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Abstract — In this paper, we investigate the feasibility of a strategy of fdeféction capable of controlling misclassification
probabilities, i.e., balancing false and missed alarms. The nafelty proposed strategy consists dd §ignal grouping technique
and signal reconstruction modeling technique (one model for fawgroup), and i statistical method for defining tHault alarm
level. We consider a real case study concerning 46 signals of theoR€aolant Pump (RCP) of a typical Pressurized Water
Reactor (PWR). In the application, the reconstructions are providadétyof Auto-Associative Kernel Regression (AAKR) models,
whose input signals have been selected by a hybrid approach lna€edrelation Analysis (CA) and Genetic Algorithm (GA) for
the identification of the groups. Sequential Probability Ratio TEBR{S is used to define the alarm level for a given expected
classification performance. A practical guideline is provided fonmty setting the SPRT parametevalues.

Index Terms — Condition monitoring, signal grouping, signal reconstructionp-associative kernel regressjosequential
probability ratio test, nuclear reactor coolant pump
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Acronyms and Abbreviations

ac Abnormal conditions

AAKR Auto-Associative Kernel Regression
ANN Artificial Neural Network

ASN Average Sample Number

CA Correlation Analysis

GA Genetic Algorithm

ICA Independent Component Analysis
nc Normal conditions

NPP Nuclear Power Plant

PCA Principal Component Analysis
PWR Pressurized Water Reactor

RCP Reactor Coolant Pump

SPRT Sequential Probability Ratio Test

SVM

Notations

Q1)
P(u1)

Support Vector Machine

Number of signals
i-th measurement time

Observed measurementshbsignals at time;

Reconstructions ok°** in normal conditions (nc)

Residuals betweer***and %"

Residual between the signal measurement and its reconstruction at time

False alarm rate

Missed alarm rate

Number of historical patterns used to perform the hybrid signal grouping
Number of patterns belonging to the validation set

Null hypothesis of the SPRT test

Alternative hypothesis of the SPRT test

Mean of the Gaussian distribution td§

Variance of Gaussian distributioklg andHy, i.e., noise ofx°*®
Meanof the Gaussian distribution bff

Lower stopping boundary of tI8PRT

Upper stopping boundary of the SPRT

Likelihood ratio for the positive mean test

Logarithm of the the likelihood ratig,

Sequence of residualsluesry, ro,..., Iy

Probability that the null hypothedit givenR,

Probability of the alternative hypothesis givenR,

Number of measurements, i.e., time, necessary for the SPRT to chooseHynong

andH;
Outcome of DurbinWatson test

Signal measurements of sigdal

Signal reconstructions of sigréd

Operating characteristic function, i.e., the probability tgais accepted for different

values ofu
Power function, i.e., the probability tHaf is accepted, for different valuesaf



1. Introduction

We present a research work aimed at developing a fault detection stratedjyencapability of controlling
fault misclassification probabilities, i.e., balancing false and missed alaomsngroving Nuclear Power
Plants (NPPS) availability and safety. The novelty of the fault detection strategy lies in the combinagion of
signal grouping technique, a signal reconstruction modeling technique, and acatatstthod for
determining the signal deviation level for fault alarms.

To set the problem, Fig. 1 shows a typical scheme of condition monitoring of porent for fault
detection. Sensor measurements (signéfS)are sent in input to a model which reconstructs in output the
same signals™ as if the component behaviour were in normal conditions (nc). Deviations betweeen t
actually measured (observed) sign&l$ and the reconstructed ong¥ reveal the presence of faultd.[In
simple words x°” = %" under normal conditions, where&¥® = %" under abnormal conditions (ac).
Different empirical models have been developed for signal reconstruction. Mygxamples include
Artificial Neural Networks (ANN3} and Recurrent ANNs [2[B], Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) [10]-[12], Multivariate State Estimation TepobfMSET) [13]-
[14], and Support Vector Machines (SVMs) [15]-[16]. The model considered in thiksfarareconstructing

the component behavior in normal conditions is based onAtht®-Associative Kernel Regression
(AAKR) method [17]-[20.
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Fig. 1. Condition monitoring scheme for fault detection.

In practice, when a large number of signals is available, a phenomenon called faulajwopeffect may
occur when reconstructing the component behavior in normal conditions; if one or more aigrddgraded
by the fault, they may affect the values of other signals, and thereforeatiessignals may b@correctly
reconstructed, resulting in a large number of false alarms [21].

To alleviate this problem, one can resort to grouping signals into subgemegpdeveloping a reconstruction
model for each subgroup [21]. Two different types of grouping strategiesbkawveproposed in literature:
with overlapping, i.e., the same signal can belong to more than one grqupg2Z25], and without
overlapping [26]-[28]. In practical applications, the latter strateggs to be preferred because it allows for
a smaller number of models to be develodd, lower computational effort [28]. Two different approaches

to grouping can be implemented: filter, and wrapper. The former basegdinging on characteristics



priori judged to be favorable for condition monitoring, e.g., physical and ifumatthomogeneity (i.e.,
groups are made only by temperature signals, or only by pressure signedgective of the signal
reconstruction modeling technique used][2R7]. The latter uses a search algorithm, e.g., Genetic
Algorithms (GA9 [29], Differential Evolution [30] etc., as a wrapper around the signal reconstruction
model [31]. In this papeme use a hybrid approach, i.e., filter and wrapper, based on non-overlapping
grouping given by Correlation Analysis (CA) aG@ [29] (Fig. 2, bottom left). The motivation of the choice

is that the GA-based wrapper approach allows finding better performing groupthd specific
reconstruction model used, while the contribution of CA leverages the computatiothen of the GA (for
further details, the interested reader should refe2dp.[
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Fig. 2. The condition monitoring scheme for fault detection adopted in thiswork.

To balance false and missed alarms in the fault detection, it is possible to perform an andlgsissidals

F =% _ %" to declare whether a component fault has occurred (Fig. 2, top right). Conventiolal f



detection systems are based on deterministic rules, i.e., simple tests that auvepared signal values to
given thresholds. This way of proceeding may suffer from either large &érm ratea (if thresholds are

set too small), or high missed (or delayed) alarm patg@she thresholds are set too large), and they can fail
dramatically, especially in situations where noisy data are present, or ghlydsifts are observed prior to
catastrophic faults [32 On the other side, stochastic approaches regard residuals as random variables
described by a probability law. Abnormal conditions are assumed to resultadification of the residual
probability law (for example, transition from a normal distribution with a given mean and varianceher anot
normal distribution with different mean and variance). In the present, wbek identification of the
modification of the probability law describing the residuals is based on the Seqbeoltiability Ratio Test
(SPRT) [33, [17], a statistical method for triggering an alarm with a controllednbaldetween false and
missed alarms.

This framework of analysis is applied to a real case study concexff signals used to monitor the
Reactor Coolant Pump&CPs) of a typical Pressurized Water Reactor (PWR); the monitoring scheme of
Fig. 2 is applied in normal and abnormal conditions, and the occurring faults antedetA practical

guideline is provided for setting the SPRT parameter values for balancing false and raissed al

The rest of the paper is organized as follows. Section 2 illustratesskestudy and the data available.
Section 3 presents the hybrid approach for signal grouping bas€é @md GA, embedding the AAKR
method for signal reconstruction. In Section 4, the definition of alarm leveldetection of abnormal
conditions using the SPRT method is given with respect to the case study oh Qedfinally, Section 5

concludes the paper with some considerations.

2. The case study

The case study considaks46 signals used to monitor the RCPs of a typical PWR. The signal values have
been measured every hour for a period of 11 consecutive months on four RCPs, each orferentdiaé

of the primary circuit of the NPP. A dataset has been provided, containiegnpaf#6-dimensional time
series) corresponding to normal conditions, and cleared from outliers. The 46idimakpsitterns (5798)

have been divided into a &} of 2798 patterns used to perform the hybrid signal grouping (Section 3), and
a validation seiX, of 3000 patterns used to validate the condition monitoring and fault detection scheme
(Section 4).

3. The hybrid approach for signal grouping, with AAKR modelling for signal reconstruction

The AAKR model is used to reconstruct the signal values in normal conditionsrafiopgx™, from the

observed measurements;” = (x***(1),...,x"{ N)) . The reconstruction is done by a weighted sum of the



observations (see the Appendix for further details on the AAKR). The model is appledsigrials of each

of the subgroups in which the signals are partitioned by a hybrid wrapper approach based on CA and GA.
In [29], it has been shown that this hybrid method leads to reconstructiorsdlrabre tolerant to the fault
propagation problentifat has been mentioned in the Introduction) than proceeding with the reconstruction
based on the single group of all signals][127], or on groups of signals defined by a filter CA approach
only [19], [25], or by a wrappeGA-based approach only [28].

The hybrid approach consigti§ using CA to identify groups of highly correlated signals, and GA to define
the group assignment of the remaining signals [29]. Application to the caseostudgrest leads to CA
identifying 5 groups, with one formed by 24 highly correlated signalsGa#nsearching chromosomes 2i
elements, each one corresponding to one of the 22 signals not assigned to a group hi€Aalyy the
dimension of theSA search space is reduced frofi(510°%) possible group combinations t& $10"). In

the end, the hybrid approach identifies 5 groups so formed [29]:

Group 1 has 30 signals related to the different temperatugasured in different parts of the RCP
(e.g., seals, and hydraulic and engine components),

- Group 2 has 4 signals measuring the rotating speed of the engine componerG# the

- Group 3 has 3 signals measuring the water mass flow rate inside the RCP,

- Group 4 has 5 signals measuring the water mass flow rate coming from the first seal of the RCP, and

- Group 5 has 4 signals measuring the water mass flow rate flowing to the first seal of the RCP

4. Fault detection

After grouping of the signals into 5 subgroupsAAKR reconstruction models are developed (one for each
subgroup), and a strategy of fault detectisnimplemenéd based on SPRT to keep under control the

misclassification probabilities, andg, i.e., the false, and missed alarm probabilities, respectively.

4.1.The SPRT method

Let r; represent the value of one signal at the gendticmeasurement timg and let us assume that a
sequence of valueR{} = ry, r,,..., 1, is available. The SPRT is a binary stochastic hypothesis test which
sequentially analyzes the process observatidtp dnd decides whether they are consistent with a null
hypothesidH, represented by a given probability law, or rather with an alternative hypdthesepresented

by a different probability law [32]. The test is driven by user-specifiestlagsification probabilities and

B.

In our context of fault detectiom, is the residual between the signal measurement and its reconstraction a

o Obs

time t,, r, =x°°(t,)- X°**(t) . The null hypothesi#H, corresponds to the statistical behavior of the

residuals when the component is under normal conditions, and the alternative hypttltesiesponds to
that case of abnormal conditions.
Without loss of generality, here we illustrate the test considesrige null hypothesi$l, of a Gaussian

distribution with meam=0, and variance”; and as the alternative hypothedisof a Gaussian distribution



with meanu;>0, and same varianeg. This test is usually referred to as test for positive mean, and can be
used for the identification of positive offsets of amplitudeHowever, SPRT can be also applied for the
identification of negative offsets, with increased or reduced variance\8¥gn the assumption of Gaussian
distributions might impose potentially misleading behavior on extreme valuég oésiduals, i.e., tails of

the distributions, extreme value statistics can integrate into SPRde&ding with the difficulty of fault
detection [35]. Furthermore, SPRT can be successfully applied to any other distrilbuieeged; as an
example, in [36] it has been shown that SPRT overtakes other statistical metimdsiealing witha
Bernoulli distribution of residuals.

The SPRT operates as follows [37]. Every time a new valbecomes available, a test index is calculated

and compared to two stopping boundarigga) (lower threshold), anth (B) (upper upper threshold)

with in (A) < In(B), that are related to the misclassification probabilitiesds by the expressions

1-«

In(A)—In[ £ ] 1)

In(B)_In[ﬁJ ()

[24

The test index is equal to the natural log of a likelihood ratjp fhich is the ratio between the probabilities
that the alternative hypothesis and the null hypothests, are true:

probability of observed sequence R given H tr (3)

probability of observed sequence 'R given H tr

Three different cases may arise:
- if the logarithm of the likelihood ratio (3) is greater than or edaahe logarithm of the upper
threshold (i.e.In(L,) > In(B)), then it can be concluded that the alternative hypothlsistrue;
- if the logarithm of the likelihood ratio is less than or equal to the libgmarof the lower threshold
limit (i.e., In(L,) < In(A)), then it can be concluded that the null hypothidsiis true;
- if the logarithm of the likelihood ratio falls between the twoitigi.e.,In(A) < In(L,) <In(B)), then
there is not enough information to discriminate (and, incidentally, no othetisshtisst could reach
a decision with the same given probabilibesndp [32]).
Given the sequence of signal valud&}{= ry, r,,..., rn, the probability that the null hypothedi (i.e.,
Gaussian distribution with mean 0 and variasfyds true is given by [37]
PR
1 R (4)

H = —)-e
0) (27r0'2)n/2

Similarly, the probability of the alternative hypothedis(i.e., meany>0 and variance?) is
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The ratio of the probabilities in (4) and (5) gives the likelihood Hati@r the positive mean test

L Ji[z”z)ﬂ (6)

n

The SPRT index for the positive mean test is finally obtained by taking thethwogaoi the foregoing

likelihood ratio:

1

202

SPRT=1In( I,)=-— ”glzn‘i(;ﬂJ ()

See that (1)-(7) are defined according to the hypothesissafussian distribution of the residuaR.f =r,
r,..., 'n. Obtaining the stopping boundaries and the SPRT index for any other proluibitityution P is
straightforward [36].
In any case, the application of the SPRT requests the setting of four parameters:

e the residual variance in normal condition® (

¢ the expected offset amplitude ),

¢ the false alarm probability:}, and

¢ the missed alarm probabilitg)
The values of these parameters influence the time necessary to deliveicandiegisthe time necessary for
the SPRT to choose amohfg andH;. Assuming again foH, a Gaussian pdf with meag=0 and variance
o, and forH, a Gaussian pdf with mean>0 and the same varianed, the expected sample number,
hereafter called Average Sample Numba6I), for a decision when the residualR,J are distributed

according to a Gaussian distribution with mean valaad variance?, is given by [38]

A"-1 1-B"  1-
252 In p +— —In P
1-« A - B o

nul=~ 8
A py (20 = ) (®)
where
hoHaZ 2K (9)

Hy

Notice that the approximate theoretical ASN
1. is directly proportinal to 6°, meaning the larges®, the noisier are the observed values and the

more difficult a decision is; and



2. is inversely proportional ta, meaning it is easier for the SPRT to select a hypothesis phen

the mean value dfi;, is far away fromip=0, the mean value of the null hypothesis.
With respect tas?, if the signal reconstruction model has been applied to past measurements in normal
conditions, it can be easily estimated considering the variance of the past vahesesiduals. The other
three parameters have to be fixed by the analyst according to his or her experience, and needs. In Section 4.3,
a practical guideline is provided for this setting.
As a final remark, it is worth noticing that SPRT has been shown to beuoptim the sense of minimizing
ASN under the hypothesés, andH; for fixed values of false and missing alarms probabilitesand g,
respectively, if the signal value®{ = ry, r,..., ry, are i.i.d [34]. In the case of non-i.i.d measurements, as in
our case study, no optimality has been established, although the detection perfesrstithg®mod in terms
of false and missed alarm probabilities, as it is shown in [39], and bygbks shown in Section 4.2. The
procedural steps for the application of the SPRT are given in the pseudo-code of Fig. 3.

0> 1 Set to 0 the time index i
. 0 2 SPRT Set to 0 the SPRT index
i+l > 1 Increase the time index
At time t;, collect the new residual r;
a. Update the SPRT index (Eq. 7)
b. Compare the SPRT index to the upper [1ln(B)] and lower [ln(A)] decision boundaries
c. Detect the component condition, depending on the test outcome:
if SPRT < 1n (A) (lower limit is passed) then
the component is declared in normal conditions
Go to 2 and start again the test for the successive times;
else if SPRT > 1n(B) (upper limit is passed) then
the component is declared in fault conditions
an alarm flag is raised
Go to 2 and start again the test for the successive times;
else if 1In (A) < SPRT < 1n(B) (neither limit has been passed) then
no decision is made
Go to 3

Bw N e

Fig. 3. The pseudo-code of the procedural steps of the SPRT.

4.2.SPRT application to the case of RCP of aPWR

We focus on the signal ‘water flowing to the first seal of the pump in line(hereafter referred to as signal
4a), which belongs to Group 1. Th&, historical values of the residuals of the signal under normal
conditions have been analyzed to set the hypothisishich describes the residual distribution under these
conditions. The residual distribution has been confirmed to be Gaussian with meap,v¥8l0894, and
variance o° =0.014, by the Kolmogoredmirnov test [40]. The very small mean value of the residuals has
confirmed that the reconstruction under normal conditions is not biased;aarzk approximated by a
distribution with.,=0. Residuals hae been further tested farindependency with the DurbiliVatson test
[41]. Small values of the test outcoméndicate that residuals are, on average, positively correlated; whereas
if d>2, successive residuals are, on average, negatively correlated. In owl=€a8¢, and thus we can
conclude that residuals are sdhdependent, and slightly positively correlated.

To test the performance of the proposed SPRT for fault detection, an ofésepliiude equal to 1% of the

standard deviation of the signal values has been injected onto the measuoémsignts 4a. The drift starts

att=1 hour, and continues unt#1000 hours. In Fig. 4, the abnormal conditformaasurementsjzs and



thar reconstructionx;. by the AAKR model are shown. Fig. 5 reports the obtained resid&gls={r1,

[2,..., In, Wherer, = x52°(t,) - %,°(t ), i =1,2,...n . Table | reports the SPRT parameters used.

Tablel
List of the principal parametersused for the SPRT implementation of the positive offset test

Parameter Value
o 0.01
B 0.01
Ho 0
o 0.12

Fig. 6 illustrates the outcomes of the SPRT in this case study. The SPRTirelakmquickly moves from
zero to the upper bound B allowing acceptance of the Hypotheblg and thus to promptly detect the
presence of abnormal conditions. Once the threshold is passed, the SPRT iiedektts zero, and the test
continues confirming the alarm in a number of time steps similar to the theloAsiNa(8). In fact, the
empirical ASN, i.e. the average time elapsed between two alarms, turtts mutequal to 1.2 samplings,
which corresponds to 1.2 hours, with measurements taken every hour. Notice, howevecrahsing the
measurement frequency will result in decreasing the mean time necessary to give the alarms.

It is also interesting to notice thiatthe 833 times that a decision is takiémas been hypothedi$; (correct
hypothesis in the present case study) in 827 cases, and hypéthasié cases (wrong hypothesis in the
present case study). The fraction of missing alarms 6/827=0.007 is smallgr=thad, in accordance with
the analyst-defined parameter value (Table 1). Note that, in this case study,tardeacy of the meanof
the residuals to differ from zero is easily detectable by an analyst mlgséilg. 5, and the SPRT has

performed as expected.
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The SPRT has then been tested in the application for the identification of momd#lons. To this purpose,
the reconstruction of the signal has been considered during 1000 hours, under normal sdnditioa
offset has been applied to the signal measurements).

Fig. 7 shows the measurement§® and the reconstructiong,: obtained by the AAKR reconstruction

models. Fig. 8 reports the corresponding residudls % ry, I,,..., I'h, which in this case have a mean value
close to 0.

Fig. 9 shows the SPRT index obtained by applying the test with the same paramégdnie &f Notice that
the SPRT alarm index moves quickly from zero towards the lower bound&y, kthus indicating
acceptance of the hypothesis (component ira normal conditions). In this case, the empirical ASN has
been 1.2 samples, and a decision has been taken 835 times, with 831 times theifhhoilcesrect
hypothesis), and 4 times the hypothdsiswrong hypothesis). The fraction of false alarms 4/831=0.005 is

smaller thar=0.01, in accordance with the analyst-defined parameter value (Table I).
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4.3.SPRT parameters setting
The application of the SPRT requires setting the values of the parameters in Table I. As previ@aslymoti
Section 4.1, the correct value of the paramefecan be estimated by considering the variance of the
residuals under normal conditions. Parameteesd g relate to the false and missing alarm probabilities,
respectively, and their values are set by the analyst. The most troublpacameter to set jg, the estimate
of the mean value of the residuals in abnormal conditions; this quantity is yonoiaknown in practical
applications.
In this section, we analyze the influenceugfon the results of the SPRT with the aim of providing some
guidelines for setting its value.
The driving factors of the choice pf are:

o the Average Sample Number (ASN) necessary to deliver a decision,

e the percentage of false alarms when normal conditi@ssduals are tested,

e the percentage of missing alarms when abnormal conditiesisluals are tested, and

¢ the tolerance of the method to identify abnormal conditions when the residuct&eaeterized

by probability distributions different from those expected.

The corresponding desiderata are to have small ASN, small false and missed emrandha test not very
sensible to the distribution of the residuals in abnormal conditions.

Therefore, in what follows, we focus on:



¢ the influence of the choice @f on the ASN, and false and missing alarm rates, for a given
sequence of residual®f} = ry, ro,..., Iy; and

o the influence of different distributions of the residuals, for a fixed

4.3.1. Influence of u,0n the ASN, and false and missing alarm probabilities
The theoretical behavior of the ASN as a function of the parameatargds defining the hypothesid; can
be obtained from (8). Fig. 10 shows the ASN behavior, assuming that the distributienresiduals has a
fixed meanu=0.46 (the same mean value of the residual in Fig. 5), while varyiagdo. In Fig. 11, a
magnification of the lowest curve of Fig. 10 shows a qualitative agredméneen the theoretical ASN
obtained from (8) (circles) and the empirical one (crosses). As expeatedStt increases with? and
decreases as increases.
The choice of the value @f should also consider the desired balance between false and missed alarm rates.
To this purpose, let us define the operating characteristic funQijcas the probability thadt, is accepted,
and the power functiqrP, as the probability thatl; is acceptedTheoretically it is expected th&+Q=1
because the SPRT should always deliver a decision if an infinite number of rasichyés is available. In
the remaining part of this section, we will analyze the behaviQraridP as a function of the mean of the
alternative hypothesisl;, in both cases in which abnormal and normal conditions are tested. Note that the
missed alarm rate is estimated@®yn an abnormal conditions test, and the false alarm rakeitya normal
conditions test
Fig. 12 reports the experimental evolutionRgf;) andQ(u,) for different values ofi;, when the abnormal
conditions residuals of Fig. 5 are tested. Several SPRT tests with different valugsasfe been performed
on the 1000 available residuals, and we have collected the number of times in which hypltoesi,
have been delivered. Notice several points.
- For small values af,, the SPRT test does not deliver any conclusion considering the 1000 available
residuals. This result is confirmed by (8), which provides SPRT values theged 000 (outside the
range of Fig. 10).
- Whenu~u/4=0.12, the SPRT starts to give an alarm (acceptipgelatively often, with probability
P(u)>1p.
- Whenu;>2u~1, the SPRT begins acceptihty relatively often: the alternative hypothesls is not
realistic for the case under analysis, and it has to be rejected with ptgbedpilal to 1 whem; =
4u, while accepting the null hypothesis.
Analogously to Fig. 12, Fig. 13 reports the experimental evolutid?(xg) andQ(x,) for different values of
11 when the normal conditiohsesiduals of Fig. 8 are tested. Notice that the latgehe more probable is

not rejectingHo.
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In this case, when choosing the valyethe analyst should simultaneously consider Figs. 11, 12, and 13
The criteria of a small ASN and of a low rate of false alarms weutijest taking a large value of
because both the ASN (Fig. 11) and the false alarm proballityrfre in Fig. 13, obtained through testing
normal conditions residuals) are decreasing with. On the contrary, the objective of minimizing the
missing alarm rate would suggest using a low valya tlecause the missing alarm probabilify qurve in

Fig. 12, obtained testing a normal conditionssidual) is increasing with;, when a set of residuals are
tested, and the system is working in abnormal conditidrsompromise solution fox; needs to be found,
able to recognize both normal and abnormal conditions in acceptable timaeWitnce to the case study
analyzed, an indication of taking a valuewgfequal tox can be suggested. The estimated ASN is not the
smallest possible (which could be reached with large valugs),0but it can guarantee a good trade-off
between small ASN and the reliability of the decision provided by the SPRT.

4.3.2. SPRT resultsin case of different distributions of the residuals

For the case study at hand, we have suggested seftemual tou to properly balance the delay in the
detection and the probability of false or missed alarms. However, because it is ngualigy for an analyst

to a priori quantify the consequences of abnormal conditions on the measured signhiss dmel éxpected
behavior of the residuals from whighis estimated, this suggestion is not easily applicable. In practice,
however, one can identify, for each signal, the amplitude of the minimum offsketbatshe is interested in

identifying. This offset can be considered equal to the expected mean valwerebittuals between the

signal in abnormal conditionsfd and the expected value of the signal in normal conditigis).( For
example, in Section 4.2, the minimum amplitude of the offset that has been cah&dequal to 1% of the
signal standard deviation.

An interesting question arises: which is the behavior of the SPRT ioat®e of residuals with Gaussian
probability distributions different from those supposedHif? Basically, we want to know what is going to
happen if we have fixed a given valueugfaccording to expert judgment, and then we use the SPRT for the
detection of abnormal conditions characterized by a residual distributiomwnean valug different from

U1, Or a variance? different from that oH,.

To this purpose, Fig. 14 shows the theoretical behavior of the ASHlifferent values of the residual mean

w1 and its standard deviatian(8), wheny; is fixed. As expected, if the standard deviation of the rasidu
increases, the ASN tends to become larger. Notice alscstimaliependently from the standard deviation of
the residuals, the maximum of the ASN is reacheg fqual tQu,/2.

Finally, observe that for<wu,/2 the smallew is, the smaller is also the time necessary for the SPRT to
deliver a decision. Unfortunately, in these cases in which an abnormal conditibrssnall . is tested, the
delivered decision tends to be the wrong hypothdg{®ormal conditionsbecause the residual distribution
results are very similar to the normal conditioresidual distribution (see Fig. 12 for larg®. On the other
side, foru>u,/2, the larger the mean value of the residual is, the smaller the time ngdesshe SPRT to

deliver a decision is. Thus, in this case, the delivered decision tends to be the correct hyypthesis
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Consider an additional example to further clarify the SPRT outcomes when tessiogials with
distributions having a mean valuedifferent fromy,. To this purpose, we have simulated a new abnormal
conditions on signal 4a which starts=a200 hoursand consistén an offset of increasing amplitude: 0.25%
of the standard deviation of the signal values in normal conditions timibg201-400] hours, 0.5%, in the
time interval [401-600] hours, 0.75% in the time interval [601-800] hours1#ndn the time interval [801-

1000] hours Fig. 15 shows the measuremenf§’, and the reconstructiony: obtained by the AAKR

reconstruction models. Fig. 16 reports the corresponding resid@ials {4, ra,..., .
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The SPRT with the same parameters of Table | has been applied to the residigdsthisibthe choice of
11=0.46 indicates that the analyst is interested in identifying offsets of amplitude 0.4geor la

Fig. 17 shows the outcomes of the SPRT. Table II reports the number of timescintidiSPRT has
correctly recognized normal and abnormal conditions, and an estimate of the ASNdiffeitent time

intervals.
Tablell
Performance of the SPRT test in the different time intervals
Time interval Offset Estimated ASN| Number of times in which | Number of times in which
normal conditiondhvavebeen| abnormal conditionbave
detected been detected
[0-200] No 1.2 150 2
[201-400] Yes 1.9 70 5
(amplitude = 0.11)
[401-600] Yes 2.4 15 17
(amplitude = 0.23)
[601-800] Yes 2.1 0 94
(amplitude = 0.34)
[801-1000] Yes 1.2 2 142
(amplitude = 0.46)

Notice that, as expected, when in the time intetwdl-200] hours, the component is under normal

conditions, the SPRT index moves quickly from zero towards the lower boumgAyythus indicating to



accept the hypotheskd, (component under normal conditions) with high probability. Then, whe[201-

400] hours £=0.11 1,=0.46,u<u,/2), the decisional process is still very fast (see Fig. 14); but, although the
case is one of abnormal conditions (an offset of small amplitude is applieé ®gnal), the delivered
decision tends to be the wrong hypothé4ignormal conditionsbecause the residuals distributicnvery
similar to the normal conditiongesiduals distribution. Later, fdr= [401-600] hours y=0.23 1,=0.46,
w=~u/2), the ASN reaches its maximum (see Fig. 14), but the missed alarm rateseleangfavor of a larger
number of true alarm flags. For [601-800] hoursy=0.33 1,=0.46,u>u1/2), the test becomes much more
reliable because the false alarms rate appesgghFort = [801-1000] hoursy=0.45 u;=0.46, u~u,), the

ASN is very small, and the delivered decision tends to be the correct hypéthesis

As a final investigation, we are interested in analyzing the results of the presgsti€onsidering an
alternative hypothesjg=0.11, rather thap,;=0.46 as it was in the previous analysis. This alternative setting
agrees with the suggestion given in the previous sectiory,.equal tox, whereu is the smallest value of
deviation from nominal conditiorthat the experts foresee to occur in the case of anomalies.

Fig. 18 shows the outcomes of the SPRT. Starting fren201 hours, that is the onset of the abnormal
conditions withu = u; = 0.11, the alarm flag is already raised with very high probabilitytt@sehe ASN is
larger than that obtained in Fig. 11 due to the fact that the theoreticalsA®iNat its minimum (which can

be reached with very large valuesugf see Fig. 19). However, assumjng0.11 has allowed a guarantee of

a good trade-off between small ASN and the reliability of the decision provided by the SPRT.
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Fig. 18. Outcomes of the SPRT for the reconstructed signalsreported in Fig. 15, #;=0.11.



20

O  Theoretical ASN
16 X Empirical ASN

ur o

10~

ASN

Fig. 19. Values of ASN for the case study of Fig. 15 at different u;.

5. Conclusions

The problem of detecting faults in components of NPPs has been considered in thisBpapd on
previously published works [29], a condition monitoring scheme capable of jdegtihe signal groups by
a hybrid approach based on CA and GA has been adopted. This approach has beemseterstedf its
capability to limit fault propagation with respect to a CA-based figproach, and to demand a lower
computational effort with respect to a GA-based wrapper approach. The groumioghesiare then fed to
traditional empirical AAKR method for signal reconstructions.

On the basis of the reconstructions provided by the AAKR models (one fosigaahgroup identified), the
SPRT for the detection of abnormal conditions has been adopted for balancingsifisation probabilities,
i.e., false and missed alarm rates. A novel procedure for setting the parametesbtheeSPRT has also
been proposed, for practical use.

A case study regarding the monitoring of the RCPs of a typical PWR has been considiregerformed
tests, the combination of a hybrid signal grouping technique with AAKR and $BR proven capablsf
detecting the onset of abnormal conditions with a controlled low percentage oaralsmissed alarms.
Future work will entail the design of decision thresholds such that the SPRT ysttateguarantee the

minimum time for the fault detection (ASN), even in the case of auto-correlated signals.



Appendix
The Auto-Associative Kernel Regression (AAKR) method
Let x> ™ be a matrix of observed data whose generic elem@&nt°(k, n) represents thé-th time

observationk=1,...,T, of the n-th measured signat=1,...,N, taken during normal plant conditionBhe
basic idea of the AAKR method is to reconstruct the signal values in casenwdl conditionsi™, given a

current signal measurement vecter; = (x*(1),...x**( N)), as a weighted sum of the observations in

x . Thus, ™ (n), the reconstruction of(n), then-th component ok*, is given by

> w(k)- X" (k)

)znc ( n) — k=1

(10)
2. w(k)

T
k=1

The weightsw(k) are similarity measures obtained by computing the Euclidean distance beheeen

current sensor measuremefts and thek-th observation ofx °* "°:

d’(k)=Y (" (n)-x"""(kn) . (11)

N 2
n-1

Inserting it in the Gaussian kernel,

1 d’(k)
e 20 (12)
2rzh

w(k)=

where the signdi defines the Gaussian bandwidth.
To provide in (11) a common scale across the different signals measurergrdiffjuantities, it is necessary

to normalize their values. In the present work, the signal values are normalized according to
x(n)= ———= (13)

where x(n) is a generic measurement of sigmaland »(n) and s (n) are respectively the mean and

standard deviation of theth signal in x °**"°:
Z Xobs— nC( k, n)
k=

wn)="=—o

S (6 () (1)

T

2
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