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Abstract

In practical industrial applications, different grmstic approaches can be used depending on the
information available for the model developmenttHhis paper, we consider three different casea: 1)
physics-based model of the degradation procesaikable; 2) a set of degradation observations oeals
on components similar to the one of interest islabke; 3) degradation observations are availahlg for
the component of interest.

The objective of the present work is to developgpuastic approaches properly tailored for thesectopses
and to evaluate them in terms of the assumptiansrdquire, the accuracy of the Remaining Useffd Li
(RUL) predictions they provide and their abilitymoviding measures of confidence in the predididrhe
first case is effectively handled within a parti@ileering (PF) scheme, whereas the second and taises
are addressed by bootstrapped ensembles of enhpiiockels.

The main methodological contributions of this wark i) the proposal of a strategy for selecting the
prognostic approach which best suits the informmasietting, even in presence of mixed informaticurses;
i) the development of a bootstrap method ablesgess the confidence in the RUL prediction in kinel t
case characterized by the unavailability of anyraegtion observations until failure.

A case study is analyzed, concerning the prediaidhe RUL of turbine blades affected by a devilgp

creep.
Keywor ds: Prognostics, particle filtering, bootstrapped emslie, turbine blade, creep.

1 Introduction
Prognostics aims at supplying reliable predictiabsut the Remaining Useful Life (RUL) of a compoinen
system undergoing degradation. This is expectéupoove planning of maintenance actions, increagetys

and lower costs [1] [2].
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Different forms of information and data may be &elale for the assessment of the evolution to failfra
degrading system, e.g., time-to-failure data ofilsinsystems, direct or indirect measures of thgrajgation
states reached during its evolution or during thagion of a set of similar systems under simdperating
conditions, information on exogenous operational @mvironmental parameters, deterministic, emgioca
semi-empirical models of the degradation procets,Depending on the situation, different progiost
methods may be applied [3] [4].

In this work, we consider three practical situasiovith decreasing information available for thegmostic
task, and propose accurate and robust prognostiwatefor each of them.

In general, prognostic methods can be classifiedadel-based and data-driven methods [5]. Modeddbas
methods use an explicit mathematical model of #grablation process to predict the future evolutitiine
degradation state and, thus, the RUL of the syfsénkxamples of degradation models are the nogalin
stochastic model of fatigue crack dynamics [7]dB}he creep growth model based on the Norton &wiih
practice, even when the model of the degradationgss is known, the RUL estimate may be difficwlt t
obtain, since the degradation state of the systagnrmot be directly observable and/or the measurtamen
may be affected by noise and disturbances. In tt@ses, model-based estimation methods aim atiirger
the dynamic degradation state and provide a religbantification of the estimation uncertainty ba basis
of the sequence of available noisy measurementsy lpproaches rely on Bayesian methods [10] [hE]: t
exact Kalman filter has been largely used in cddi@@ar state space models and independent, aelditi
Gaussian noises, whereas analytical or numerigabagmations of the Kalman filter (such as the Exted
Kalman filter, the Gaussian-sum filters or the dvased filters) have been applied in most realcsises
where the dynamics of degradation is non-lineaf@rttie associated noises are non-Gaussian [12].
Numerical approximations based on the Monte Cartoding techniquieave gained popularity for their
flexibility and ease of design [13].

In the first case considered in this work, heregatéerred to as case 1, we have available a stticlraodel
of the degradation process and we know the valdleeofailure threshold, i.e., the maximum degriaat
beyond which the system loses its function. Alsseg@uence of observations of the system degradstaos
are available and an observation equation desdfilga®lation between the observations and thesyst
degradation state. On this basis, a Monte Carled#&bering technique, called particle filteringg), is set-
up to predict the distribution of the system RUId amline-update it when new observations are catec
The proposed approach improves the one previousfyoged in [14] and [15] by taking into account the
uncertainty on the parameters of the model of ggrabtlation process and addressing the particle
degeneration problem by means of the resamplirgrighgn [16].

On the other side, data-driven methods are used ame&xplicit model of the degradation procests n
available, but sufficient historical data have beeltected. These methods are based on statistioaéls
that ‘learn’ trends from the data [1Ti this respect, artificial neural networks areeafused [5] [18] [19];
other examples arkutoregressive Moving Average techniques [20], Ratee Vector Machines [18] [20]

[21], fuzzy similarity-based methods [22]. Recendpsemble approaches, based on the aggregation of



multiple model outcomes, have been introduced dilee superior robustness and accuracy with respect
single models [23] and the possibility of estimgtthe uncertainty of the predictions [24].

In this work, data-driven methods have been deesldp tackle two different situations of informatio
available (hereafter referred to as cases 2 arld 8ase 2, a number of observations of degradation
evolution and the failure times of a set of sim#ggstems operating under similar conditions ardate; in
case 3 only observations of the degradation o$yiseem for which we want to predict the RUL and the
value of the failure threshold are available. Ithboases, the proposed prognostic approaches sed ba
the regression of the system degradation statesimg &n ensemble of bootstrapped models [24] which
allows providing the uncertainty of the estimatddlRcaused by the uncertainty in the data, the béita
of the system behavior and the empirical modelreFimm the methodological point of view, the main
contribution of the present work consists in thprapch developed to deal with case 3 which, diffeye
from case 2, is characterized by the unavailaldftgegradation data until the component failurd, @hus,
of the input (degradation value)/ output (RUL) paised in case 2 for estimating the uncertainti@nrRUL
prediction.

The three cases are studied with reference tordegrowth process in the blades of a helium gdmsne
of a Gas Turbine Modular Helium Reactor (GT-MHR3|[226].

The problem of selecting the most appropriate postio approach in the case in which a mix of the
information considered in cases 1,2 and 3 is dvaiJdnas finally been addressed by comparing the
performance of the three proposed approaches aimyéstigating their sensitivity to the accuracyttod
model of the degradation process and to the ananthaccuracy of the empirical data available.

The remainder of the paper is organized as follamvSection 2 the objectives of the prognosticatgtiare
presented; in Section 3, the sources of informdboiprognostics are discussed; in Section 4,hhestcases
considered are described; in Section 5, the prdgnoethods developed to tackle the three cases are
presented; in Section 6, the problem of blade éngeip high temperature turbines is illustrated émel
prognostic results obtained in the three diffecages considered are discussed; in Section 7 ¢héepr of
selecting the correct approach for specific siaratiof information available is discussed; finaitySection

8 some conclusions are drawn and potential foréuork suggested.

2 Information and data for prognostics
Let us discretize, for ease of exposition, the iooitm time variablé into a sequence of time instanis
i=1,2,... assumed to be equally spaced.

The aim of prognostics is to estimate the Remaihiggful Life RUL; of a degrading system, i.e., the time
left from the current timé; before the system degradation crosses the falueshold. Since degradation
evolution is intrinsically random, the systeRUL; is a random variable and, thus, the objectivepphyang

a prognostic method to a system whose current datiom state isl; is to estimate the probability
distribution gy, (rul; [d;) of RUL; at timet; .

Table | summarizes the main sources of informatipon which prognostics can be based [4]:



A physical model of the degradation mechanism @@#é, Table 1), e.g., described by a first-order

Markov process:
dj =9(dj_1,7-1); do~Pp, (do) (1)

whered; is the degradation state at tirtig, Pp, (do) is the initial distribution of the degradation at

time ty, g is a possibly non-linear function describing th&uezof a one-time-step degradation
increment andy j, j = 12...is a sequence of mutually independent vectorsabé stoises. The modg!
can contain parameters referring to system inhateaacteristics (material, physical, chemical,
geometrical, etc.), which may vary from one induatisystem to another of the same type: this
variability is described by probability distributidunctions. The model can also describe the
dependence of the degradation process from extpanaimeters (environmental, operational, etc.),
which may vary during the system life. Althoughsbgarameters are not directly related to the syste
degradation state, they may influence its evolutitome of these parameters may be directly
observable and measured by sensors, others mafpnetime, there may be a priori knowledge of their
behavior in time or statistical knowledge of thdistribution.

A set of observationgz; , collected at different time instantg , during the life of the system whose
RUL we want to predict (source of information B blal) or of a population of identical or similar
systems (source of information C, Table I). Amolng dbservable process parameters ithere can be
a direct measure of the degradation state of theesy(e.g., depth of a crack fracture, elongaticm o
creeping component, etc.) or they can be only @éudly related to it (e.g., the time of travel oe th
intensity of ultrasonic waves for non-destructimggections).

The value of the failure threshott}, (source D, Table I).

The observation equation (source E, Table I), the. physical model describing the relation between

the observatiorzj containing the values of the observable procesanpeters measured by sensors at

some time instant; and the actual degradation staltg of the system:

zj =h(dj,nj) )

whereh is a known function, in general non-linear, amndis a vector of measurement noises.

The life durationgL¢} S, of a numberS of similar systems which have failed (source Fi&a);

notice that, the actual value of the RUL of #i failed system can be computed at any timelL as

I’ulis = LS _ti (3)



3 Threeprognostic cases with different sources of information
Three cases are considered in this work, in whisetaf measurementg; collected during the life of the

system whose RUL we want to predict (source ofrimttion B) is available in combination with other
different sources of information (Table II).

In case 1, the physical model of the evolutionhef degradation state is known, as well as theiloligiion
and evolution in time of all its characteristic amdernal parameters (source A). Other sources of

information available are the value of the failtheesholdd,, (source D) and the observation equation

(source E) linking the observations with the degteh state. This situation is typical for well ko
degradation mechanisms, such as the crack or greegh processes, which have been widely studied in

laboratory.

In case 2, a set of observatiqizs) S, of S similar systems (source C) and the duration df thes

(source F) are available. This situation is typfoalshort-life systems, for which many trajectsrte failure
can be observed.
Finally, in case 3, the information available ie tibservation equation (source E) and the valtlesofailure

thresholdd,, (source D). This situation can occur in case of veliable systems, e.g., those used in the

nuclear industry, which have a very long life disatand are usually renewed before failure happens.

4 Modeling approaches
This Section illustrates the three modeling appneaaindertaken to cope with the three prognostiesa
outlined in Section 3 (Table II).

4.1 Casel: ParticleFiltering

In case 1, at time; , the current degradation stade is not directly known, but the stochastic system
dynamic model of eq. (1), the observation equatioeg. (2), the sequence bfobservations,; related to
the system degradation state and the value obihed thresholdd,, are available. Thus, instead of
estimating pryy, (rul; |d; )we are forced to restrict our objective to estingathe probability density
function (pdf) pryy, (rul; [z4;, D(t;) <dy, ), conditioned on the observationg and on the fact that at time
t; the equipment has not yet failed, i.B(t;) < dy,,

In this setting, definind>(t; }he random variable which describes the degradatate at time; , it is

desired to infer the unknown pde(tj)(dj | z1;, D(t;) <dy,) of the degradation ; at the future times
t; >t; on the basis of all the previously estimated ittistion of the state valuepD(tozj_l) (dgja121) and

of all the observationg,; . The RUL cumulative probability distributioRgy, (rul; |z, D(t;) < dy,) is

then computed frorrpD(tj)(dj | z4;,D(t;) <dy,) as the probability that the failure threshalg| is exceeded



before timet; +rul; :

Fruy, (ruli]zyi, D(t)) < dy) = Prob®RUL; < rul; |24, D(t;) < dyy)
= PrOb(L _ti < FU|| IZl'i y D(t|) < dth)
= Prob(L <t; +rul; | zy;,D(t;) < dyy) 4)

+00
= IpD(tj=ti+ru|i)(dj | 45, D(t;) < dy,)dd;
den
In the prognostic problem, we resort to PF forneating pD(tj)(dj | 45, D(t;) < dy,) and solving the

integral in eq.(4). In particular, the Sampling bn@ance Resampling (SIR) version of PF is here tadhp

whose analytical details are provided in Appendix A

The SIR PF method is based on sampling a large eufbf trajectories:{d(',fi}kK:l (called particles), by
recursively sampling the state¢ from the transition pdfopt,,,) (d }11 |d}<) which can derived from the

physical model in eq. (1). Then, the posterior pgf;)(d; |z3;) can be approximated as [10]:

K
Pog,) (d; 1Z0i) = D wko(d; —df) (5)
k=1

wherewX is the importance weight associated to the sangite sequen«:nl%;i , k=12,...,.K. The weight

wik can, then, be recursively computed as:

Pz (2 | df)wiy
Wi = (6)
kz Pz (i |dF)wr,
-1

where pz ) (z; |dX) is thelikelihood of the observatiorz,; .
To predict the pdf of the degradation states atréutimest;, j=i+1,+2,..., the prediction stage is iterated
for each particle, by recursively appending thegathtrajectorydy; with a new degradation statel#ﬂ,

dX

%o d}‘ , While keeping the weights fixed to their valus,é calculated at the timg of the last

observation. Indeed, the pqh‘D(tj)(dj |z;;) can be approximated as:

K
pD(tj)(dj |Zai)=ZWik5(dj ‘d}() (7)
k=1



Finally, the pdf pD(tj)(dj | zgi ,d¥ < dy, )conditioned on the fact th@(t;) < dy, can still be approximated
resorting to eq. (7) but taking into account otigge particles whose degradation at times below the
threshold, i.e.d* < dg,. Operatively, this entails setting to zero theghés of these particles and

normalizing the remaining ones, thus getting a setof weightsw.

Notice that the approximated pdf thus obtaineddssarete probability mass function where only the

degradation valluedt‘i(+ru|i assumed by the particles at timer rul; have a finite probability equal to their

weights wX; then, the integral in eq. (4) corresponds tostimation of the weights of the particles whose

degradation at timg + rul; exceeds the threshotd, :

+o0 K
Frul, (rUIi|Zl'i ,di <dy) = j ZWika(dj ‘dtli(”mi )dd;
dy, k=1

8
« (8)
= ZV\I'k H (dtli<+ruli - dth)

k=1

where H(d dy,) is the Heaviside step function.

tli(+ruli B
The application of the particle filtering procedtoghe estimation opRUL,r(ruIi | z4;) is detailed in the
pseudo-code of Figure 1.

Unfortunately, the procedure illustrated suffemirthe so called degeneracy phenomenon: after few

samplings, the weight variance increases and nidked weights in eq. (8) become negligible so that the
corresponding trajectories do not contribute togbiimate of the pdf of interest [10][16]. As aulésthe

approximation of the targeistribution Pry (ful; [z, D(t;) <dy,) becomes very poor and significant

computational resources are spent trying to upgiatiécles with minimum relevance.
A possible solution to this problem is offered hg bootstrap resampling algorithm, which is dethifethe
pseudo-code of Figure 2 [11]. When degeneracy sceug. after few iterations of the weight updating

procedureK samples are drawn with replacement from the swdnpmarticles; theék-th particle is sampled

with a probability proportional to its weight valwg® and the sequence of degradation Sdﬁeuntil time
t; is retained for the resampled partikleand recursively augmented with new degradaticmsda]k;l. The

K resampled particles are then assigned the saméwigiy is assigned to all of them. Then, the filtering

procedure continues with the original trajectordidi§ and the associated weight& replaced by new

trajectoriesd; with weightswf =1/K .



4.2 Case2: Data-driven prognostics based on an ensemble of bootstrapped modelstrained on

degradation and life duration data

In case 2, the information available at tites a set of degradation observatigag, S, taken during

the trajectory to failure o6 similar systems, the duration of their lifé, and the observatiorg; related

to the degradation state of the system of interest.

In this context of information available, we ard able to estimate the probability distribution,

Pru (Tuli [25), of RUL, for a system that at tim is in the degradation stalg. In practice, our
objective is limited to obtain:

1. an estimateul; of the expected valug/g,, of RUL;
2. an estimate&fljli of the variance of the prediction errof, = E[(rdl; - rul;)?]; this quantity can be
interpreted as a measure of the accuracy with wthietpredicted valuedl, is expected to describe

the actualrul; .

The idea is to develop an empirical model:
f(zi)=rdl 9)

of the relationship between the degradation obsiervavailable at timg; z;j, andRUL. This empirical
model receives in input the current observatiprand produces as output the RUL predictinﬂi and an
estimatearzm_ of the variance of the predicted error.

In order to develop the model, a dataset:
Dijo ={{ zFirulf} 5} S, (10)

is extracted from the set of observatinzgN §=1, by associating to the observatiantaken at time;

during thes-th trajectory to failure, the corresponding RUL:
rul$ =Ls —t; (1D
The dataseDj;o can be used to train an empirical model built ggine among the many data-driven

modeling methods existing today (e.g., polynomggression, non-parametric regression, neural nksyor

etc.).



In general, the regression problem can be framéddllasvs: given a set of data paifg;, yi}i'\il, generated

from:
Yi =h(z;) +y, (12)

where y; is the target valueh(z;) the true input/output relation ang a process noise with zero mean and
standard deviatiomfgi (z; .YOur aimis to train a modef(z;) using the datdz;, yi}i'\il, which approximate
h(z;) . According to [24] the developed empirical modah de interpreted as an estimate of the mean
distribution of the target values given an inputtee z; . In this context, Heskes [24] proposed a method, f
providing a measure of confidence in the predictiqaz; ) (see appendix B for a detailed description of the

method). In our application, assumifJL; a random variable with megmg,,. (z; and variance

aéuh (z;), we can write the relationship between p§e8;rul® as}

rul; = try, (zi) +0; (13)

where ug; (z;) is the expected value of the RUL value given theeovationz; andy; is a random
variable with zero mean and standard deviatkjr(zi )= aéuh (z; . Cgmparing eq. (13) with eq. (12) we

havey; =rul; andh(z;) = tryy, (z;) . Accordingly, f(z;) is interpreted as an estimator gkuy (zi) and,
as described in [24], the uncertainty in the prigaiic f (z;) is quantified by the prediction error variance

2
a-l’ljh

(zi) which can be decomposed into two terms:
ok (i) =E[(rdl; —rul;)?] =
=E{ 1 (2) - trwy, @12} + Eftpu, (@) -1l 17} (14)

= Urzn (Zi ) + O-FZQUL' (Zi )

where the ternu 2 (z;) is the model error variance describing the regoassrror made by the model

f(zi) in estimating the true RUL mean valg&uy, (zi), and the terrm%uu (zi) is the RUL variance

caused by the uncertainty on the future degradatiohe system and describing the accuracyai, (zi)
in predicting the targetul; .
Notice that the application of the method descrilefippendix B to the estimate of the model error

varianceo (z;), and the RUL variance%UH (z;) requires the partition of the input/output dataiSet,
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into a training and a validation dataselgy, and DY : the training dataset is used to train the regoass

70 ilo

model f(z;), whereas the validation dataset is used to t¢sf) and collect examples of its prediction

error. Since the two dataseig}, and D}

/o ilo

have to be independent in order to avoid undenesitng the

), we have considered a validation datasﬁ') ={{ z7;rul} i'\isl} Sa made by

i 2
varianceo 2 o

uL, (Zi
input/output pairs taken from trajectories differéom those used to build the training datalSér, .

In practice, the overall approach to estimale and 2. requires to:

rL]|i
 train an ensemble of mod€]$ P(z |Dib,0)} B using bootstrapped replicatés,, of the training
datasetD!T ;
» test the bootstrapped ensemble on the validatitasdtD? to compute the prediction residuals

r2(z9) asin eq. (B4) of Appendix B (witly; =rul®);

» use the set of residuals input/output pé{@s;rz(zf)}iﬁj}ial' to train the modeb((zi):ﬁéw (z; )

describing the dependencezﬁngh (z;) from z; [24][27];

* when a new observatian, about the degradation state of a functioning syssecollected compute

the outputrul? of each models b (z; | DY) of the ensemble;

ilo

« compute the predictiondl;, i.e., the estimate of the RUL expected vajig,, :

B
r(jli :é fb(Zi |D?/O) (15)
b=1

« compute the estimatéz (z;) of the model error variance:
. B ~ 12
Gh(z) =5 X[ 1DY0) -] (16)
b=1

» apply the modely(z;) to the inputz; to obtain the RUL variance estimaﬁtﬂRUh (z;)

* sum up the two variance components to obtain tedigtion error variancerrzm_ ;
I

2
Jl'ljh

(zi)=6&(zi) + I3, (zi)(19)

RUL;

4.3 Case 3. Data-driven prognostics based on an ensemble of bootstrapped models trained on
degradation data only

This case is characterized by the availabilityhef bbservationzs; related to the degradation state of the
system of interest @different measurement time instants up to the atitime t; , the relative observation

equation and the value of the failure thresha)ld Given the observation equation, an estimateef th
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degradation statd; can always be derived from the observatign For simplicity of illustration, we
consider here only a situation where the obsematiois a direct measure of the degradation stite

eventually affected by a zero-mean noise, andnbusirther estimate od; is needed.

The modeling approach proposed in the previous@ediased on the availability of input/output gair

formed by the observatiors and the corresponding RUL value!; , cannot be directly applied to this

case. For this reason, an approach which usesnbeserieszy; of the past observations to build a model of

the time evolution of the degradation process appsed. Notice that the approach differs from tised in
case 1 since the physical stochastic model desgrihie true dynamics of the degradation procesq1¢xjis

unknown and should be replaced by an empiricalroétéstic model derived from the few available data

Coherently, the estimate of the prediction errorarece Urzﬁli (zi) should account also for the error made

when approximating the true degradation proceds tlvié empirical model.
A generic model of the evolution of the degradastate of the system, achieved by fitting the nsaged

degradation model, e.g., linear and non-linearaggion models, general degradation path modelqd28&{c

to the sequence of dam; , can be written as:
d; =n(t;) (17)

Where&j is the degradation value at tirhe predicted by the model.

The predictionrdl; of the system RUL at timg is then obtained from the relation
n(t +radly) =dy, (18)

An estimate of the prediction error variamz%ll (z; cannot be obtained by means of the method proposed
in case 2, since there are no available gaisrul j}ﬂ-\':'l for which ruIJ- is known, and thus the prediction

residuals{r2(z;)} ’j\‘:'l cannot be computed in correspondence of any aftBervationz,; . To overcome

this problem, we consider a model
Afy o =7(d ;) (19)

which receives in input a vector of two degradastatesd; ;. =[d; d;. ]Jand returns in output the estimate

A~

At; ;- of the time interval needed to reach the degradatiated; starting fromd ;.. In general, model

n(d;.;) can be derived from modelt; gccording to:
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Afj,j' :ﬁ(dj,j')zﬁ'l(dj')"7'1(dj) (20)

The predictionrdl; is obtained from this model by setting =z; andd;. =dy,; in this view, the RUL
prediction at timet; corresponds to the estimate of the time inteMa),, needed to increase the
degradation state from; to the failure threshold.;, . Model 77(d; ;) is assumed to be an unbiased

estimator of the mean vaILyeAtj j, (d; ;) of the random variablét the varianceoz (d; ;. )of the

B
difference between the estimaifeédj,j- and Hay, . (d; ;') represents the uncertainty associated to the

model 77 ; the variances?,  of the difference betweepmj j, (d; ;) and the actual target valdg; ;.
1] ) ’ y

represents the uncertainty in the evolution ofdegradation process fromh; to d;.. Being o2, and py

functions of the inputd eg. (12) becomes:

B
O =y, () 055 (21)

whereu; ;- represent a process noise with zero mean andesthddviationagt djj)-
: 9

The bootstrap method used for case 2 and desanb&gpendix B, can now be applied considering,east
of the quantitiesy; , h(z;) and f(z;), the quantities\t, |, My (d; ;) and7j(d, ;.), respectively.

As underlined in Section 4.2, to avoid underestingathe prediction error, the validation dataséisutd not

contain measurements belonging to degradatiorctaajes used for training. Since only a singledcépry is

now available, the solution proposed is to paritive datasezs; into two sequences of consecutive
measurement)™ ={z; } and Dval ={zy,, +1i} - An ensemble 0B models{77°(d; ;)} £ is then
generated by training each model on a bootstrapg@itate Db of D' and validated on validation dataset

DYa derived fromDva! :

DY ={{d;; =[z; z}LAt =lt; DA Ho, (22)

The prediction residuals?(d; ;. gre then computed as in eq. (B4) of Appendix Bieme y; is replaced by

'
At; - and f9(z;) is replaced by7°(d; ;- )and used to build the empirical mod@ftj ) =xd; )

estimating the variancaﬁt, (dj ;) of At ;.. The RUL variancéﬁUk(zi) is then obtained from model
1] ! !

x fed with the inputd; , =[z; dy, ]
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Thus, when a new observatian is collected at time, , the outcomes of the ensemble models are use to

generate the RUL prediction:

1 B
rdl; == 27°(d; )
B o= (23)

and the prediction error variance estimate

B
0%, =5%(@) + TRy, (@) =5 27O (in) =12 + (i) (24)
b=1

Notice that the training data used to build mogtetover a range of values for the inglit ;. in general
different from that of the inpud; , to which the model is applied to obtain the estmfa_%m_r . This

represents a limit to the quality of the estimé%m_r , since the performances of empirical models tend t

degrade when they are applied to input patterranigéig to regions far away from those containirgy th

patterns used to train the model.

5 Numerical application

In this Section, the three different cases preseint&ection 3 are considered with reference to the
prognostics of a turbine blade in which creep damagleveloping [26]. Creep is an irreversible
deformation process affecting materials exposedléad below the elastic limit for a protractedg#nof
time and at high temperature. Notice that a turbimgergoing this degradation process can experigiece
loss of its blades, one of the most feared faifnoeles of turbomachinery since it is accompaniedhbyypt
changes in the power conversion system and inethetar flow conditions [29]. Figure 3 shows an eghan
of high-pressure turbine deblading occurred in end@ power plant [29].

As shown in Figure 4, the uniaxial creep deformationsists in an augmentation of the original lbragid a
reduction of the diameter. In this work, the adigienal quantity, defined as the percentage of elongation
of the turbine blade in the longitudinal directiwith respect to its original length, is consideasdmeasure

of the creep strain.

5.1 Information availablefor prognostics

The main sources of degradation-related informdtonhe creep growth process, listed in Tabledte

further detailed in this Section.

Information A: creep growth model
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Creeping in turbine blades is a stochastic degi@uatrocess which can be modeled through the Norton

Law, assuming that the dependence from the temperéadllows the Arrhenius law [9]:

de _ _g N
Fi AEéxp{ jw (25)

where dg/dt is the creep strain rat€ is the activation energyd andn are material characteristics
varying from one blade to anotheR, is the ideal gas constartt, is the blade operating temperature arid
the applied stress. For simplicity, the blade terapge is supposed equal to the gas temperaturthand

stressy is derived from the rotational speeddf the turbine:

2

r.2—r
¢:p%w2 (26)

where p is the blade density angl,, andry, are the hub and tip radiuses, respectively. Ttatiomal speed

o and the gas temperatufere external parameters depending on the powearget the gas turbine.
For At sufficiently small compared to the time horizortleé analysis (herédt =5 days, with respect to the

time horizon of several thousands), the state spaakel in eq. (26) can be discretized to give:

Ej+1 =& +AE®X[{—%} ;" Dt j+1, & =0 (27)
i

The characteristic parametefsand n vary from one blade to another, whereas the eat@arameters, i.e.,
the rotational speed and the gas temperatufevary continuously in time; all these parameteesaasumed
to have normal distributions. Finally, the fluctioats in the stress applied to a specific bladectviare due
to fabrication defects, aging and corrosion oflitegle, vibrations of the system or turbulencesefgas
flow, are modeled through a random variafideadded to the stregsin eq. (27).

The values and distributions of the parametets, r,,, andr,, have been set with reference to the helium
gas turbine of a Gas Turbine Modular Helium Rea@&¥-MHR) developed by an international consortium,
with a targeted 286MWe generation per module[21g;rhaterial inherent characteristissn and p are

taken assuming that the blade is made of Ni-basteStgperalloy 713LC [25]. The distributions usedtfe

parameters are reported in Table III.

Information B: creep strain measurements
This source of information consists in a sequeriabservationsz;j of creep strain performed on the blade

on which we want to apply the three prognostic apphnes, hereafter called ‘test trajectory’. Gives t

unavailability of real experimental data, in thisnk the creep growth trajectory is simulated usqg(27).
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The variation in time of the rotational speegdthe gas temperatufieand the stress fluctuatiodg are
simulated by sampling their valueg T; anddg; from the relative distributions (Table IIl) at dattme
instantt;. Every 30 days a creep strain measurenggnicorresponding to the creep straip, is simulated

by using eq. (28). A total number of 87 creep straeasurements have been simulated for a turbaue bl
with parameter&=3-10* andn=6.

In order to verify the performance of the prognosipproaches, the simulation of the test trajedtaisybeen
conducted until the timke at which the creep strain reaches the failurestiolel. The difference betweén
and the time; at which the prognosis is performed is the aateislaining useful life of the turbine blade and

will be referred to as “true RUL", and represenbgdhe notatiorrul; (Column 1, Table V).

Information C: historical creep strain measurements

This source of information consists in a numBet3 of historical sequences of creep growth obsiens
from similar blades. In analogy to what is doneifdormation B, the degradation trajectories hagerb
simulated using eq. (27). The variations of therati@ristic parameter8 andn from one blade to another
have been simulated by sampling their values frormal distributions at the beginning of each new
simulated degradation path. Some examples of steditzeep growth paths are shown in Figure 5.

For each trajectory, a numbis of direct creep strain measurement,, , one every 30 days, are simulated

according to eq. (28) (Information E).

Information D: failure threshold
A turbine blade is considered within its usefut lif the creep elongation strain in the longitudigieection

of the turbine blade is less than 1% or 2% ofnial length. Thus, the failure threshold for questraine,,

is set equal to the value of 1.5%.

Information E: measurement equation
For simplicity, we assume to be able to directhaswere the value of the creep strain once everya$8.d

Consequently, the observation equation is:

Zj=¢j +Uj (28)

wherev; is a white Gaussian measurement noise with stdrakaviationog, = 002.

Information F: life duration data

The time step at which the creep strain exceeds the failure threshady, is collected for each of tHg=13

simulated degradatiamajectories and represents the life duratignof the simulated turbine blade.

5.2 Thethreeprognostic problemsand corresponding modeling approaches
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According to the three cases presented in Sectithré&e prognostic problems have been tackled with

respect to the turbine blade case study describtkiprevious Section 5.1. In all cases, the obgof the
analysis is to predict at ting, i=1,...,87, the RUL distribution for the test trajegtoAt every timet;
during the life of the turbine blade, the set of@tvationsz;; is assumed to be available (source of
information B) and the predictions of the RUL igdaped according to the new available informatiam, i
the last observatiog; .

In case 1, the sources of information A, B, D anid Eable IV are available. The patrticle filter Haeen
applied and a numbéy =1000 of particles are simulated starting frarp = 0. Particle resampling is

performed once every 5 measurements. The paridetas been preferred to the Kalman filter sitiee
distribution of the process noise is not Gaussgaa eonsequence of the combination of speed, tatuper
and stress fluctuations in the creep growth prodessribed by eq. (27)

In case 2, sources of information B, C and F inl@ & are availableS,,, =10 trajectories among the

S =13 totally available are used for building an ensendil B = 25 linear least square models

rilb(z; |IDP ) =ab +ap z;, (29)

whereas the remaining,, =3 trajectories are used to validate the ensembléaitd the training dataset

for the model
X(@) =03y, =ty (30)

estimating the RUL varianca%uu (zi).

In case 3, prognostic results are achieved bas#ueosources of information D and E of Table IVetigr
with the information on the test trajectory (souoténformation B). In this case, the prognosticdabhas
been developed only after tintgy in order to have available a datafet{z1;} of at leasti =30 direct
creep strain measurements. This dataset has be#ioped into a training datas@t™ containing the first
75% of the available measurements and a validdadasetDval containing the remaining 25%. An

ensemble of8 =25 linear least square models
nb(t; |DP) = B8 + BP [ (31)
is built and the models

7oAz ;- |DP] = Az ;1 BP (32)
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are derived from it. Notice that, in a linear pregethe time needed to increase the degradatitenfetan £
to &;. is proportional to the degradation increméat; ;» =& —&; and does not depend on the initial and

final degradation states. The ensemble of modeésted on the validation dataset made of inpytldut

pairs

I — —_— o e i |
DYf‘o-[{AZj,j'-Zj' zj; 0 =ty tj},-thmﬂ]j.:jﬂv (33)
and the prediction residualg j; obtained are used to train the linear model

X(Bzj i) =A0zj, (34)

for the variance oi\t. The predictions'ruAIib and the estimatéq%u[_F

are obtained respectively from the model
ensemble7® and from modely in correspondence of the inpdg;, =&y —Z; . This way, the data used
for training modely concern creep strain increments which for the fiwe thirds of the trajectory are
smaller than the incremed¥; , considered for obtaining the prognostic resutighst the empirical model
X(Az; ;) is used in an input region not described by thmimg data.

Finally, the predictiorrdl; and the relative prediction error variance arainigd from egs. (23) and (24).

Each timet; , i=31,...,87, a new measurement becomes availabley &msemble of models is built and a

new RUL prediction is obtained.

5.3 Reaults

Table V reports the RUL predictions obtained bylgipg the three prognostic approaches of casesahd?
3 to a degrading blade. The first row refers toRt#_ prediction performed at timigo = 14#ays on the

basis of the measuremeris,, of the test trajectory, the second to the preaiicfierformed at time

ty, = 2375 days on the basis of the measuremenjs. Column 1 reports the true RUL valuell;
observed for the turbine blade under test, whezelagnns 2 and 3 report the expected valtyg, and the

varianced;,
Ti

of the distributionPr(RUL; | &) . This latter distribution represents the irredieib

uncertainty of the RUL prediction which is causgdliie stochastic future evolution of the creepistra

Pr(RUL | &) has been obtained by simulatifg1000 degradation trajectories all characterizethby

valuesA andn of the blade under test and by a creep steaiat timet;. Notice that the predictionll, of
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the three approaches provide satisfactory estinwdtgs,,,. , whereas in all the cases the prediction error

variancesd?

, tendto overestimattsrrzuIii . This is due to the fact that according to eq),(]ﬁl}?lei takes into

consideration both the uncertainty due to the fusiochastic evolution of the test trajectory repreed by

Jéuu and the uncertainty due to the prognostic modgiassion errov,ﬁ. It is interesting to observe that

an analyst which has to decide the maintenanceyptibe applied to the turbine blade would likdn&ve
the least uncertain prediction of the RUL. Thughia case in which the analyst were in the postiion
choose one of the three prognostic approachesehessuld prefer the one which guarantees the lowest
uncertainty, i.e., the one whose prediction erariance is smaller.

In correspondence of each predictiaih; , it is also possible to estimate the predictiderival Pl @)
Cinf (@) <rul; <C™*(a) , (35)

i.e., the interval expected to contain the true RAdlue rul; with a probability ofl— «a . According to the

three approaches, this interval can be obtaindallasvs:
+ Incase 1C" (a) andC*”(a) are thea /2 and1-a /2 percentiles, respectively, of the RUL

distribution estimated with the particle filteringethod.
« Incases 2 and 3, assuming that the predictiom ba®a Gaussian distribution, the interval can be

computed according to the theory of the bootstraphod [24] as:

N g A n g A
ral; = cgo¢ Orr, <ruly <rdly +c& (g (36)

wherecZ ; is thel-a /2 percentile of a Studenttsdistribution with number of degrees of freedom

equal to the numbeB of bootstrapped models.
Figure 6 shows the evolution of the true valuenefttlade RUL (continuous thick line), its estimavetue

rdl, (dots) and the corresponding prediction intereald = 032 (continuous thin line) obtained during the

turbine blade life at timeg , i=1,...,80. In case three, since a minimum numbeistbhical data must be
available to build the predictive model, the préditis performed only aftdg, Notice that in this case the
prediction intervals are characterized by largéllasions and low accuracy, especially at the beijig of
the trajectory, i.e., when few training data areil@ble. Furthermore, the RUL prediction itselfexy noisy.
This effect can be reduced by properly filtering gredictions. To this purpose, since the timewian of

the RUL is a linear processul(t) = rul(t —1) — ),Jand assuming a Gaussian noise affecting theqpicad
Kalman filtering can be applied [26].

In order to perform a robust analysis of the pen@mnces of the three approaches, the model in @ghés

been used to generate 250 different creep groajictories. For each trajectory, the prognosticcators



19

rdl; (z;) and the confidence interv@l™  (03Bave been computed M, different time steps, once every

150 days, based on the past measurements col@atedevery 30 days.
For each degradation test trajectory, two perfolgeandicators are computed:

1. the mean relative absolute errtfAE:;

1 Ntst
IMAE =—— 3
st i=1]  Tul;

ruli - I’L]Ii I (37)

which evaluates the accuracy of the estimate with respect to the trueul; of the system. Notice
that sincerul; estimates the expected value/df, and not the true value of thel; , this value is

not expected to be zero even for the best possibignostic model.

2. the coverage:

Nst

Cov=

inf . sup
. Ci:{l Cinf (032) <rul; <C*P (032) 38)

tst 1o 0 otherwise

This indicator is used to verify whether the estioraof the prediction intervaPl  (03Zactually

contains with probability 1-0.32=0.68 the true RbfLthe system. Coverage values around 0.68

indicate satisfactory estimation of the predictioterval.

The average valueMAE and Cov of the performance indicators obtained in thedloases over the 250
test trajectories are reported in Table VI.

The best results are obtained in case 1, whidiei®he with the maximum amount of information safali.
In this case the prediction is accurate (low rMABY the uncertainty of the prediction well estirdate
(coverage close to 0.68). The accuracy of the ptiediin case 3 slightly outperforms the one inec2s
although a smaller amount of information is avdéab build the model. This can be explained by
considering that in case 2 the prediction is basekinowledge about the creeping behaviors of alatipn
of similar, but not identical blades, i.e., chaegizted by different values of parametérandn; on the
contrary, in case 3 the empirical model is trainsithg degradation data concerning only the turblade of
interest and thus all training data refer to theesaalues of parametefsandn. To confirm this hypothesis,
in Table VII two cases 1b and 2b analogous to casexl 2 are considered: in case 1b it is assuhatdhe
exact values of parameteksandn are known for each blade, whereas in case 2bapedation trajectories
used to build the training dataset are simulatéugutie same value @f andn considered in the test
trajectory. We observe that the accuracy of theiptien is increased and in both cases 1b and besults

are better than in case 3 given the larger amdunfarmation available.
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6 Different information settings
In the previous Sections, we have considered thadledefined situations of information availabledane
have developed three, properly tailored, progn@giroaches. However, in real applications, ibisigon
to face hybrid situations characterized by thelatdity, at the same time, of multiple sources of
information. Furthermore, since some sources airmétion can be partially inaccurate or affecteddoge
uncertainty, the identification of the correct pnogtic approach to be applied can become a naaltriv
problem. In order to provide some indications & diecision maker, we consider a case in whicthall t
sources of information listed in Table Il are aahle (so that all the three proposed approachebean
applied) and we perform an analysis of the seirisiluif the performance of the three prognostic apphes
to the quality and quantity of the information dahle. To this purpose, we have considered thevatig
indicators of the quality and quantity of the infation:

A. the amplitude of the noise affecting the creeprstmeasurements;

B. the number of past measurements of the curreettmly available for making the RUL prediction;

C. the accuracy of the physical model of the degradatrocess;

D. the number of historical degradation trajectoriesilable.
The performance of the three approaches is evaleatgsidering 250 test trajectories. Figure 7 (uHbeft)
shows the variation of the relative mean squarm ¢tV AE) when the amplitude of the noise affecting the
creep strain measurements is varied from O to NO8ce that, as expected, the performances aifee
approaches decrease as the amplitude of the moigases, and that the third approach is the reasttde
to this parameter.
With respect to the second indicator, Figure 7 éugjght) shows the mean absolute error of the @ggres
when they are applied at different time instantsrduthe evolution of the degradation trajectorfeisice
every 30 days a new measurement is collected,uimber of measurements available for making the RUL
prediction increases as time passes. In this das@erformance is evaluated using the mean alesetudr

(MAE) instead of theMAE which tends to be very noisy at the blade endfef-When the denominataul,
of eq. (37) gets close to zero. The performanappfoach 3 is the most affected by the time at fttie

prognosis is made: the performance is very potiveabeginning of the degradation trajectory, wheryv

few measurements are available for the constructidhe empirical degradation model, but it incesas
significantly as time passes and, finally, whendteep strain becomes close to the failure threshol
approach 3 outperforms the other approaches.

The sensibility of approach 1 to the accuracy effihysical model (indicator 3.) has been estimbyedsing

a biased value in the PF process model of eq.dFarameteA: its mean value has been taken in the range
[2.7 10% 3.6 10"] instead of equal to its true valug=3-10" (Table IIl). Figure 7 (bottom, left) shows that

the particle filtering approach outperforms theepghonly if the available degradation model is very
accurate: an error of 10% in the estimaté g sufficient to decrease approach 1 performaet@bthose

of the other two methods. Similar results have b@®ained varying the values of other parametethef

process model.
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Finally, with respect to indicator 4, we have viexfthe performance of approach 2 varying the nurabe
historical trajectories available for training tpirical model from 2 to 30. Figure 7 (bottom htigshows
that therMSE made by approach 2 decreases when the numbestofibal trajectories increases from 2 to
12 and then tends to stabilize around a value ¢lege to the performance of approach 1.

Considering the results obtained performing thissa®lity analysis, we can provide the followingidelines
for the choice of the prognostic approach: if aedry confident about the accuracy of the avaglabl
physical degradation model, approach 1 should éfeped; on the contrary, if one doubts about tloeleh
accuracy, approach 2 is, in general, the most ateuespecially if the number of historical trageits
available is large. However, if the measuremensencd small, the system is close to failure andyman
degradation measurements have been taken durirogitrent degradation trajectory, approach 3 cawigeo
better accuracy.

When multiple approaches with comparable degrexcdracy are available, an alternative strategleo
choice of the best performing approach consistsércombination of the different approaches outme
This requires the development of a weighting styafer the aggregation of the predictions madehgy t
different approaches, based on their performancteei different situations of information availabier
this, aggregation techniques proposed in literdimrensemble models [23][26] will be considerediin

future work.

7 Conclusions

Different forms of information and data may be &afale for the prognosis of the RUL of a system
undergoing degradation. In this work, we have aergid three practical situations with decreasinguarn

of information available: in the first case the rabaf the degradation process is available, irsgednd case
the model is not available but can be empiricaflyived from a number of observations collectedrdythe
degradation trajectories to failure of similar gyss, in the third case only direct measurementiseof
degradation state reached during the life of tlstesy of interest are available.

In this work, we have discussed the choice of tiogmostic method in different information settings,
considering the accuracy and the ability of pravidineasures of confidence in the RUL prediction of
different prognostic approaches. In the first cdastd case, where a physical model of the degradati
process is available, a particle filtering approhahk been properly tailored to the prognostic nohl
whereas a bootstrapped ensemble-based technigbedaproposed and further developed to estimate th
uncertainty of the RUL prediction in those situasavhere a priori knowledge of the mechanisms and
models of the degradation process are missinggcaaed 3). For this, the prognostic problem hanbe
reformulated, so that it was possible to definaing and validation datasets of input/output pagsessary
for the construction of the prognostic model areldksessment of its accuracy; furthermore, sokition
ensure the independency between these two datesatdeen developed. The merit of the proposed
approach is that it allows producing a confidemterval for the RUL prediction, even when a measiire

the prediction accuracy is not automatically preddy the regression method adopted.



22

The approaches proposed have been tested on stagdgeoncerning the creep growth process in a high
temperature turbine blade. The results show thédt the particle filter and the bootstrapped ensembl
methods provide a reliable prediction of the sysRdL with a quantification of its uncertainty, tparticle
filter being the best performing method.

With respect to the ensemble of bootstrapped madeteed with historical measurements of the deatiad
process in similar systems, the main limitationh&f method is that it is not able to learn the pacu
characteristics of the system of interest butritigeto reproduce an ‘average’ degradation trajgcicy
overtake this problem, a different modeling apphoemuld be used, such as that based on the ideazy
similarity [22], or a procedure for updating thesemble with the information conveyed by new obstrna
could be implemented [26].

For the application of the ensemble to the last cimswhich only direct measurements of the dedrada
state reached during the life of the system ofrésteare available, the bootstrap method requindgibg an
empirical model for the RUL variance estimate whithen used outside the region covered by tlieiriga
data. Although good extrapolations have been obthin the linear creep growth case study, the tbddagi

of the approach on more complex models should Léede

Finally, we have investigated how the performanfcthe three proposed approaches varies dependitigeon
guantity and quality of the available informatidihis sensitivity analysis has driven the developnoéma
decision making policy for the identification oftlprognostic approach which best suits the infaomat

setting, even in presence of mixed information sesir
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Appendix A: Particle Filtering

Given the first-order Markov process in eq. (1) arget of observationg;; related to the equipment
degradation state; by eq. (2), we aim at predicting the filtered jgostr pdf pp ) (d; | zy;) attimet; .
Within a Bayesian framework, the filtered postepdf pD(ti)(di | z4;) is recursively computed in two
stages: prediction and update [16][31]. Given tie pp; ) (di—1 |Z3;-1) attimet;_y, the prediction stage
involves using the transition probabilityp ) (d; |di—;) defined by the system equation (1) and the known

distribution of the noise vectoy;_; to obtain the prior probability distribution ofelsystem statd; at time

t; via the Chapman-Kolmogorov equation:
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pD(ti)(di | Z3i-1) =J pD(ti)(di | di1,21i4) Pot_y) (di1|Z354)ddi4 (AD)
= [ Pog) @ 1dis) Po, ) (dig | Z354)ddi4
where the Markovian assumption underpinning théesysnodel (1) has been used.

At time t;, a new observatiog; is collected and used to update the prior distidinwia Bayes rule, so as to

obtain the required posterior pdf of the curreatestl, [33]:

Poc) (di 1Z1i-1) Pzt (i [d;)
Pot) (di [245) =— : A2
P Pz(t)(Zi 1Z2i-1) (A2)

where the normalizing constant is
Pz(t)(Zi [ Z1i-1) =IpD(ti)(di | Z3-1) Pz, (z; | d; )dd; (A3)

The recurrence relations (A1) and (A2) form theibésr the exact Bayesian calculation of the pdf
Po,) (di [2y) attimet; .

Unfortunately, except for a few cases, includingeéir Gaussian state space models (Kalman filtet) an
hidden finite-state space Markov chains (Wohnater)i] it is not possible to evaluate analyticalhege
distributions, since they require the evaluatiomahplex high-dimensional integrals.

An alternative and effective approach is that gbréng to Monte Carlo sampling methods for int¢igra

This solution is based on sampling a large nuntbef trajec:tories{d('gi}kK=1 (called particles), from a

suitably introduced importance functiog(dy, |z4;). In the following we briefly describe how these

simulated trajectories can be utilized for filtgriout the unobserved trajectory of the real dediala
process. For more details, one can refer to theiapeed literature, e.g., [11] and [16].

The posterior probabilitypp, ) (d; |z; e wish to calculate is the marginal of the prolitgb
Po,,) (i 121) . i.€., the multiple integral of this latter witaspect tod,,, d;,...,d;_y in [~ e, ], which

may be formally extended to include also the vagiah by means of &-function, viz.,
Poe) (@i 1Zai) = [ Pogy,_y) (doi-g,U122)3(d; —u)ddg_ du (Ad)

Then, by using the large number of trajectori{er‘.so":i}kK=1 sampled from the importance function

q(dg; |z4i) , the integral can be approximated as [10]:
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Pp(ty;_,) (doi-1,UZ1:)
q(dgi—1,U]2y;)

Po) (di|Z0i) = I ok - U)}Q(d(xi—l ,U|zy)ddg;du

(A5)

=

|-

K
> wika(d; —dk)
k=1

where wX is the importance weight associated to the statmemcel(';i, k=12,....K, sampled from

q(dg; 1z4;) and is given by

K — pD(ti)(déi |24;) _ Pz, (Zyi |déi)pD(ti)(dléi)
| q(d&; |zy) pz(ti)(zri)Q(déi |24)

(A6)

Typically pz)(z1) cannot be expressed in closed form. However, 0] [t is shown that the

approximation in (Ab) is equivalent to:

K ik K
Po,) (Gi[Zei) = D ~——(d; —dk) = 3" wka(d; —d¥) (A7)
Yk k=1
k=1

where WX andwk are, respectively, thennormalisecandnormalizedmportance weights:

K = Pz() (21 |d6(_i)pD(t0:i)(déi) e wk

' K W = (A8)
a(dg; |2) K.
(0] i ZWi K
k=1
It is often convenient to choose the importancesiigmo be the transition probability:
q(d¥ |244) = Ppg,) (AF [d,) (A9)

so that the importance function factorizes as feflo

q(dg; 1221) = Pogy,) (A€ 1d%1) Po ) (A6i-1 1 Z2i4) (A10)
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and one can obtain samples by augmenting eacte a@xilsting one?.ll'gj_l with the new statelX sampled
from pD(ti)(dik |dk,).

Using the Bayes rule, the hypothesis of Markoviawoit the process and the fact that the observation
depends on the stath only, i.e., pz¢)(zi |d§) = Pzt (zi [d¥), the wightswk defined in eq. (A8) can

be rewritten as (details of the calculations caffolbi@d in [16]):

K = Pz (2i |dik)pD(ti)(dik |d¥,) Pz (ty;-) (234 1d&-1) PD (ty;1) (d&—1)
I Pp(t) (dX |dik—1) Pty ) (dléj—l 1Z35-1) (A11)

= Pza) (Zi | df)wk,

where pz . (z; |d¥) is thelikelihood of the observatiorg;, which can be derived from the observation
equation (2).

The resulting normalized weightsk are then:

Wk = Pz (Zi |d<)wk,

Y. Pzt (zi [dF)we,
k=1
Appendix B: Bootrapped ensemble-based estimate of the prediction uncertainty
Assume we are given a set of data pgis yi}i’\il, generated according to
Yi =h(z;) +y; (B1)

where y; is the target valueh(z;) true input/output relation and a process noise with zero mean and

standard deviatiomfj (z; .)When we train a model (z;) on such data, our aim is to approximéa(e; ) ;

such a model can be interpreted as an estimake ahéan distribution of the target values giveimant

vector z;. In many practical application, all the more imgmostics, it is highly desirable to have a measure

of confidence in the predictiofii(z;) . As described in [24] the uncertainty in the petidn f(z;) is

guantified by the prediction error varianoc% (z;) which can be decomposed in two terms:
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02(z;))=El(f(z;) - yi)2]=
=E{ f(z) - hz )12} + E{hz) - v 12} (B2)

=Ur%(2i)"‘03i (zi)

where the ternu2 (z;) is the variance of the distribution 6f(z;) - h(z;) and is concerned with the
accuracy of the modet (z;) in estimating the true functiohn(z; ) , whereas the tern:rji (z; iy the variance
of the distribution ofy; =y, —h(z;), and is concerned with the accuracyh¢z;) in predicting the target

y, itself.

To generate an estimate @ (z;) one can resort to a bootstrapped ensemble of mpée(z;)}2., built

on bootrapped replicates of the original set ofgtirs{z;, yi}r’le. These replicates are obtained by
randomly sampling with replacemexitdata pairs from the original dataset. As derive[8#i, the

bootstrapped outpufsf P(z;)}£, provide us with the empirical estimate of the riittion of
f(z;) —h(z;) . This estimate is given by the distribution bfz;) - f b (z;), where f b(z;) is the average

value of the prediction§f °(z;)}£., and is retained as the estimate of the true fondt{z;) to which we

have no access. Thus, under the hypothesisfthé; ) is an unbiased estimator bfz;) and that the

distribution f (z;) —h(z;) is Gaussian (see [32] for more details), the terfy(z;) can be estimated as

52(2) =L Y [10(z) - T5(z)]? (B3)
b=1

To estimate total varianoe? (z;) , we need to build a model that provide an estirf@téne noise term

aji (z;) in correspondence of an inprt. Such a model is found by fitting the residuals

{r2(z) =Ly - 12(z)12 - oA}, (B4)

which should be calculated on a validation datdg&trent than the training set to avoid overfigtiand

underestimating of the variane:eg (z; . In other words, we train a modglz;) on the set of input output

pairs{z;,r2(z;)}\.; by maximizing the loglikelihood function

N 1 ra2(z;)
= log| ————exp - B5
LL i;og[\/gw(zﬂex;{ 2/\/2(2;)JJ (BS)
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written under the hypothesis that the residudl&z;) have a Gaussian distribution with zero mean and

variance which can be shown to be equairgo(zi C)

Elr2(z)=E{y - f(z)]? -0&(z)}
=E{[y; - f(z)]? -0&(z)

B6
:U?(Zi)‘a%(zi) (86)
= U[j (zi)
where eq. (B2) has been used in the last equivaleheq. (B6).
Finally, the prediction error variance in correspence of the inpug; can be approximated by:
A A B -
0%(z)=04(z;) +03i (z)) ={%Z[fb(zi) - f b(Zi)]z}"‘)(Z(Zi) (B7)
b=1
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Figures

FOR k=1:K
1. Sample d, ~ p(dy)
2. 3=0; fj =t
WHILE d, <d,

3. j=3j+1; fj =1 + At
4, sample djk ~ p(djr I(J’;-‘_l)
END WHILE
END FOR
FOR i=1:N

5. Collect the observation z;
FOR k=1:K

6. Compute the weights:
IF dlk <0 set ";’5':0

ELSE wf =wk, -Pr(z; |d})
END FOR

K
7. Normalize the weights wrrf =wf/£wf
k=1

8. Build the cumulative density function of the
system RUL at time /; as:

Frur, (rut;) = %wf with k| dt’f+11d, > dy,
END FOR

Figure 1: Particle filtering operative procedure dstimation of the RUL cumulative distribution.

At time

1. Compute wn,-k

as in Figure 1
FOR k=1:K

2. Sample a particle u with probability equal
to its weight wn}

. set df =d! j3=i and ;=1
WHILE d; < dy,

5. sample df"-Pr(df |d§_l)
END WHILE

END FOR
6. Assign equal weights to each particle wn,LK =I/K
7. Build the cumulative density function of the

system RUL at time /; as:

" - k : .
FRUIf (f"li)—%“ri with & |dff+l‘lli, >a‘rh

Figure 2: Procedure for performing resampling aett; .

29



Figure 3: Deblading in a high pressure turbine [30]
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Figure 4: Schematics of a specimen before and afteeep testhftp://www.twi.co.uk/content/jk69.htrl
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Figure 5: Examples of creep growth paths.
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Figure 6: true RUL (continuous thick line) of a tumd blade with its predicted valueili (dots) and prediction interval (continuous
thin line) for the three prognostic cases.
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Figure 7: performance of the proposed approachégferent settings of information available. Thertical (red) line indicates the
value assigned to the parameter in the numerigdicapion of Section 5.
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Tables
Tablel: main sourcesof infor mation for prognostics
Sour ce Description M athemangal
representation
A Dynamic model of the degradation proc eq.(L
B Sequence of observations related to the degradatithe system PAT
collected atj =12,....i
Historical sequences of observations related taléggadation of a Zing 1S
C set ofSfailed systems collected bl time instantstj ; s=1,....S
=1, 0N
D Value of the failure threshc din
E Measurement equati eq.(2)
S
F Durations of lives of the set Sfailed system:s. L, s1,...8
Tablell: information available in each of the three prognostic cases consider ed
Sour ce of information Casel Case?2 Case3
A Dynamic model X
B Current observations’ sequence X X X
C Historical observations’ sequences X
D Failure threshold X X
E Measurement equation X X
F Life duration data X

Tablelll: type of distribution, mean value and standar d deviation used for the creep growth model parameters

Parameters of the

Variable Symbol Distribution Units o
distribution
Activation energy Q Deterministic kJ/mol Q=290
Norton Law parameters A Normal (N/nf)"/h ws=310" 6,=5%
N Normal - Un=6; 0,=0.2%
Operating temperature Ti Normal K #1=1100;07=1%
Rotational speed I Normal rpm 1,=3000;0,=1%
Density P Deterministic Kg/m 0 =8000
Hub radius Mhub Deterministic m Mo =0.7
Tip radius ltip Deterministic m ryp =0.87
Stress fluctuations op Gamma MPa 6=2;k=10

TablelV: main sources of information for prognostics of a creeping turbine blade

Mathematical

Sour ce Description )
representation

A The creep growth model and the distributions ofrttoelel eg. (27) and Table 11l

parametel
B Measurements of the creep strain of the curremdgping blade Z1i =& + Up
taken ai different time instantt;
C Historical measurements of the creep strain ot afseblades z;‘,NS ,s=1,...5
failed for creeping, taken N different time instantt;

D The value of the failure threshc dip, = &n

E The measurement equation and the noise distrik eq. 28) and Pr(g,)

F The length of lifeL® of the set oSfailed blade:s L% s=1,...S
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TableV: estimatesof g, and Urzul- at time tg, =1475(first row) and tg, = 2375 (second row) in thethree
|

prognostic cases consider ed.

Case 1 Case 2 Case 3
t rul; Hruy, JI%UL; ral, &rzali ral, &rzmi ral, é—l?ﬁli
1475 1110 1092 90 1085 107 1079 109 1075 238
2375 210 264 42 247 45 167 63 248 57

Table VI: prognostic performancein the three prognostic cases considered

rMAE Cov
Casel 0.150+0.009 0.663+0.018
Case?2 0.172+0.009 0.613+0.019
Case3 0.170+0.009 0.682+0.014

Table VII: prognostic performancein case 1 when parameters A and n are assumed known and in case 2 when parameters A
and n are kept constant for all historical training trajectories

rMAE Cov

Case 1b 0.135+0.009 0.669+0.019
Case2b 0.145+0.007 0.623+0.016




