly 

sampled values of A and n (Figure 13).  

 

 

Figure 13: comparison of the distributions of the prediction ilur ˆ  with the distribution of the RUL of a population of turbine 

blades with normally distributed values of A and n  at 4.0=iε . 
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Figure 14 compares the bootstrap estimates (dots) of )( iCA εσ +  (left), )( iB εσ  (middle) and )(ˆ ilur i εσ  

(right) with their true values obtained for a population of different turbine blades with parameters A and n 

normally distributed. 

 
Figure 14: comparison of the bootstrap estimates (dashed line) of )( iCA εσ +  (left), )( iB εσ  (middle) and )(ˆ ilur i

εσ  

(right) with their true values (continuous line) for a population of turbine blades with normally distributed values of A  and 
n . 

 
These results confirm that the bootstrap approach 2 can actually provide a satisfactory estimates of 

)( iCA εσ + , )( iB εσ  and )(ˆ ilur i εσ  for a population of different turbine blades, and thus the proposed 

approach correctly quantifies the uncertainty of the prediction produced by the prognostic model for a 

generic creeping blade. 

 

5.3.3 Prediction interval provided by approach 3 

Figure 15 shows the analogous results of Figure 9 for approach 3. Notice that good estimates of )( iCA εσ +  

are achieved only for large values of iε , i.e., when a large validation dataset is available and the model 

)( ',iiεχ ∆  is used in the same range of input values where it has been trained. We also notice that the value of 

)( iCA εσ +  is largely underestimated.  
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Figure 15: comparison of the bootstrap estimates (dots) and true (continuous line) values of )( iB εσ  (left), )( iCA εσ +  

(middle) and )(ˆ ilur i εσ  (right) during the life of a turbine blade for different values of its creep strain iε . 

 

To understand the reason for which the proposed bootstrap approach 3 tends to underestimate the model 

error variance in this case, it must be pointed out that, from a probabilistic point of view, the single available 

trajectory used for training the models is only one of an infinite number of possible trajectories, which may 

be drawn from the creep growth process we wish to model. Thus, bootstrap sampling of creep strain 

measurements from a single degradation trajectory does not account for the variability of all possible 

degradation trajectories.  

In the case of a linear process, it is possible to overcome this limitation, by considering, instead of the 

sequence of creep strain measurements iz :1 , the set of independent creep strain increments for time unit 

)/()( 11 jjjjj ttzzz −−=∆ ++ , 1,...,1 −= ij . In this way, the variability of the training data is increased, and a 

better representation of the intrinsic variability of the process is provided. An accurate model of the process 

can still be achieved by estimating the parameters β
h, h=1,…,H, of the models of the ensemble 

h
jjjj

h βεεη /)(~
',', ∆=∆  as the average value of the creep strain increments of the bootstrap replicate hincrD  

of the new training dataset }{ 1:1 −∆= i
trn
incr zD . Figure 16 shows that a more accurate estimate of Bσ  and lur ˆσ  is 

achieved using this new ensemble of models. 
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Figure 16: comparison of the bootstrap estimates (dots) and true values (continuous line) of CA+σ  (left), Bσ  (middle) and 

ilur ˆσ  (right) during the life of a turbine blade for different values of its creep strain iε  obtained using as training data for 

the ensemble of models the creep strain increments between consecutive observations. 
 

6 Conclusions 

Three prognostic approaches have been investigated, particularly with respect to the treatment of the 

uncertainty in the predicted equipment RUL. Quantitative considerations have been made with regards to a 

simulated case study concerning the creep growth process in a high temperature turbine blade. The results 

show that the particle filtering approach provides a good approximation of the exact distribution of the 

equipment RUL in the case in which an accurate model reproducing the equipment degradation process is 

available. A limit of particle filtering is particle impoverishment, which relates to the failure of maintaining 

the diversity of particles and is caused by the resampling approach adopted to avoid particle degeneracy. 

Particle impoverishment implies the impossibility of the particles to correctly represent all possible 

evolutions of the degradation process, which include, for example, changes in time due to the variation of 

operating conditions. In this context, different resampling methods, such as the one proposed in [55], which 

samples particle considering not only the particle weight but also their spatial distribution (state values), can 

be considered. 

When using model-based approaches, imprecision of the model in the reproduction of the degradation 

process due to simplifications, incorrect model structure or assumptions on the equipment specific 

geometries or material properties, etc. can be amplified over time, causing unreliable estimates of the RUL 

distribution. Using particle filtering, it is possible to include model parameters in the state vector and, thus, 

perform model adaptation in conjunction with state tracking. In any case, it is very difficult for a physics-

based model to account for all aspects of a degradation process; for example, it is common to neglect some 

of the interactions between different degradation mechanisms or the possible existence of self-healing 

mechanisms which can reverse the degradation process and are likely to increase the uncertainty of the future 

degradation evolution. All these non-modeled phenomena can be accounted for by adding further noise to 
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the process model which will result in a larger confidence interval associated to the RUL estimate. Further 

research is needed to quantify the impact of modeling errors on the final prediction of model-based 

approaches.  

In the bootstrap approaches 2 and 3 considered, it has been shown that a reliable prediction of the equipment 

RUL with a correct quantification of its uncertainty can be obtained. With respect to the ensemble of 

bootstrapped models trained with historical sequences of observations in approach 2, the main limitation is 

that it is not able to learn the peculiar characteristics of the equipment of interest but it tends to reproduce an 

‘average’ behavior. To overtake this problem, a different modeling approach could be used, such as that 

based on the idea of fuzzy similarity [56], or a procedure for updating the ensemble with the information 

conveyed by new observations [27]. 

The application of the bootstrap ensemble in the time series scheme of approach 3, in which only direct 

measurements of the degradation experienced by the equipment of interest are available, has shown the 

importance of injecting diversity into the bootstrapped models by using independent training data, in order to 

correctly quantify the modeling error. The case study considered is characterized by a linear degradation 

process, so that independent training data can be obtained by considering the creep strain increments 

between consecutive measurements; on the contrary, this would not be feasible for non-linear degradation 

processes. Furthermore, in this case of very little information available, the bootstrap method requires 

building an empirical model for the RUL variance estimate which is then used outside the region covered by 

the training data. Although good extrapolations have been obtained in the linear creep growth case study, the 

feasibility of the approach on more complex models should be verified. 

Contrarily to physics-based models, we expect that data-driven methods can automatically learn from data 

the effects on the equipment RUL of phenomena influencing the degradation process, such as self-healing 

and interactions between different degradation mechanisms. The capability of data-driven methods of 

providing correct estimates of the RUL and its uncertain distribution depends on the availability in the 

training set of examples of the phenomena that we want to represent. 

In this work, the problem of detecting the initiation of a degradation process, which is usually achieved by 

using properly developed diagnostic systems, has not been addressed. Although none of the approaches 

presented in this work requires knowing the exact time at which degradation has initiated, late detection of 

an ongoing degradation process will reduce the number of degradation measures available for prognostics; 

this is expected to reduce the RUL prediction accuracy and increase its uncertainty especially in approaches 

1 and 3 which, contrarily to approach 2, generate their RUL prediction on the basis of past degradation 

measurements. . 

Since only artificial data have been used in the case study considered in this work, conclusions about the 

successful application of these approaches in the field cannot be directly drawn. The analyses performed 

have shown the potential of these methods in performing RUL prediction with adequate management of its 

uncertainty; in this sense, they hold promises for future research aimed at confirming this potential in the 

application to real data.  
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Appendix A: approximation of the model error and prediction error variances 

In the empirical ensemble-based approaches 2 and 3, the true value of the model error variance 2
Bσ  has been 

approximated for different values of the creep strain iε , as the mean square value of the model error 

)(ˆ| iiRUL lur
ii

zz −µ  made by different ensembles on 200 creep growth trajectories sampled for a turbine blade 

with parameters A=3·10-4 and n=6. The details of the procedure are sketched in the pseudo-code of Figure 

1A for approaches 2 and 3.  
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Figure 1A: procedure for approximating )(2
iB εσ  in approaches 2 and 3. 
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