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Abstract

This paper addresses the problem of evaluating a subset of the range
of a vector-valued function. It is based on a work by Goldsztejn and
Jaulin which provides methods based on interval analysis to address this
problem when the dimension of the domain and co-domain of the function
are equal. This paper extends this result to vector-valued functions with
domain and co-domain of different dimensions. This extension requires the
knowledge of the rank of the Jacobian function on the whole domain. This
leads to the sub-problem of extracting an interval sub-matrix of maximum
rank from a given interval matrix. Three different techniques leading to
approximate solutions of this extraction are proposed and compared.
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1 Introduction

Computing the values a function can take over some domain is generally of great
interest in the analysis of numerical programs as in abstract interpretation [3],
in robust control of dynamic systems [12], or in global optimization [19]. Com-
puting the image of a domain by a function (also called direct image or range)
exactly is intractable in general. The classical solution is then to compute an
outer approximation of this range, which can unfortunately be very pessimistic.
This outer approximation may introduce many values which do not belong to
the range. Providing, in addition, an inner approximation can be helpful to
state the quality of the outer approximation.

For scalar-valued functions, an inner approximation can be evaluated us-
ing modal intervals [7] (using Kaucher arithmetic [13]) or twin arithmetic [17].
When f maps Rn to Rn, modal intervals [4] can also be used in the linear
case. For the non-linear case, set inversion [11] can be used when f is globally
invertible (when an inverse function f−1 can be produced).

In the more general case of f being locally invertible, the method described
by Goldsztejn and Jaulin in [5] can be applied. This technique requires however
the inverse of the Jacobian of f . Thus it can only be applied for functions from
Rn to Rn of constant rank n.

This paper proposes a generalization of the method in [5] to deal with func-
tions f from D ⊆ Rm to Rn, with m 6= n, with rank r. It describes a method
to compute an inner approximation for at most r components of f . As in [5],
the evaluation of the Jacobian of the function on a given subset of its domain is
needed. There, the identification of the components that can be used to com-
pute an inner approximation has to be done by extracting the sub-matrix of
full rank in its Jacobian. Checking regularity of interval matrices is a NP-hard
problem [20], so is the problem of extracting an interval sub-matrix of full rank.
To our knowledge, no necessary and sufficient condition for checking regularity
can be used to address this problem (a list of necessary and sufficient conditions
for an interval matrix to be regular can be found in [21]).

Concurrently with our work, Ishill et al. [10] proposed a computation of
a projection of the solution set of under-constrained systems. This is closely
related to our problem, since the image of a function can be recast in terms of
constraint solving. But their method relies on the classical Hansen Sengupta
operator, while we modify it to handle the different cases according to the
dimension of domain, codomain and the rank of the function. This restricts
their method to the case where the rank of the function is equal to the dimension
of the codomain, or to a manual choice of some dimensions.

This paper is organized as follows: Section 2 recalls the main result of [5] on
the computation of an inner approximation of the range of vector-valued func-
tions with domain and co-domain of the same dimension. Section 3 describes
the extension of this result to functions with domain and co-domain of different
dimensions. Section 4 addresses algorithms for computing and inner approx-
imation and describes how sub-matrices of full rank can be extracted from a
given interval matrix using different techniques. The computation of an inner
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approximation of the range of functions is illustrated on examples in Section 5.

Notations

x = [x, x] , {x ∈ R : x 6 x 6 x} is an interval where x and x are respectively
its lower and its upper bound. IR , {[x, x] : x, x ∈ R, x 6 x} represents the set
of intervals. A box is the Cartesian product of n intervals in IRn. For an interval
x = [x, x], the width is wid(x) , x − x, the midpoint is mid(x) , 1

2
(x + x),

the interior is int(x) , {x ∈ R|x < x < x}, and the boundary is denoted
by ∂x. The magnitude is denoted |x| , max{|x|, |x|} and the mignitude is
〈x〉 , min{|x|, |x|} if 0 /∈ x and 〈x〉 = 0 otherwise. The width of an interval
vector x ∈ IRn is max16i6n(wid(xi)).

The core of interval analysis is its fundamental theorem (see, e.g., [16] or
[18]) asserting that an evaluation of an expression using intervals gives an outer
approximation of the range of this expression over the considered intervals. An
interval function is an inclusion function denoted here f : f(x) = {f(x) : x ∈
x} ⊆ f(x) for x included in the domain of f . For an interval square matrix
A ∈ IRn×n, DiagA ∈ IRn×n is the diagonal interval matrix whose diagonal
entries are (DiagA)ii = Aii, 1 6 i 6 n, and 0 elsewhere. OffDiagA ∈ IRn×n

is the interval matrix with null diagonal and with off-diagonal entries such that
(OffDiagA)ij = Aij . For a vector-valued function f : D ⊆ Rm → Rn and
x ∈ D, fi:j(x) , (fi(x), fi+1(x), . . . , fj(x))

T for i 6 j. For the Jacobian Jf of f
and x ∈ D,

Jfi:j ,xk:ℓ(x) ,









∂fi
∂xk

(x) ∂fi
∂xk+1

(x) . . . ∂fi
∂xℓ

(x)
∂fi+1

∂xk
(x) ∂fi+1

∂xk+1
(x) . . . ∂fi+1

∂xℓ
(x)

...
...

...
∂fj
∂xk

(x)
∂fj

∂xk+1
(x) . . .

∂fj
∂xℓ

(x)









is the restriction of the Jacobian of f for j − i components of f and ℓ − k
components of x. Ik ∈ Rk×k is the identity matrix of dimension k. The null
matrix with k rows and ℓ columns is denoted 0k×ℓ and the null vector of k
entries is denoted 0k , (0, . . . , 0)T .

2 Inner approximation for functions with domain

and co-domain of the same dimension

This section recalls the main result of [5] to evaluate an inner approximation of
the range of a function with domain and co-domain of the same dimension.

Corollary 2.1 Let x ∈ IRn and f : x→ Rn be a continuous function continu-
ously differentiable in int(x). Consider y ∈ IRn and x̃ ∈ x such that f(x̃) ∈ y.
Consider also an interval matrix J ∈ IRn×n such that f ′(x) ∈ J for all x ∈ x.
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x

x̃

x̃

fS

(fS)
−1

ỹ

x̃+ Γ(J, x̃− x̃, ỹ − f(x̃))
fS(x̃)

fS(x) = {f(x) : x ∈ x}

Figure 1: Sets and functions involved in Corollary 2.1 for inner approximation.

Assume that 0 /∈ Jii for all i ∈ [1, . . . , n]. Let

H(J, x̃,x,y) = x̃+ (Diag−1 J)
(

y − f(x̃)− (OffDiag J)(x− x̃)
)

(1)

If H(J, x̃,x,y) ⊆ int(x) then y ⊆ range(f,x).

This corollary provides an efficient test for a box y to be a subset of the range
of a vector-valued function. It can be used to compute an inner approximation
of functions f from Rn to Rn, see Section 4. The restriction on f having same
dimension of domain and co-domain comes from the matrix inversion of Diag J
in (1). Figure 1 illustrates the computation in Corollary 2.1. The left part
of Figure 1 represents the domain x and the right part the co-domain of f .
The set-valued map fS is defined from P(Rn) (power set of Rn) to P(Rn) and
returns the set {f(x) : x ∈ D} for a given set D, see [2]. From a given box
x̃ ⊂ x, one wants to know if the box ỹ computed by an inclusion function of
f over x̃ belongs to the range of f or equivalently if ỹ = f(x̃) is a subset of
fS(x). If x̃ is too large compared to x, one might have ỹ = f(x̃) * fS(x). To
prove that ỹ ⊂ fS(x), it is sufficient to prove that f−1

S (ỹ) ⊂ x. The function
H(J, x̃,x,y) in (1) can be seen as an inclusion function for f−1

S ◦ fS(x).

3 Extension for functions with domain and co-

domain of different dimensions

Corollary 2.1 only applies for functions having the same dimension for domain
and co-domain. It also needs that the determinant of the Jacobian is different
from 0. Consider now the case of a function f with domain and co-domain of
different dimensions. In what follows, assume that f : D ⊆ Rm → Rn is a C1
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function of rank greater than or equal to r on D. It is assumed that there exist
r components (xi1 , . . . , xir ) of x = (x1, . . . , xm) ∈ D ⊆ Rm and r components
(fj1(x), . . . , fjr (x)) such that

∀x ∈ D ⊆ Rm, det

(
∂fjk
∂xiℓ

(x)

)

16k,ℓ6r

6= 0 (2)

Hereafter, without loss of generality, f is considered after the permutation of
the r coordinates (xi1 , . . . , xir ) and the r coordinates (fj1(x), . . . , fjr (x)) (this
permutation is discussed later in Section 4.3). It means that the Jacobian of f
has an r × r sub-matrix on the upper left such that

∀x ∈ D ⊆ Rm, det

(
∂fj
∂xk

(x)

)

16j,k6r

6= 0 (3)

Theorem 3.1 in [5] provides sufficient conditions for a box y to be included
in the range of a function. Theorem 3.1 bellow generalizes this characterization
by providing sufficient conditions for a box y1 ∈ IRr to be inside the projection
on the first r components of the image of f : D ⊆ Rm → Rn when f verifies (3).

Theorem 3.1 Let f : D ⊆ Rm → Rn be a C1 function that verifies (3), u ⊂ D
a box in IRm and y1 ∈ IRr. Assume that the two following conditions are
satisfied

(i) y1 ∩ f1:r(∂u) = ∅;

(ii) f1:r(ũ) ∈ y1 for some ũ ∈ u,

then y1 ⊆ f1:r(u).

Before starting the proof the next result is needed.

Lemma 3.1 Let f : D → Rn be a C1 function satisfying (3) and let E be a
compact such that E ⊂ D. Then one has ∂(f1:r(E)) ⊆ f1:r(∂E).

Proof: Consider any y1 ∈ ∂(f1:r(E)). As f is continuous, f1:r is continuous
as well. Then the image of E, compact, by f1:r is also compact. In particular
it is closed so ∂(f1:r(E)) is included in f1:r(E). So there exists x ∈ E such
that y1 = f1:r(x). Now suppose that x ∈ intE. We now prove that this
leads to a contradiction. As x ∈ intE, there exists U open of E with x ∈ U .
Because of (3), f1:r is a submersion and as submersions are open maps (see
[24]), V = f1:r(U) is open in Rr. We have y1 ∈ V then y1 ∈ int f1:r(E) which
contradicts y1 ∈ ∂(f1:r(E)). As a conclusion we have x ∈ ∂E and eventually,
∂(f1:r(E)) ⊆ f1:r(∂E). Proof:[Theorem 3.1] u is a compact of D and f is a
C1 function that verifies (3) so we have, from Lemma 3.1, ∂(f1:r(u)) ⊆ f1:r(∂u).
So y1 ∩ ∂(f1:r(u)) ⊆ y1 ∩ f1:r(∂u) = ∅ therefore

y1 ∩ ∂(f1:r(u)) = ∅. (4)
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The set f1:r(u) is compact because u is compact and f1:r is continuous. Let ũ
and y1 = f1:r(ũ) ∈ y1 be given in (ii). As the intersection of y1 and ∂f1:r(u)
is empty by (4), y1 ∈ int f1:r(u). Consider any z ∈ y1 and suppose that z /∈
f1:r(u). Since y1 is path connected, there exists a path included in y1 between
y1 and z such that, by Lemma A.1. in [5], this path intersects ∂f1:r(u) which
is not possible from (4). Therefore z ∈ f1:r(u) which concludes the proof.

Theorem 3.1 is a generalization of Theorem 3.1 in [5] for a function satisfying
(3). In Theorem 3.1 in [5], the set Σ = {x ∈ intx | det f ′(x) = 0} can be
extended for f1:r by Σ2 = {x ∈ intx | rank(f1:r(x)) < r}. Due to (3), one
has Σ2 = ∅. In what follows, Corollary 3.1 of Theorem 3.1, which extends the
inclusion test of Corollary 2.1, is introduced.

Corollary 3.1 Let f : D ⊆ Rm → Rn be a C1 function that satisfies (3) and
u = (u1,u2) ∈ IRr × IRm−r. Consider y1 ∈ IRr, ũ = (ũ1, ũ2) ∈ (u1,u2) such
that f1:r(ũ) ∈ y1 and Jf1:r =

(
Jf1:r,u1 Jf1:r,u2

)
∈ IRr×m an interval matrix

containing Jf1:r the Jacobian of f1:r on (u1,u2) such that 0 /∈
(
Jf1:r,u1

)

ii
for

1 6 i 6 r. Let

Hf1:r (J
f1:r , ũ,u,y1) = ũ1 + (Diag−1 Jf1:r,u1)×

(

y1 − f1:r(ũ)− (OffDiag Jf1:r,u1)(u1 − ũ1)− Jf1:r,u2(u2 − ũ2)
)

.

If
Hf1:r (J

f1:r , ũ,u,y1) ⊆ int(u1), (5)

then
y1 ⊆ f1:r(u).

Proof: It is sufficient to prove that if (5) is satisfied, the conditions of Theo-
rem 3.1 are satisfied too.

(i) Let u = (u1, u2) ∈ ∂u. Since u ∈ u, the mean value theorem applied to
f1:r (see [18]) shows that

f1:r(u) ∈ f1:r(ũ) + Jf1:r (u− ũ) (6)

Let us show that f1:r(ũ)+Jf1:r (u−ũ)∩y1 6= ∅ which implies (i) false contradicts
(5). Assume that there exists J ∈ Jf1:r , J = (J1J2) with J1 ∈ Rr×r and
J2 ∈ Rr×m−r; u = (u1, u2)

T , ũ = (ũ1, ũ2)
T , and y1 ∈ y1 such that

y1 = f1:r(ũ) + J(u− ũ)

= f1:r(ũ) + J1(u1 − ũ1) + J2(u2 − ũ2) (7)

By splitting J1 in Diag J1 +OffDiag J1 in (7), we obtain:

y1 − f1:r(ũ)− J2(u2 − ũ2) = (Diag J1)(u1 − ũ1) + (OffDiag J1)(u1 − ũ1)

ũ1 + (Diag−1 J1) (y1 − f1:r(ũ)− (OffDiag J1)(u1 − ũ1)− J2(u2 − ũ2)) = u1

As u ∈ u, y1 ∈ y1, Diag−1 J1 ∈ Diag−1 J1, OffDiag J1 ∈ OffDiag J1, and
J2 ∈ J2, one gets

u1 ∈ Hf1:r ((J1 J2), ũ,u,y1) (8)
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f3(x)

f2(x)

f1(x)

f(x)

Figure 2: Example for f : (x) ⊆ R 7→ R3 of constant rank 1.

and u1 ∈ ∂u1 which contradicts (5). Then (5) implies (i).
(ii) By hypothesis, f1:r(ũ) ∈ y1.
For a function f : D ⊆ Rm → Rn, Corollary 3.1 gives a test for a box to

belong to the image of r components of f . It can only be performed if the
Jacobian for r components of the function evaluated over the considered box is
of full rank r. When the rank of f equals the dimension of the co-domain, f is
a submersion [1], Corollary 3.1 can be used to compute an inner approximation
of the entire range of f .

Example 3.2 Let f : D ⊂ R→ R3 be a function that satisfies (3) for r = 1.

f : x ⊂ R→ R3

x 7→





sin 2x
sinx

x
2



 (9)

The box x = [0, π] ⊂ D is considered as the domain on which f is studied. The
function is of constant rank 1 then using Corollary 3.1, one is able to compute
an inner approximation of the range of a single component of f e.g. f1(x),
f2(x) or f3(x). There is of course no proper box of dimension 2 or 3 included
in the range of f . Figure 2 represents the range of the function defined in (9).
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4 Algorithms

4.1 When domain and co-domain have the same dimen-

sion

Algorithm 1 in [5] computes an inner approximation for functions with domain
and co-domain of the same dimension using Corollary 2.1 and a bisection al-
gorithm. The method is as follows. For a given box x̃ included in the initial
domain x, a box ỹ such that f(x) = {f(x) : x ∈ x̃} ⊆ ỹ is computed using the
interval extension f of f .

If the hypotheses of Corollary 2.1 are satisfied, ỹ is part of an inner approx-
imation of the range of f . If they are not satisfied, x̃ is partitioned into two
smaller boxes x̃′ and x̃′′ that are treated like x̃ was. If the box x̃ = (x̃1, . . . , x̃m)
is deemed too small to be further bisected (i.e. when wid(x) < ε where ε is a
user-defined parameter), then the iterations stop for this box. This is described
in Algorithm 1. It uses the function Inner described in Algorithm 2, to decide
if a box belongs to the range of a function.

Algorithm 1: Range inner-approximation evaluation algorithm as defined
in [5].

Input: f , x, ǫ
Output: LInside (list of boxes), LBoundary (list of boxes)

1 LInside: empty list of boxes;
2 LDomain: empty list of boxes (sorted by decreasing width);
3 LDomain ← LDomain ∪ {x};
4 while LDomain not empty do
5 x̃← Extract(LDomain);
6 ỹ← f(x) ∩ (f(mid(x̃)) + f ′(x̃)(x̃−mid(x̃)));// Inclusion function

7 if Inner(f , x, x̃, ỹ) then
// Inner is from Algorithm 2 or Algorithm 3 according

to the dimension of domain and co-domain

8 LInside ← LInside ∪ {ỹ};
9 else if wid(x̃) ≥ ǫ then

10 Bisect the box x̃ to obtain x̃′ and x̃′′;
11 LDomain ← LDomain ∪ {x̃

′, x̃′′};
12 else
13 LBoundary ← LBoundary ∪ {ỹ};
14 end

15 end
16 return (LInside,LBoundary);

Algorithm 2 decides for a given box x̃ ⊂ x whether f(x̃) belongs to the
range of f over x. The parameters τ and µ are used for the domain inflation
(see Section 5.2 in [5]) and C is used to precondition the interval matrix Jf (see
Section 4 in [5]).

8



Algorithm 2: Inclusion test as defined in [5].

Input: f , x, x̃, y
Output: Boolean

1 τ ← 1.01; µ← 0.9;
2 k ← 0;
3 x̃← mid(x̃);
4 C ← f ′(x̃)−1;
5 b← Cỹ − Cf(x̃);
6 dk ← +∞; dk−1 ← +∞;
7 while dk ≤ µdk−1 ∧ x̃ ⊆ x do
8 u← Γ(Cf ′(x̃), x̃,−x̃,b);// Γ is as defined in Corollary 2.1

9 if x̃+ u ⊆ x̃ then return true;
10 dk−1 ← dk;
11 dk ← d(x̃, x̃+ τu);// Domain inflation (Cf. Section 5.2 in

[5])

12 x̃← x̃+ τu;
13 end
14 return false;

Example 4.1 Let f(x) = Ax with A =

(
1 1
−1 1

)

, and an initial domain

x = ([−2, 2] , [−2, 2]). The aim is to compute an inner approximation of the
set {f(x) : x ∈ x}. Of course, in this too simple case, direct methods would be
applicable since A is an invertible matrix, but this is intended to exemplify the
method. Figure 3 shows the result obtained using Algorithm 1. Since bisections
occur in the domain, the result consists of a set of overlapping boxes, obtained by
an inclusion function computing outer approximations. Dark areas in Figure 3
indicate many overlapping boxes.

4.2 When the domain and co-domain have different di-

mensions

We now extend the method in [5] to compute an inner approximation of the
projection on r components of f . Algorithm 1 is used unchanged, except for the
inner inclusion test Inner in Line 7 which is now implemented by Algorithm 3
instead of Algorithm 2. When using Algorithm 3, the vector-valued function
f is assumed to satisfy (3). The main difference with the method in [5] is in
the construction of the variables needed in the application of Corollary 3.1: in
Algorithm 3, Lines 7–10 are dedicated to the definition of the vectors (u1, u2),
the interval vectors (u1,u2) and the interval matrices (Jf1:r,u1 , Jf1:r,u2) from
Corollary 3.1. First, the r components must be separated from the others to
obtain (u1, u2). In Line 7, we construct from a vector in D ⊆ Rm, the initial

9



Algorithm 3: Inclusion test based on Corollary 3.1

Input: f : D ⊆ Rm → Rn, x, x′, y, r// r is the rank of f
Output: Boolean

1 τ ← 1.01; µ← 0.9;
2 k ← 0;
3 x̃← mid(x̃);
4 J← f ′(x);
5 Jf1:r ← transformation(f ′(x̃), r); // recovery of the r first lines

of the Jacobian of f

6 C ← precondition(Jf1:r );// Computation of the precondition

matrix

7 (ũ1, ũ2)← Extract(x̃, r,m);
8 (ũ1, ũ2)← Extract(x̃, r,m);
9 (u1,u2)← Extract(x, r,m);

10 (Jf1:r,u1 ,Jf1:r,u2)← Extract(CJ, r,m);
11 b← (Cỹ − Cf(x̃))1:r;// We need only the r first components

12 dk ← +∞; dk−1 ← +∞;
13 while dk ≤ µdk−1 ∧ ũ ⊆ u do

14 t← (Diag −1Jf1:r,u1)(y1 − f1:r(ũ1, ũ2)− (OffDiag Jf1:r,u1
)(ũ1 − ũ1)−

Jf1:r,u2(ũ2 − ũ2));
15 if ũ+ t ⊆ ũ then return true;
16 dk−1 ← dk;
17 dk ← d(ũ, ũ+ τt);// Domain inflation (Cf. Section 5.2 in

[5])

18 ũ← ũ+ τt;
19 end
20 return false;

10



Figure 3: Inner approximation of the range of f(x) = Ax when x ∈ [−2, 2]2 :
LBoundary (in black) and LInside are evaluated using Algorithm 1 with ε = 10−3

domain, a vector in Rr × Rm−r.

(x1, . . . , xm) 7→ ((x1, . . . , xr), (xr+1, . . . , xm))

Lines 8 and 9 construct the same information as at Line 7 but for x ∈ IRm, an
interval vector instead of a vector in Rm, to get (u1,u2) ∈ IRr × IRm−r. In
Line 10, the pair of interval matrices (Jf1:r,u1 , Jf1:r,u2)) ∈ Rr×r × Rr×m−r are
obtained from an interval matrix Jf1:r ∈ Rr×n.

Preconditioning In [5], the function has the same dimension for domain and
co-domain and the Jacobian is then a square matrix. This interval square matrix
which is an outer approximation of the Jacobian has to be preconditioned in
order to apply the test in Corollary 2.1 with an H-matrix (see Definition 4.8 and
Section 4 in [5]). Here we need also to extend this preconditioning operation.
In practice, the preconditioning matrix is computed as follows: For a given box
u ∈ IRm, Jf1:r (ũ), the Jacobian of the r first components of f , is computed for
ũ = mid(u) and supplemented with the (m− r) last lines of the identity matrix
Im to obtain an m×m matrix

Dũ =

(
Jf1:r (ũ)

0m−r×r Im−r

)

.

The inverse of Dũ is computed and its r first columns are extracted to be the
preconditioning matrix C. Decomposing C into (C1, C2)

T with C1 ∈ Rr×r and
C2 ∈ Rm−r×r, the test in Corollary 3.1 becomes

Hf1:r (CJf1:r , ũ,u, Cy1) ⊆ int(u1). (10)

11



4.3 Extracting the sub-matrix of maximum rank from an

interval matrix

The use of Algorithm 3 requires that the rank r of the Jacobian of f is known
and that f satisfies (3). The Jacobian matrix is an interval matrix containing
the Jacobian of f over some box. In the general case, we thus need to extract
an interval sub-matrix of constant rank from the Jacobian of f .

In this section, we first define the rank of an interval matrix. Then, we
propose different methods to extract sub-matrices of full rank from a given
interval matrix. Some results on the evaluation of the eigenvalues of an interval
matrix are well documented (see, e.g., [22]) but are not tractable for our problem.
The extraction of an r × r sub-matrix of full rank is also not tractable. Thus,
we chose to rely on three more tractable - though more approximate - methods
aiming at extracting a sub-matrix of high rank from a given interval matrix.

Definition 4.2 (Regular interval square matrix [21])
Let A ∈ IRn×n be an interval matrix. A is regular if and only if for all matrix
A ∈ A, A is not singular.

Definition 4.3 (Rank of an interval matrix [9])
Let A ∈ IRn×m be an interval matrix. A is of constant rank r if and only if the
largest regular interval square sub-matrix A0 of A, is of dimension r.

Definition 4.3 means that for all A ∈ A ∈ IRn×m, the rank of A is larger
than or equal to r. To extract a regular interval square matrix of dimension
equal to the rank of A, three techniques are proposed in what follows.

4.3.1 Building strictly dominant interval sub-matrices

This first method relies on the Levy-Desplanques theorem on strictly dominant
matrices as a simple test for non-singularity. We uses this test to formulate the
extraction of sub-matrices of full rank as a linear programming problem.

Definition 4.4 (Strictly diagonally dominant matrix [6])
Let A = (aij)16i,j6m

∈ Rm×m be a square matrix. A is a strictly diagonally
dominant matrix if and only if

∀i ∈ {1, . . . ,m}, |aii| >
m∑

j=1
j 6=i

|aij |. (11)

This definition can be extended to interval matrices, using magnitude and migni-
tude instead of the absolute value:

Definition 4.5 (Strictly diagonally dominant interval matrix [18])
Let A = (aij)16i,j6m

∈ IRm×m be a square interval matrix. A is a strictly
diagonally dominant interval matrix if and only if

∀i ∈ {1, . . . ,m}, 〈aii〉 >
m∑

j=1
j 6=i

|aij | (12)

12
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Figure 4: Example of result provided by the method using strictly dominance
(see Section 4.3.1) and the one using H-matrices (see Section 4.3.2) on an interval
matrix A ∈ IR4×5: ⋆ represents components of the matrix that have been
chosen (xij = 1) for the diagonal and � represents the non-diagonal entries of
the sub-matrix. Empty boxes represent components that are not part of the
sub-matrix.

Theorem 4.6 (Levy-Desplanques theorem [14, 23]) A strictly diagonally
dominant (interval) matrix is regular.

Consider A ∈ IRn×m, an interval matrix. We introduce the decision vari-
ables xij with 1 6 i 6 n and 1 6 j 6 m. The boolean xij equals 1 if the
component aij of A is picked to be an element of the diagonal of the rank k
sub-matrix of A and 0 otherwise. The xijs are obtained as solutions of the
following constrained optimization problem

max f(x) =

n∑

i=1

m∑

j=1

xij

s.t.







n∑

i=1

xij 6 1 j = 1, . . . ,m

m∑

j=1

xij 6 1 i = 1, . . . , n

n∑

k=1

xkl 〈akl〉 >
n∑

i=1

m∑

j=1

xij(1− xil)|ail|
k = 1, . . . , n
l = 1, . . . ,m

xij ∈ {0, 1}

(13)

The objective is to maximize the size of a square regular sub-matrix of A. The
two first constraints ensure that at most one component on each row and column
of the interval matrix A is taken (it corresponds to the problem of placing
towers in a possibly not square chess board). The last constraint corresponds to
Theorem 4.6. Figure 4 shows an example of solution provided by the constrained
optimization problem (13). A component of the interval matrix is picked if and
only if it satisfies (12) and then leads to a strictly diagonally dominant interval
matrix.

The last constraints in (13) are quadratic and have to be turned into linear
constraints for efficiency reasons since linear programming techniques are gener-
ally fast. A given akl is chosen if the sum of all the other ail for i = 1, . . . ,m for
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which there exists an aij that is part of the diagonal of the extracted sub-matrix
is lower. Equivalently,

xkl = 1⇒ 〈akl〉 >
n∑

i=1
i 6=k

m∑

j=1

xij |ail|. (14)

Using the so called Big-M relaxation (see, e.g., [8]), this constraint can be rewrit-
ten as follows.

n∑

i=1
i 6=k

m∑

j=1

xij |ail| 6 M + (〈akl〉 − µ−M)xkl (15)

with M chosen to be larger than
∑n

i=1
i 6=k

∑m
j=1 xij |ail| in order to deactivate the

constraint when xkl = 0 and µ as small as possible to approximate the strict
inequality but not too small to avoid introduction of numerical instability. Us-
ing (15) in (13), the constrained optimization problem (13) becomes

max f(x) =

n∑

i=1

m∑

j=1

xij

s.t.







n∑

i=1

xij 6 1 j = 1, . . . ,m

m∑

j=1

xij 6 1 i = 1, . . . , n

n∑

i=1
i 6=k

m∑

j=1

xij |ail| 6 M + (〈akl〉+ µ−M)xkl
k = 1, . . . , n
l = 1, . . . ,m

xij ∈ {0, 1}

(16)

Using a linear programming solver on (16), a strictly dominant interval matrix
can be extracted from A. The property for an interval matrix A to be a strictly
dominant interval matrix is on the rows of A. This definition can apply also for
AT the transpose of A, this is why the linear program is solved for both A and
AT to obtain the best result.

4.3.2 Building H-sub-matrices

A second method is now investigated. It uses a generalization of strictly dom-
inant interval matrices, i.e., the notion of H-matrices [18]. Basic results on
H-matrices are first provided before showing the slight changes in the con-
straint (15) that have to be done in order to detect H-sub-matrices in an interval
matrix.

Definition 4.7 (Comparison Matrix [18])
Let A ∈ Rm×m be a square interval matrix. The comparison matrix 〈A〉 is built

14



as follows

〈A〉ij =

{

〈Aij〉 if i = j

−|Aij | otherwise
with i, j = 1, . . . ,m.

Definition 4.8 (H-matrix [18])
Let A ∈ Rm×m be a square interval matrix. A is an H-matrix if and only if
there exists u > 0m such that 〈A〉u > 0m.

Theorem 4.9 ([18]) Every H-matrix is regular.

Remark 4.1 The notion of H-matrices generalizes the one of strictly domi-
nant interval matrices since a strictly diagonally dominant interval matrix is a
particular case of an H-matrix by fixing u = (1, . . . , 1

︸ ︷︷ ︸

m

)T in Definition 4.8.

From Remark 4.1, only slight changes have to be done in order to detect
an H-matrix instead of a strictly diagonally one. The constrained optimization
Problem (16) is transformed into

max f(x) =

n∑

i=1

m∑

j=1

xij

s.t.







n∑

i=1

xij 6 1 j = 1, . . . ,m

m∑

j=1

xij 6 1 i = 1, . . . , n

n∑

i=1
i 6=k

m∑

j=1

xij |ail|uij 6 M + (〈akl〉ukl − µ−M)xkl
k = 1, . . . , n
l = 1, . . . ,m

xij ∈ {0, 1}
uij > 0

(17)
Figure 4 shows an example of solution provided by the constrained optimiza-
tion Problem (17). In (17), the last constraint requires a matrix of variables
U = (uij) 1≤i≤n

1≤j≤m

to be introduced. It corresponds to the vector u in Defini-

tion 4.8. This means we now have to solve a quadratic problem that could be
tackled using SDP solvers. In order to solve (17) as efficiently as possible, i.e.,
by using linear programming techniques, we thus chose a particular u before
solving (17). All components of u are chosen to be the inverse of the mignitude
of the diagonal entries of the considered sub-matrix (as recommended in [18]):
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u = (〈aij〉
−1)1≤i≤n;1≤j≤m. The linear program is then

max f(x) =

n∑

i=1

m∑

j=1

xij

s.t.







n∑

i=1

xij 6 1 j = 1, . . . ,m

m∑

j=1

xij 6 1 i = 1, . . . , n

n∑

i=1
i 6=k

m∑

j=1

xij |ail|〈aij〉
−1 6 M + (〈akl〉〈akl〉

−1

︸ ︷︷ ︸

=1

−µ−M)xkl
k = 1, . . . , n
l = 1, . . . ,m

xij ∈ {0, 1}
(18)

Remark 4.2 Note that 〈akl〉 has to be different from 0 because of the division
that occurs in the constraint.

As in the method using strictly diagonally dominant matrices, the linear pro-
gram (18) can be solved using a linear programming solver.

4.3.3 Combinatorial method

A random search for an interval sub-matrix of maximum rank is performed. It
could rely on the two previous conditions (Definition 4.5 or Definition 4.8) to
determine whether a matrix is of full rank. However, since no linear program-
ming formulation has to be consider, one may use a more sophisticated test for
full rank verification. We use for that a result provided in [21].

Theorem 4.10 (Corollary 5.1 in [21]) Let A ∈ IRm×m be an square in-
terval matrix. Let ∆ be a matrix such that A = mid(A) + [−∆,∆]. Let
D = |mid(A)−1|∆. If the spectral radius ρ(D) < 1 then A is regular.

We combine this criterion derived from Theorem 4.10 by extracting randomly
chosen components of an interval matrix and testing whether the resulting sub-
matrix is regular. This process is described in Algorithm 4.

4.3.4 Experiments on the sub-matrix extraction

In this section, some results on extracting an interval square sub-matrix of
maximum rank from a given interval matrix are now described for the three
methods that have been previously described. Two types of experiments have
been performed depending on how the considered interval matrix has been pro-
duced. The linear programs for the first two methods have been solved using
the GLPK interface for C++ [15]. All experiments have been done on a 2.3 Ghz
Intel core i5 processor based laptop with 8 GBytes memory. In all experiments,
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Algorithm 4: Extraction of regular interval sub-matrix

Input: A ∈ Rn,m

Output: B ∈ IRk,k a regular interval matrix
1 if n = m and A is regular then
2 return A
3 end
4 for k = min(n,m) downto 1 do
5 for i = 1 to MAX_ITERATION do
6 B← extraction(A, k)// Extraction takes randomly k

components of A to be in the diagonal of B and the

other components are deducted from this diagonal.

7 if B is regular then
8 return B
9 end

10 end

11 end

the constant for the linear programs (16) and (18) are M =
∑m

i=1

∑n
j=1 aij

and µ = 10−2. For the random extraction, Algorithm 4 has been used with a
fixed MAX_ITERATION equal to 500. Results have been averaged over 200
realizations.

First experiments have been done on an interval matrix generated randomly
but containing a strictly dominant interval sub-matrix with a fixed dimension.
The matrix is constructed as follows: the size m of an interval square matrix A is
chosen. For each component aij of A, aij =

[
aij ,aij

]
with 1 6 i, j 6 m, aij is a

(pseudo) random number in [0, 9] and aij is equal to aij+1 for all i, j = 1, . . . ,m.
An a priori rank r is chosen. Then r coordinates (i, j) are randomly picked and
for each of these pairs, the associated interval aij =

[
aij ,aij

]
is taken as

aij = 1 +
m∑

k=1

akj and aij = aij + 1

Using this construction, there is in the resulting interval matrix A an r × r
interval sub-matrix of A and r is a lower bound of the actual rank of A.

Figure 5 depicts a first experiment showing the average execution time as a
function of the dimension of the considered interval matrix for the three meth-
ods. The constructed matrices here are square, have a dimension from 2 to 8
and are strictly dominant interval matrices (r = m). This experiment shows
the exponential increase of the computing time needed while the dimension of
the initial matrix for the methods using an LP solver and the apparently bet-
ter behaviour of the combinatorial method (with a fixed number of iterations).
Figure 6 shows average computing times of the LP solver for the search of H-
sub-matrices and strictly diagonally dominant sub-matrices, and for the random
sub-matrix extraction for an interval square matrix of dimension 8. In this case
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Figure 5: Computing time for the LP solver and the random extraction for a
full rank interval matrix of size i× i.
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Figure 6: Average computing time (in seconds) over iterations of the LP solver
for the search of H-sub-matrices and strictly diagonally dominant sub-matrices,
and for the random sub-matrix extraction for an interval matrix of size 8× 8 as
a function of the minimum expected rank.
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the matrix created randomly is constructed with a known minimum rank r with
2 6 r 6 8 that is the size of the interval H sub-matrix created. Using the LP
solver, the execution time is more or less constant. We stress here the fact that
the method using random extraction becomes faster for larger ranks because
they are detected very early with Algorithm 4 and because the matrix can con-
tain components equal to 0, the method using H-matrices in the case where u
is fixed as presented can no longer be applied since a division by 0 can occur in
the linear program (18).

Finally two last experiments are provided: they use a different technique to
construct the interval matrix. To test the efficiency of the proposed algorithms,
matrices with known rank r are built. For that purpose, a triangular matrix A
(with (A)ii 6= 0, 1 6 i 6 r) is first created. It is the upper left part of a matrix
J ∈ Rn×n with n > r. The (n− r) remaining columns of J are created as linear
combinations of the r first columns. Then a sequence of rotations are applied to
the matrix J (here we applied n+1 rotations). An angle θi is chosen randomly
with 0 6 θi 6 π to compose the rotation matrix. A pair (k, l) with k 6= l and
1 6 k, l 6 n is chosen randomly and the rotation is applied for coordinates (k, l)
and (l, k). The matrix A constructed in this way is not interval.

Figure 7 shows the results for a first experiment using this matrix construc-
tion which has the advantage to let us know the expected rank of the results.
Using Theorem 4.6 as a criteria for sub-matrix extraction generally leads to a
sub-matrix of dimension less than the rank of the matrix that is worse than the
combinatorial method.

The matrix construction can be used to show the impact of the interval
width of the components of the matrix on the method efficiency. For the last
experiment, the same matrix construction than the previous one is used except
that the components of the matrix constructed are thickened to obtain an inter-
val matrix (the interval [−0.25, 0.25] is added to each component of the matrix
for one experiment and [−0.5, 0.5] for another). Results are shown in Figure 8.

These experiments show that the combinatorial method is better than the
method extracting strictly diagonally dominant sub-matrices. This is due to
Theorem 4.10 which can detect a bigger subset of regular matrices than just
strictly diagonally dominant ones.

Limitations

As previously mentioned, this method cannot guarantee to obtain the sub-
matrix of maximum rank. For a given function f : D ⊆ Rm → Rn of constant
rank r, only p 6 r components can be detected from the LP program (13). An
inner approximation will be obtained only for these p components of f .
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Figure 7: Execution from a matrix J ∈ R8×8 of constant rank i = 2, . . . , 8.
Results are average values over 200 computations.

5 Computation of an inner approximation of the

range of a vector-valued function

This section shows some results of the computation of inner approximations
of immersions and submersions. The functions considered in these examples
satisfy (3) with r known.

5.1 Immersion

Consider the problem of finding the range of the function

f : R2 → R3

(u, v) 7→







f1(u, v) = cos(u) cos(v)
f2(u, v) = sin(u) cos(v)
f3(u, v) = sin(v)

(19)

over the box (u,v) = (
[
3π
2
+ τ, 2π − τ

]
;
[
τ, π

2
− τ

]
), τ > 0. f is of constant

rank 2 in (u,v). The rank is equal to the dimension of the domain of f , it is
then an immersion. Corollary 3.1 can be used to get an inner approximation of
the range of two components of f . Here we compute the range of the two first
components, but the two last or the first and the last components could also be
considered.
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Figure 8: Estimate of the rank of an interval matrix A ∈ IR8×8 of constant rank
i = 1, . . . , 8. Upper picture: [−0.25, 0.25] is added to each component, lower
picture: [−0.5, 0.5] is added to each component Results are average values over
200 evaluations. Standard deviation is provided.
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Figure 9: Example 1: Range of the immersion defined in (19) for the initial
domain (u,v) = (
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]
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), τ > 0.
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Figure 10: Example 1: Results of the computation of an inner approximation
for different values of parameter ε (0.1, 0.06, and 0.02).

Figure 9 represents the image of (u,v) by f which has no volume in its co-
domain R3. Results of the computation of an inner approximation of this range
are shown in Figure 10 for different values of ε in Algorithm 1. The smaller
the ε, the more accurate the inner approximation and the longer the computing
time. In Figure 10, empty boxes in gray represent boxes Algorithm 1 was unable
to prove to be in the range. Black boxes all belong to the range.

The left part of Figure 10 is for ε = 0.1, the middle part for ε = 0.06 and
the last part for ε = 0.02. The computing times are respectively 0.026 s, 0.10 s,
and 0.64 s.
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Figure 11: Example 2: Range of the submersion defined in (20) for the initial
domain (x,y, z) = ([2, 4.5] , [0, 2π − τ ] , [0, 2π − τ ]), τ = 10−3.

5.2 Submersion

Consider now the computation of an inner approximation of the range of the
function

f : (x,y, z) ⊆ R3 → R2

(x, y, z) 7→

{
(x+ r cos(z)) cos(y)
(x+ r sin(z)) sin(y)

(20)

with (x,y, z) = ([2, 4.5] , [0, 2π − τ ] , [0, 2π − τ ]), τ = 10−3. Figure 11 represents
the range of f and Figure 12 represents different computations of an inner
approximation according to the parameter ε in Algorithm 1. On Figure 12a
ε = 0.5 and it took 0.18s to get the result. For Figure 12b, ε = 0.3 and
computation time is 6.25s. In Figure 12c, it took 145.53s with ε = 0.1 to get
these results. Finally Figure 12 d is for ε = 0.05 and the computing time is
838.67s. The time needed for computation is longer for this experiment than
for the previous one on immersion. It is due to the fact that the Jacobian of
f is not of full rank in the entire domain ([2, 4.5] , [0, 2π − τ ] , [0, 2π − τ ]). It is
why an area (cf. Figure 12d remains out of the range of f .

6 Conclusion

Goldsztejn and Jaulin in [5] proposed a way to compute an inner approximation
of the range of a vector-valued function. This paper provides an algorithm to
evaluate inner approximations of the range of vector-valued functions without
restriction on the dimension of its domain and co-domain. Using the proposed
algorithm, one is able, for functions from Rm to Rn to evaluate an inner ap-
proximation of the projection of the range of f on at most r components, where
r is the rang of the Jacobian matrix of f . In the general case, this rank r is
unknown a priori, it is thus necessary to develop several techniques to extract
a sub-matrix of maximal rank from a given interval matrix. The restriction of
this method is providing an inner approximation of at most r components of
the function if this function has a constant rank r.
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Figure 12: Example 2: Results of computation of an inner approximation ac-
cording to the parameter ε in Algorithm 1 (ε = 0.5, 0.3, 0.1 and 0.05).
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