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Abstract  

Expert knowledge is an important source of input to risk analysis. In practice, experts might be 

reluctant to characterize their knowledge and the related (epistemic) uncertainty, using precise 

probabilities. The theory of possibility allows for imprecision in probability assignments. The 

associated possibilistic representation of epistemic uncertainty can be combined with, and 

transformed into a probabilistic representation; in the present paper we show this with reference 

to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic 

computational framework for the joint propagation of the epistemic uncertainty on the values of 

the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use 

possibility-probability (probability-possibility) transformations for propagating the epistemic 

uncertainty within purely probabilistic and possibilistic settings. The results of the different 

approaches (hybrid, probabilistic, possibilistic) are compared with respect to the representation of 

uncertainty about the top event (limiting relative frequency) probability. Both the rationale 

underpinning the approaches and the computational efforts they require are critically examined. 

We conclude that the approaches relevant in a given setting depend on the purpose of the risk 

analysis, and that further research is required to make the possibilistic approaches operational in a 

risk analysis context. 

 

Key words: risk analysis; epistemic uncertainty; fault tree analysis; possibility-probability 

(probability-possibility) transformation  
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1. INTRODUCTION  

In engineering risk analysis, a distinction is commonly made between aleatory (stochastic) and 

epistemic (knowledge-related) uncertainty (1,2,3). Aleatory uncertainty refers to variation in 

populations. Epistemic uncertainty refers to lack of knowledge about phenomena, and usually 

translates into uncertainty about the parameters of a model used to describe random variation. 

Whereas epistemic uncertainty can be reduced, aleatory uncertainty cannot, and for this reason it 

is sometimes called irreducible uncertainty (3). 

 

Limiting relative frequency probabilities are typically used to describe aleatory uncertainty, and 

subjective probabilities have traditionally been used to describe epistemic uncertainty. (In the 

following, probability refers to the limiting relative frequency concept whenever preceded by the 

term frequency, and to the epistemic/subjective concept whenever used alone.) For example, 

NUREG-1855 (4), which provides guidance on how to treat uncertainties associated with 

probabilistic risk assessment (PRA) in a risk-informed decision-making context, states that 

(epistemic) parameter uncertainty in PRA may be described using subjective probability. 

However, several alternatives to probability as representation of epistemic uncertainty have been 

suggested. These include imprecise or interval probability (5,6,7,8,9), probability bounds (p-box) 

(10,11), fuzzy set theory (12,13), fuzzy probability (14), the theory of possibility (15,16,17) and the theory 

of belief functions (18), also known as evidence theory or the Dempster-Shafer theory of evidence. 

 

Specifically, it has been suggested that a possibilistic representation of epistemic uncertainty may 

be more adequate when sufficiently informative hard data are not available for statistical analysis 

and thus one has to resort to information provided by experts, mostly of qualitative nature. 

Indeed, expert statements are an important source of input to risk analysis. However, an expert 
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often does not have sufficiently refined knowledge or opinion to characterize epistemic 

uncertainty in terms of a probability (distribution). In these cases, the two measures of likelihood, 

namely possibility and necessity measures, offered by the possibility theory may be interpreted as 

lower and upper probabilities in the representation of imprecision in the experts' probability 

assignments. 

 

The possibilistic representation of uncertainty can both be combined with and transformed into 

the traditional probabilistic representation. In this respect, an integrated ('hybrid') computational 

framework has been proposed for jointly propagating probabilistic and possibilistic 

representations through a model (19). This framework has previously been tailored to event tree 

analysis (20) and fault tree analysis (21), allowing for the epistemic uncertainties on basic event 

frequency probabilities to be represented and propagated using both probability and possibility 

distributions. 

 

Furthermore, procedures for the transformation from a possibilistic representation to a 

probabilistic one, and vice versa, have been suggested (22). The transformations are not one-to-

one, and going from possibility (probability) to probability (possibility) some information is 

introduced (lost) in the transformation procedure. However, certain principles can be adopted so 

that there is minimum loss (introduction) of (artificial) information. 

 

In the present paper, we extend the previous work on the hybrid procedure by applying some of 

the possibility-probability (probability-possibility) transformations of the literature. The different 

results obtained are then compared, focusing on the representation of uncertainty about the top 

event frequency probability, in relation to the rationale of the approaches as well as the 
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computational efforts required. More broadly, the purpose of the paper is to review available 

options of epistemic uncertainty representations and evaluate their rationale and appropriateness 

in relation to risk analysis. 

 

To keep the analysis simple and thus retain a clear view of each step, the object of study is a fault 

tree with only two basic events linked to the top event through an OR-gate. We then avoid that 

computational challenges related to FTA (see e.g. (23,24)) interferes with the analysis. The basic 

events are assumed to be independent and to have unknown frequency probabilities of 

occurrence. Uncertainty about one of the basic event frequency probabilities is described 

probabilistically, and uncertainty about the other possibilistically. 

 

In a fault tree analysis case study (25) with a similar objective as the present paper, uncertainty 

quantification based on Dempster-Shafer theory is explored when some model parameters are 

assigned probability distributions and the remainder fuzzy membership functions. The 

representation and propagation of uncertainty about basic event frequency probabilities  in fault 

tree analysis using evidence theory is considered in (31). In (27,28,29) basic event frequency 

probabilities are treated as trapezoidal fuzzy numbers and the extension principle is applied to 

compute the frequency probability of occurrence of the top event. In order to deal with repeated 

basic events in fault tree analysis, a simple method for fuzzy fault tree analysis based on the α-cut 

method, also known as resolution identity, is presented in (30). A formal probabilistic (Bayesian) 

procedure for the use of expert opinions in the context of fault tree analysis is presented in (25) 

assuming expert input in the form of means and standard deviations of lognormally distributed 

failure rates. 
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The remainder of the paper is organized as follows. In Section 2, the fault tree studied is 

described. In Section 3, a brief review of the computational procedure for the integrated (hybrid) 

probabilistic and possibilistic propagation of epistemic uncertainty in the fault tree is described. 

In Section 4, the possibility-probability (probability-possibility) transformations considered are 

described. In Section 5, the results of the fault tree analysis using the hybrid and transformation-

based approaches are presented. Section 6 offers a discussion of the results and some 

conclusions. 

 

2. FAULT TREE AND BASIC EVENT UNCERTAINTIES 

We consider a simple fault tree comprised of two independent basic events, B1 and B2, linked to 

the top event A through an OR-gate (Figure 1). 

 

 

Figure 1 Simple fault tree. 
 

Letting q denote the frequency probability of the top event, and qi the frequency probability of 

basic event i, i = 1, 2, we have 

ݍ  = 1ݍ + 2ݍ −  (1)  .2ݍ1ݍ
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We assume that the basic event frequency probabilities q1 and q2 are uncertain, and that 

uncertainty about q1 is described using a beta probability density p1 with parameter values α and 

β as specified in Table I (see also Figure 2), while uncertainty about q2 is described using a 

triangular possibility distribution π2 with lower support limit b, core c and upper support limit d 

as specified in Table I (see also Figure 3). Three cases are considered: high, medium and low 

uncertainty (Table I). The distribution parameter values have been chosen to obtain distributions 

which clearly reflect increasing uncertainty when going from the low to high uncertainty cases. 

The probability distributions have increasing entropy, and the possibility distributions all have the 

same core value and overlapping support intervals of increasing size. 

 

Table I Beta probability density parameters (α, β) and triangular possibility distribution parameters (b, c, d). 

 α β b c d 
High uncertainty case 1 2 0 0.2 1 
Medium uncertainty case 5 20 0.05 0.2 0.5 
Low uncertainty case 50 200 0.10 0.2 0.30 
 

 

Figure 2 Beta probability densities of q1. 
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Figure 3 Triangular possibility distributions of q2. 
 

As an example, B1 could denote failure of an item for which failure data exists, and B2 an event 

for which no data exists and where the triangular possibility distribution is constructed based on 

expert statements alone. 

 

3.  HYBRID UNCERTAINTY PROPAGATION 

In the hybrid approach (19), propagation of uncertainty is based on a combination of the Monte 

Carlo technique (32) and the extension principle of fuzzy set theory (13). The main steps of the 

procedure are: 

 

 repeated Monte Carlo samplings of the probabilistic quantities; and 

 fuzzy interval analysis to process the uncertainty associated with the possibilistic 

quantities. 

 

More specifically, consider the functional relationship y = g(x), where x = (x1, ..., xk, ..., xn) is a 

vector of n parameters. Assume that uncertainty about k of the parameters, say (x1, ..., xk), is 
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described by probability distributions (F1, ..., Fk), and uncertainty about the remaining n – k 

parameters, (xk+1, ..., xn), by possibility distributions (πk+1, ..., πn). For a vector of fixed values of 

(x1, ..., xk), obtained by Monte Carlo sampling, the extension principle defines the possibility 

distribution of y as 

= ݑ ݕߨ  supx,g x =umin 1+݇ݔ 1+݇ߨ ,…  (2) .  ݊ݔ ݊ߨ,

 

Considering the simple fault tree described in Section 2, for fixed quantities q and q1 in Equation 

(1) we have 

2ݍ  = 1ݍ−ݍ
 ,1ݍ−1

 

and hence trivially by Equation (2), 

(ݑ)ݍߨ  = 2ߨ  , 1ݍ−11ݍ−ݑ 

 

for q1 ≤ u ≤ 1. We see that for each Monte Carlo sampling of q1, an associated possibility 

distribution of q is obtained (Figure 4). 
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Figure 4 Possibility distributions of q resulting from Equation (2) and 10 Monte Carlo samplings of q1. 
 

The possibility distributions resulting from the hybrid procedure are combined using Dempster's 

rule (18) to obtain the belief function Bel(u) = Bel([0, u]) and the plausibility function Pl(u) = 

Pl([0, u]), 0 ≤ u ≤ 1, defined by 

= ݑ ݈݁ܤ  1݉ ݅݉ ݑ ݅� 
=1 , (3) 

 

where Ni(u) = Ni([0, u]) is the necessity measure of [0, u] arising in the ith Monte Carlo sampling, 

and 

= ݑ ݈ܲ  1݉  Π݅ ݑ ݉݅
=1 , (4) 

 

where Πi(u) = Πi([0, u]) is the possibility measure of [0, u] arising in the ith Monte Carlo 

sampling. The belief and plausibility functions above can then be interpreted as bounding 

cumulative distributions. 
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In general, Equation (2) is equivalent to performing interval analysis on the alpha-cuts of the 

possibility distributions (πk+1,...,πn) 
(19). The uncertainty propagation procedure is then: 

 

 Sample a set of m vectors of (x1,...,xk) values from the probability distributions (F1,...,Fk). 

 Determine a α-cut levels of the possibility distributions (πk+1,..., πn). 

 For a given Monte Carlo sampling (step 1) and α-cut (step 2), determine the lower and 

upper value of y. 

 Repeat step 3 for all m Monte Carlo samplings and all a α-cut levels; as seen above, a 

possibility distribution of y is obtained for each Monte Carlo sampling, as collection of all 

the lower and upper values found in 3. 

 The m possibility distributions of y obtained from step 3 are combined using Equations 

(3) and (4). 

 

It is important to be aware that underlying the extension principle is an assumption of a 

metadependence between the possibilistic quantities involved (19): There is potentially two 

levels of dependence among the possibilistic quantities: a (meta-)dependence between 

information sources, and a (stochastic) dependence between the quantities themselves. The 

hybrid propagation method assumes stochastic independence between the group of 

probabilistic quantities and the group of possibilistic quantities. The extension principle is 

equivalent to performing interval analysis on α-cuts and, as a result, imposes an assumption 

about strong dependence between the information sources (experts) supplying the input 

possibility distributions. 
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4.  POSSIBILITY-PROBABILITY (PROBABILITY-POSSIBILITY) 

TRANSFORMATIONS 

Using possibility-probability (probability-possibility) transformations, uncertainty propagation 

can be performed within a single calculus, i.e. using Monte Carlo sampling when transforming 

possibility distributions into probability distributions and using fuzzy methods when transforming 

probability distributions into possibility distributions. 

 

In this Section we first review the transformations considered, and then describe their 

implementation on the fault tree case described in Section 2. 

 

4.1. Review of transformation methods 

We consider transformations from possibility distributions into probability distributions and vice 

versa. The transformations are based on given principles and ensure a consistent transformation 

to the extent that there is no violation of the formal rules (definitions) connecting probability and 

possibility when possibility and necessity measures are taken as upper and lower probabilities, 

and so that the transformation is not arbitrary within the constraints of these rules. Nevertheless, 

as noted in (22): 

 

... going from a probabilistic representation to a possibilistic representation, some 

information is lost because we go from point-valued probabilities to interval-valued ones; 

the converse transformation adds information to some possibilistic incomplete knowledge. 

This additional information is always somewhat arbitrary. 
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Given the interpretation of possibility and necessity measures as upper and lower probabilities, a 

possibility distribution π induces a family P(π) of probability measures. There is not a one-to-one 

relation between possibility and probability, and a transformation of a possibility distribution π 

into a probability measure P can therefore only ensure that 

 

a) P is a member of P(π); and 

b) P is selected among the members of P(π) according to some principle (rationale); e.g. 

'minimize the information content of P', in some sense. 

 

Analogously, a transformation from a probability measure P into a possibility distribution π can 

only ensure that 

 

A) P(π) includes P; and 

B) P(π) is selected according to some principle (rationale); e.g. 'minimize loss of 

information', in some sense. 

 

We will be working with probability densities, and in the following p denotes the probability 

density associated with a probability measure P. 

 

Different possibility-probability (probability-possibility) transformations have been suggested in 

the literature. In (22) it is argued that the following should be basic principles for such 

transformations: 

 

I. The probability-possibility consistency principle 
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The family P(π) is formally defined as 

= ߨ �  ܣ∀:ܲ  ⊆  ܣ ܲ,� Π ܣ  , 
 

i.e. as the set of probability measures P such that for all events A in the space X on which 

π is defined, the probability of A is less than or equal to the possibility of A. As suggested 

in (22) it seems natural to require a transformation to select P from P(π). This is referred to 

as the probability-possibility consistency principle, formulated as 

 ܣ ܲ  Π ܣ , ܣ∀ ⊆ �. 

 

II.  Preference preservation 

A possibility distribution π induces a preference ordering on X, such that π(x) > π(x') 

means that the outcome x is preferred to x'. A transformation should therefore satisfy 

< ݔ ߨ  ⇔ ′ݔ ߨ < ݔ   .(′ݔ)
 

Several transformations have been suggested based on the two principles above. In the following 

we briefly review some of these, presenting the continuous versions of their definitions. 

 

The following two principles are described in (22): 

 

(i) Possibility to probability: The principle of insufficient reason 
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The principle of insufficient reason specifies that maximum uncertainty on an interval 

should be described by a uniform probability distribution on that interval. The sampling 

procedure for transforming a possibility distribution into a probability distribution 

according to this principle is: 

 sample a random value α* in (0, 1] and consider the α-cut level Lα* = {x : π(x) ≥ 

α*}; and 

 sample x* at random in Lα*. 

In the continuous case, the density pt resulting from a transformation of π is given by 

= ݔ ݐ   ݀�
|�� (ݔ)ߨ|

0
, (5) 

 

where |Lα| is the length of the alpha-cut levels of π. To motivate this, note that 

= ݔ ݐ  1�݀(�) � ݔ  

0
. 

 

From step 1 in the sampling procedure above we have p(α) = 1, and from step 2 we have 

= � ݔ   1

|�� |. 
 

For the integration space we note that p(x|α) = 0 for α > π(x). It can be noted that pt is the 

centre of gravity of P(π). The transformation in Equation (5) applies to upper semi-

continuous, unimodal and support-bounded π. 
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(ii)  Probability to possibility: The principle of maximum specificity 

Define a function h : [l, m] → [m, u], where l, m and u are, respectively, the lower support 

limit, mode and upper support limit of the probability distribution to be transformed. 

Then, the most specific possibility distribution πt (in the sense of minimizing the area 

under π) that dominates a given probability density p is given by 

= ݔ ݐߨ  = (ݔ)ℎ ݐߨ ∞−ݔݕ݀ ݕ   + (ݔ)ℎ∞+ݕ݀ ݕ   = + ݔ � � (ℎ ݔ ), (6) 

 

where �  ∙ = 1 − � ∙  and 

 ℎ ݔ = max ݕ :ݕ   .  ݔ 
 

The transformation in Equation (6) is illustrated graphically in Figure 5. It is interesting to 

observe that for this transformation, we have 

,ݔ  �  ℎ ݔ   = (  ݔ ℎ,ݔ )ܲ  Π( ݔ,ℎ ݔ  = 1, 

 

i.e. the transformation prescribes equality between the necessity of a given α-cut and the 

probability of the same α-cut. 
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Figure 5 Transformation (ii); the value of the possibility function πt at x, πt(x), equals the shaded area. 
 

The transformation in Equation (6) applies to unimodal, continuous and support-bounded 

probability densities p. Moreover, in (33) it is noted that: 

 

This criterion is not necessarily adapted to the transformation of a subjective 

probability distribution reflecting an expert opinion. 

 

The following transformation has been suggested (34) when the probabilities to be transformed are 

subjective: 

 

(iii)  Probability to possibility: The principle of minimal commitment  

The principle of minimal commitment is based on the assumptions that an agent's 

knowledge is minimal, and that an elicited subjective probability measure is actually 

induced by a belief function representing the actual state of knowledge of an agent. The 
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principle prescribes selection of the least informative belief function among those 

associated with a given probability measure. It has been shown (34) that this belief function 

is unique and consonant, and thus induced by a possibility distribution. The 

transformation is given in (33) only for the discrete case: 

= ݅ݔ ݐߨ   min ݆ߩ ݆ ݅ߩ, , 

 

where ρi is the probability mass associated with outcome i. According to (22), the 

continuous counterpart of Equation (7) is 

= ݔ ݐߨ   min ݕ݀ (ݕ),(ݔ)+∞−∞ . (8) 

 

The transformation in Equation (8) is illustrated graphically in Figure 6. 
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Figure 6 Transformation (iii); the value of the possibility function πt at x equals the shaded area. 
 

In (22) it is concluded that: 

 

Further research is needed in the continuous case. Especially it is interesting to investigate 

for which class of pdf and possibility distributions the transformations make sense. 

 

Three approaches for converting probability distributions into 'equivalent' triangular or 

trapezoidal fuzzy sets are considered in (35). The transformations involve two steps, namely the 

transformation of the probability distribution in question into a fuzzy set, which is then 

transformed again into the 'equivalent' triangular or trapezoidal fuzzy set by curve fitting to a 

standard distribution class. 

 

(iv) Probability to possibility: Normalization of probability density 
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The membership function of the fuzzy set resulting from the first step of the 

transformation is given by 

�  =  ݔ 
sup  (9) , ݔ 

 

i.e. by normalisation of the probability density. For the second step, the following three 

approaches are considered: least square curve fitting, conservation of uncertainty (in an 

entropy-sense), and minimization of the Hausdorff distance. 

 

The distribution resulting from Equation (9), when taken to be a possibility distribution, 

does not in general adhere to the probability-possibility principle (36). 

 

Other transformation principles are also referred to in (22), e.g.: 

 

(v) Possibility to probability: The maximum entropy principle 

Select the P in P(π) which maximizes entropy. In general, this transformation violates the 

preference preservation constraint. 

 

4.2. Implementation on the fault tree in Section 2 

In the present paper, we apply transformations (i)-(iv), though transformation (iv) is only 

considered as a reference for the possibility distributions resulting from transformations (ii) and 

(iii), and unlike in (35) we will work directly with μp rather than with a standard distribution class 

fitted to μp. 
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Transformations (ii) and (iii) only apply to probability densities with bounded support. In the 

present work, we only deal with the beta probability density defined on the interval [0,1]. 

 

Transformation (i) only applies to unimodal possibility distributions, thus excluding common 

distribution classes such as the trapezoidal and uniform ones. In the present work we only deal 

with the triangular possibility distribution, for which Equation (5) yields: 

= ݔ ݐ2  − 1݀−� ln(1−  (10) ,((ݔ)2ߨ

 

noting that |Lα| = d + α (c – d) – [b – α (b – c)] = – (d – b)(1 – α). In the computations we have 

used the sampling procedure described in Section 4.1, rather than a sampling procedure from the 

above density. 

 

5. RESULTS 

In this Section we first present the results of applying transformation (i) to the triangular 

possibility distributions for q2, and transformations (ii)-(iv) to the beta probability densities of q1. 

Then the results of applying the hybrid approach are presented, along with the results of the 

transformation-based approaches. 

 

In the computations we have considered a = 103 alpha-cuts and m = 103 Monte Carlo samplings. 

 

5.1. Transformation of basic event frequency probability distributions 
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We first consider the application of transformation (i) to the triangular possibility distribution π2 

of the basic event frequency probability q2 (Figure 7, top). The probability densities resulting 

from the transformation (Figure 7, middle) tend to infinity for q2 = 0.2, i.e. at the core of the 

transformed possibility distributions; cf. Equation (10). Looking at the cumulative distributions 

(Figure 7, bottom), we obtain a visual impression of the probability distribution resulting from 

the transformation as the center of gravity of the family of probability distributions induced by 

the possibility distribution. 

 

 

Figure 7 Transformation of triangular possibility distribution (top, solid line) into the associated probability density 
(middle, dashed line) using transformation (i); corresponding cumulative distributions also shown (bottom). 
 

We now consider the application of transformations (ii)-(iv) to the beta probability distribution p1 

of the basic event frequency probability q1 (Figure 8, top) into possibility distributions (Figure 8, 

middle). As can be seen for the cumulative distributions (Figure 8, bottom), the possibility 

distributions resulting from transformations (ii)-(iv) serve as bounds for the transformed 
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probability distribution. However, as noted in Section 4.1, adherence to the probability-possibility 

consistency principle is not generally guaranteed for transformation (iv). 

 

 

Figure 8 Transformation of beta probability density (top, solid line) into the associated possibility distribution 
(middle) using transformation (ii) (dotted line), transformation (iii) (dashed line) and transformation (iv) (dash-dotted 
line); corresponding cumulative distributions also shown (bottom). 
 

5.2. Fault tree: Hybrid approach and transformation-based approaches 

The results of applying the hybrid approach and an approach based on transformation (i) are 

shown together in Figure 9. As can be seen, the probability distribution resulting in the 

transformation-based approach lies between the lower and upper cumulative distributions of the 

hybrid approach. 
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Figure 9 Cumulative distributions for the top event frequency probability q; hybrid approach (solid lines) and 
probabilistic approach based on transformation (i) (dashed line); high uncertainty (top), medium uncertainty (middle) 
and low uncertainty (bottom). 
 

In the hybrid approach, the probability distribution of q1 and the possibility distribution of q2 are 

combined to yield what may be interpreted as lower and upper probability distributions, 

respectively. Hence, the limiting cumulative distributions for q resulting from the hybrid 

approach can be used to derive lower and upper values of the probability that the top event 

frequency probability lies in an interval, say [0, u]. For example, for the fault tree studied, in the 

large uncertainty case, we find that Bel(q ≤ 0.35) = 0.05 and Pl(q ≤ 0.35) = 0.83: thus, it can only 

be said that the probability P(q ≤ 0.35) is in the interval [0.05, 0.83]. Alternatively, we may 

consider some percentiles obtained from the two limiting cumulative distributions, say the 95 

percentiles Q95
lower = 0.45 and Q95

upper = 0.37. The former is defined by 

ݍ ݈݁ܤ   ܳ95lower = 0.95, 

 

and hence 
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0.95  ݍ ܲ  ܳ95lower . 
 

The latter is defined by 

ݍ ݈ܲ   ܳ95upper = 0.95, 

 

and hence 

ݍ ܲ   ܳ95upper  0.95. 

 

In a risk analysis context, Q95
lower is the interesting quantity since it guarantees that the 

probability that the true value of q is lower than Q95
lower, P(q ≤ Q95

lower), is greater than or equal to 

0.95. Thus, it can be interpreted as a conservative assignment of the percentile with respect to the 

imprecision arising from the input. If the interval [0, Q95
lower] is considered, the hybrid approach 

also provides an upper value for P(q ≤ Q95
lower), obtained by considering the value of the upper 

limiting cumulative distribution at Q95
lower, i.e., the plausibility of the interval [0, Q95

lower]. Thus, 

one can conclude that 

 

0.95  ݍ)ܲ  ܳ95lower)  ݍ)݈ܲ  ܳ95lower), 
 

which in the case study considered here gives 

 

0.95  ݍ)ܲ  0.45)  1. 
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We see that the interval [0.95, 1] reflects the imprecision about P(q ≤ 0.45) that results from the 

use of the possibility distribution π2 as a representation of uncertainty of q2. 

 

Applying transformations (ii)-(iv), we see that in the high uncertainty case (Figure 10, top), the 

lower cumulative distribution resulting from the hybrid approach crosses the lower cumulative 

distributions resulting from all the transformation-based approaches. In the medium and low 

uncertainty cases (Figure 10, middle and bottom, respectively), on the other hand, the cumulative 

distributions resulting from the hybrid approach stay between those resulting from the 

transformation-based approaches. 

 

 

Figure 10 Cumulative distributions for the top event frequency probability q; hybrid approach (solid lines) and 
possibilistic approach based on transformation (ii) (dotted lines), transformation (iii) (dashed lines) and 
transformation (iv) (dash-dotted lines) ; high uncertainty (top), medium uncertainty (middle) and low uncertainty 
(bottom). 
 

Table II  gives a comparison of the 5 and 95 percentile values of the distribution functions shown 

in Figure 9 and Figure 10. We see that the bounds are broader in the transformation-based 
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approaches (ii-iv) compared to the hybrid approach. This is due to: a) the transformation of the 

precise probability distributions taken directly as input in the hybrid approach into the imprecise 

possibility distributions in the transformation-based approaches, and b) the use of the extension 

principle for the propagation of the uncertainty from the basic event probabilities into the top 

event probability in the transformation based approach. The latter introduces a dependence 

between the possibilistic variables which result in broder bounds (19). 

 
Table II Comparison of the 5 and 95 percentiles of the distribution functions for the top event frequency 
probability that result from the different approaches. 
Uncertainty Low Medium High 

Percentile Q5
u Q5

l Q95
u Q95

l Q5
u Q5

l Q95
u Q95

l
 Q5

u
 Q5

l
 Q95

u
 Q95

l
 

Hybrid 0.269 0.352 0.371 0.448 0.179 0.334 0.438 0.618 0.0712 0.333 0.562 0.970 

Trans. (i) 0.304 0.304 0.416 0.416 0.249 0.249 0.533 0.533 0.214 0.214 0.804 0.804 

Trans. (ii) 0.240 0.364 0.353 0.471 0.113 0.356 0.329 0.668 0.0100 0.251 0.190 0.981 

Trans. (iii) 0.224 0.374 0.342 0.488 0.0866 0.391 0.298 0.715 0.0100 0.316 0.190 0.990 

Trans. (iv) 0.231 0.369 0.348 0.481 0.0953 0.373 0.313 0.697 0.0100 0.254 0.190 0.985 

 

6.  DISCUSSION AND CONCLUSIONS 

Considering probability and possibility as applied in the present paper, we may distinguish 

between three different approaches to the treatment of epistemic uncertainties: 

 

1. A pure approach 

2. A transformation-based approach 

3. A hybrid approach 
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By a pure approach is meant that uncertainty about all basic event frequency probabilities is 

quantified directly using the same representation – either probability or possibility. We do not 

consider such an approach in the present paper; the premise is that the uncertainty about the basic 

event frequency probabilities has been quantified using probability for one of the basic events 

and possibility for the other. 

 

By a transformation-based approach is meant that uncertainty about each basic event frequency 

probability is quantified using either probability or possibility, and in the end all probability 

distributions involved are transformed into possibility distributions, or vice versa. By applying 

such transformations, information is added or removed, depending on which direction the 

transformation is made. Starting from a possibility distribution, transformation (i) returns a 

probability distribution, and thus adds to the information that has been given as input. 

Transformations (ii) and (iii) return, respectively, the most specific and least committed 

possibility distributions compatible with a given probability distribution, and thus reduce on the 

information given as input. Of course, additional assumptions are required, on the form of 

transformation principles. 

 

What would be the purpose of applying such transformations in a practical decision-making 

setting? The motivation in (37) is that decision-making requires expected utility theory, which 

again requires probability. In (37) it is distinguished between a so-called credal level, where beliefs 

are 'entertained' and quantified by any representation, and a so-called pignistic (from greek 

pignus, meaning a bet, in reference to the betting interpretation of probability) level, where 

beliefs are used to take decisions, and where probability is required. Based on special bets and 

some coherence requirements, a so-called generalized insufficient reason principle can be 
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derived, upon which a transformation from any representation of uncertainty (possibility, upper 

and lower probabilities, belief functions etc.) into the pignistic probability function is based. 

 

The focus on decisions and need for expected utility theory and hence probability is also 

emphasized in (38): 

 

Why do we want to study uncertainty? Aside from the intellectual pleasure it can provide, 

there is only one answer: to be able to make decisions in the face of uncertainty. Studies 

that do not have the potentiality for practical use in decision making are seriously 

inadequate. An axiomatic treatment of decision making shows (Savage, 1954; DeGroot, 

1970) that maximization of expected utility is the only satisfactory procedure. This uses, 

in the expectation calculation, the probabilities and these, and only these, are the 

quantities needed for coherent decision making by a single decision maker. Only the 

utilities, dependent on the consequences, not on the uncertainties, need to be added to 

make a rational choice of action. How can one use fuzzy logic or belief functions to 

decide? Indeed, consider a case where Bel(A) + Bel(not A) < 1. Because you have so little 

belief in either outcome do you, like Buradin's ass, starve to death in your indecision 

between A and its negation? Reality demands probability. (38) 

 

Considering that the transformation can be made both ways, from probability to possibility, and 

vice versa, the question arises: when should the transformation be made into probability, and 

when into possibility? Emphasizing decision theory and expected utility theory, as seen above, 

the answer would be always into probability, so long as a decision is involved. Others might 
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argue the conservativeness of making the transformation into possibility, as the possibilistic 

representation is weaker than the probabilistic one. 

 

The hybrid approach also results in a weaker representation than a purely probabilistic one, yet 

stronger than a transformation-based possibilistic approach. The latter results in a possibility 

distribution as output, and hence probability intervals on the form [0, v] or [w, 1], where v and w 

are numbers between 0 and 1. In the hybrid approach, on the other hand, a probability interval 

could be of the form [v, w], where v and w are numbers between 0 and 1 and v < w. 

 

Looking at the issue of uncertain representation in the framework of risk analysis, we may 

distinguish between two goals of a risk analysis: 

 

1. Provide input to an expected utility analysis (alternatively, cost-benefit analysis) 

2. Provide decision support by giving insights into the uncertainties that are involved 

 

If an expected utility analysis (cost-benefit analysis) is the ultimate goal, then probability is 

required, and the choice is between the pure and transformation-based probabilistic approaches. 

A comparison of these is beyond the scope of the present paper. 

 

On the other hand, if the goal is to provide decision support by giving insights into the 

uncertainties that are involved, and under the premise that uncertainty has been quantified using 

both probability and possibility, then the choice is between either of the transformation-based 

approaches and the hybrid approach. The transformation-based approaches add or remove 

information. This is an unattractive feature given the goal of the analysis. In contrast, the hybrid 
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approach does not alter the uncertainty descriptions given as input. It does, however, introduce a 

knowledge dependency assumption, as pointed out in (19): 

 

The extension principle [...] is equivalent to performing interval analysis on α-cuts and 

hence assumes strong dependence between information sources (observers) supplying the 

input possibility distributions, since the same confidence level is chosen to build these α-

cuts. 

As a consequence of the dependence between the choice of confidence levels, one cannot 

interpret the calculus of possibilistic variables as a conservative counterpart to the 

calculus of probabilistic variables under stochastic independence. (19) 

 

Computationally, the hybrid approach is more demanding than any of the transformation-based 

approaches (Table III ). 

 

Table III  Computation times for the hybrid and transformation-based approaches for the fault tree in Section 2. 
Method Computation time a 
Hybrid 105 seconds 
Transformation (i) 0.29 second 
Transformation (ii) 2.19 seconds 
Transformation (iii) 4.20 seconds 
Transformation (iv) 0.99 seconds 
a On a 3 GHz dual core computer with 3.5 GB RAM. 

 

From the discussion above, we may conclude that the approaches of uncertainty representation 

relevant in a given setting depend on the purpose of the risk analysis. On the other hand, the 

present paper is of an explorative nature – further research is required to make the possibilistic 

representation and approaches operational in a risk assessment context. In this respect, we may 
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suggest a methodological development in relation to the hybrid computational framework: firstly, 

considering that in the context of risk assessment we are interested in uncertainty about the events 

involved – the top event in a fault tree analysis – it would be interesting to determine lower and 

upper values of the top event probability, and not only upper and lower cumulative distributions 

of its frequency probability. Secondly, a more general setting than the one considered here is 

where the frequency probability concept is introduced for some but not all basic events, and 

uncertainty about the non-frequency-probability-based events is treated by direct (predictive) 

epistemic uncertainty assignments. This would be the required setting for unique events, meaning 

events for which a large population of similar situations cannot be meaningfully defined.  
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