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ABSTRACT Long Term Evolution (LTE) [6] substantially improves

This paper proposes an improved cross-layer control mecrfpd—user throughputs, sector capacity and reduces user pla

nism to efficiently stream videos to mobile users over an LT atency, bringing significantly improved user experierices

network. A proxy-based filtering algorithm among scalableprovIdes IP connectivity between the U_ser Equm_ent (L.JE)
layers is considered to decide the number of SVC layers tgnd_ the Pac_:l_<et Data Network (PDN) without any d|_srupt_|on
transmit for each frame according to the communication conou"ng mobility. LT.E supports d|ffer(_ent types of services |
ditions and to the class to which the video belongs to. TthUd”.]g we_b browsing, video streaming, VoIP, online gaming
problem is cast in the context of Markov Decision ProcesserseaI time wdeq, etc. [7]. ) _ o

which allow the design of foresighted policies maximizing ' Order to improve the received video quality, in the con-
some long-term accumulated reward. Optimal actions to ag€Xt of LTE networks, control may be done in Medium Access

ply to the system are obtained by reinforcement learning. ThCONtrol (MAC) or in PHYsical (PHY) level. In [8] a QoS-

proposed solution is implemented in an LTE simulation plat:2Ware scheduling algorithm is proposed for real time video

form. Experiments show the performance of the proposed€!ivery over LTE cellular networks. A cross-layer optieiz
class-based layer filtering algorithm for a single videmsra system is proposed to achieve a good perceived video quality

mission and its robustness to content changes. under delay constraint by dynamically adapting the resourc
allocation to the instantaneous channel quality. Thisirequ
~ Index Terms— Video, 4G mobile communication, opti- scheduler adaptation in the eNodeB (eNB). In [9] a quality-
mization oriented video delivery over LTE algorithm based on modu-
lation and coding adaptation is proposed. In this algorjthm
1. INTRODUCTION PHY layer technologies, MIMO configuration, and MCS are
dynamically adjusted.
Today, we are facing an explosion of the video traffic on wire-  In [10, 11], video delivery control techniques are pro-
less network due to the proliferation of multimedia-frignd posed for single-video delivery. In [10] a smoothing buffer
portable devices [1]. This trend is expected to intensify fu is used in the eNB to smooth the transmission rates with min-
ther in the near future. Even if the rates provided by nextimal information about the video to be transmitted. This ap-
generation mobile networks are increasing, the demand fgsroach is mapped to be used in an LTE network where a four-
high-quality multimedia content is growing faster [2]. state Markov channel model is used to represent the channel

Network congestion will be the main cause of QoS deterivariations. In [11], a cross-layer optimization of variques-
oration in the mobile network [3]. It may occur in the wiredes rameters of the coding and transmission chain is performed
part, due to the nature of the wireless channel and the liimiteto deliver video to mobile users. The problem is cast in a
bandwidth, or in the backhaul part. Service providers need tMarkov Decision Process (MDP) framework [12]. Coarse
find solutions to deliver multimedia contents in the mosteffi models of the source and of the channel have been consid-
cient way to provide users with the best quality of experenc ered due to the increase of complexity of the optimization
(QoE) while accounting for scarce network resources. algorithm with the number of state values.

In the current implementation, a multimedia session is  |n[13], we proposed an online control mechanism to max-
controlled either by the clienteg., via HTTP adaptive imize the quality of the received video, while accounting fo
streaming [4] or by the server via RTP [5]. In both casesthe source type (I, or P) of the transmitted frames. The con-
the network is not aware of the video traffic and the controkrol problem is again cast in the framework of MDP. The
of any congestion in the network relies only on the way thesolution in [13] was proposed for single-user video deliv-
multimedia session is managed. ery with coarse description of the system characteristics.
1This work is supported by the European Commission under the ME—J[hIS _paper, we pI’O.pO_SE to bEtter.account for the Van.ab.lllty
DIEVAL project (grant agreement no FP7-258053). Michel keefs partly ~ Of Vvideo characteristics among video streams and within a
supported by the Institut Universitaire de France. video stream. Videos are mainly characterized by theirRate




Distortion (RD) function which depends on the activity in per radio bearer, and therefore per video service. Moreover
the video, as well as the their spacial and temporal resolithe RLC buffer is the last buffer in the Lay2iprotocol stack
tion. A cross-layer optimization mechanism should accounthat can provide information about the data flow through the
for these characteristics, which have a significant impact ostack. The MAC scheduler, as well as its PHY layer, its ra-
the user QOE. Various video classes may be defined to to takko front-end, the wireless channel, the physical layethef t
these characteristics (activity, resolution) into acdodimen, receiver, and the part of the MAC layer at receiver side man-
the proposed solution consists in learning optimal padiéde  aging ACK/NACK procedures are considered as the channel.
each class. This allows a finer adaptation of the policy to the
video content. Determining the class a v_ideo or a frame o_f it 3. LAYER FILTERING ALGORITHM
belongs to may be done at the server or in the network using,
eg, [14, 15]. The proposed class-based control algorithm i®.1. Single user layer filtering
implemented on an LTE simulation platform [16]. Typically, o ) ) -
in case of 3GPP mobile network, the last buffer in a multime/n [13] & layer filtering process for a unicast video delivery
dia session is the Radio Link Control (RLC) layer. The RLCProposed. Itis castin the MDP framework [12]. Time is slot-
buffer is monitored and controlled to avoid the underflow ort€d into discrete-time intervals of length Thet-th time slot
overflow situations which can cause disruptive or low qualit iS the time intervalt, ¢+1)T'. The states of the system consist
of the multimedia content. of the frame types™ and the level of the RLC buffes?. The
The remainder of the paper is organized as follows. SecSyStém state is th(%'lf (sF,sR) € S. Thg actions indicate
tion 2 introduces the considered unicast video streamiag: S the number of scalability layers to transmit, keep or droprir
tion 3 details the optimization algorithm and the use of wide the PE buffer. Action chosen at time stdt described by the
classification. Section 4 presents the performance of the pr Vectora: = (ar,s)wherel € {1, ..., L} is the layer index and

posed class-based layer filtering process implemented on dn€ {1, F'} is the frame index. The possible values:of;
LTE simulation platform. are0, 1, and-1 corresponding respectively to keeping, send-

ing, and dropping a frame. Actions corresponding to sending
enhancement layers and keeping or dropping base layer of the
same frame are excluded.

. . . . . The effect of an action is expressed via a reward function
Consider the video streaming system to a mobile receiver ! : .
sketched in Fiqure 1 4 (8¢, a;) depending on the PSNR or any other video quality

9 ' metric [17, 18, 19], and the level of the RLC buffer to deter-
mine the optimal policy. In absence of overflow and frame

2. SYSTEM ARCHITECTURE

eNB CHANNEL J . . .
— drop, the reward function provides an estimate of the video
process A quality at the receiver
NYe
~ F
SR 7t (se,a¢) = Zmax((), ag,f.4)q (st ) @)

(=1

Fig. 1. Proposed class-based layer filtering process ”Si”\%hereq

! , , (s",¢) is the quality increment measure provided by
H.264/SVC in LTE network for a unicast connection

the transmission of layef from a frame of types™. When
The considered system is based on the LTE networktopof—here is a frame drop, concealment is performed at receiver

ogy with an emphasis on the downlink radio access sector bes'lde’ the video quality of the current frame is assumed to be

ieen te oG and the UE. For eachunicest connecton, 110 1261 e revius e reshoet o a ool
video server hosts a scalable video coder providingNR P 9 yp

layers and can be situated inside or outside the core network ' ¢ impact on the next frames than lost P frames). One then

Frames are generated with a constant period of fim@he gets . . E

video packets travel through a limited delay core LTE net- Tt (st ) = Ti1 (51, a0-1) = Alst). 2)
work to reach a Post-Encoding (PE) buffer situated in a proxy The optimal foresighted policy [12] maximizing the
where a controller performs layer filtering. For each framegdiscounted sum of present and future rewards is evaluated
SNR layers may be sent, kept, or dropped. The layer filterthrough reinforcement learning (RL). In fact, unlike pglic
ing process should maximize the video quality at the receiveor value iteration [12] where state transition probabikie
side by taking into account most factors impacting it: videoneeded to find the optimal policy, RL aims at estimating a
class, frame type, number of SNR layers, and lost packets dgmod policy without requiring knowledge of state transitio
to possible RLC buffer overflow. Filtered layers are thert senprobabilities which is very practical in the consideredisit
to the eNB. The RLC buffer status in the eNB is monitoredation, where system state transition are partially unknown
to estimate the channel state. In fact, there is one RLC buffeRL leads to a two-phase algorithm. In tegloration phase,



the system states (frame type, buffer state, channel stege) transition probabilityP(sfH\s?).
explored by taking random actions and measuring the result-
ing rewards. In thexploitation phase, the optimal actions

learned in the exploration phase are applied as a function of

the system state. The proposed solution consists of on the following steps:

_ System states can be chosen with a fine granularity léagj.q; 4 ction-state learning matrices are derived eitiyaach-
ing to a fine description of the systerag, number of PDU in ically using the delivered flows or offline for different vide

the RLC buffer) an_d finely tuned action;. This may result ir_1 %lasses and stored in the layer filtering block, see Figure 1.
very long exploration phase before getting the optimaloscti Second, for each frame to be filtered, the video ckésss

to take in each system state, see Figure 2. On the other hange niified. Third, the optimal policy corresponding to vide
classs¢ is used while filtering the transmitted frame. One has
to verify the robustness of the algorithm with respect to the

4. EXPERIMENTAL RESULTS

) video class.
% Exploration Exploi'l:iliori 4 . 1 . LTE S I M U LATO R
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In this section we briefly describe the laygrof the LTE
downlink link level simulator framework and the implemen-
S S S | tation of the proposed algorithm.
© Frameindex  x1o0f Open Air Interface (OAIl) [16] provides an open source
wireless technology platform with both hardware and soft-
Fig. 2. Cumulative PSNR reward for foresighted policies ob-ware components. It hosts a prototype representative of the
tained using the technique in [13]. LTE infrastructure offering the possibility of a large sealm-
ulation. From the packet delivery point of view, the simu-
system states can be chosen with a coarse granularity ¢eadifation is soft real-time with an emulation which permits the
to an averaged description of the system (us@my,a coarse existence of several instances (eNB and UE) on the same ma-
guantization of the number of PDU in the RLC buffer) which chine.
may decrease the learning time. The second choice, consid- Video delivery begins at the server side where video pack-
ered in [13], is more robust to small system changes since dts are transmitted to the proxy and stored in the PE buffer.
corresponds to an average behavior of the system. Video class as well as the frame type are assumed delivered by
With this approach, video characteristics are not accuthe server and marked in the header of the transmitted video
rately taken into account at the learning process, and onlgackets. Decision making is then performed by the layer fil-
policy optimalin average are obtained. Better tuned policies tering control block using information about the frame type
may be obtained by taking more characteristics into accounthe video class from the stored video packets and the level of
the RLC buffer from the eNB. The filtered layers travel to the
eNB via OAl. Once transmitted, video packets are segmented
and placed in the RLC buffer. The new RLC buffer status is
In order to improve the accuracy of the solution in [13], wethen fed back to the layer filtering block and the system state
propose to add a new state in the system model. Consides updated. Based on the new system state a PSNR reward is
s¢ € {1,...,C} corresponding to index of the class the generated and used to update the policy during the exporati
frame, Group of Picture (GoP), or video belongs to. A videophase of the RL. Then, the algorithm continues its loop.
class can be considered at different granularity levelsauit
be related to an entire video, or it can pe u'pdated at eac}p_z Considered tests
frame, GoP, or set of GoPs. When considering classes at a
finer granularity than the video level, the evolution of theThe performance of the proposed layer filtering process has
class state may be distributed by a Markov chain as in [20]. been evaluated with two classes & 2) at the video level.
Information related to the video class can be derived in th&oreman.qcif (Average Encoding Rate (AER)1 Mbps) and
proxy according the R-D characteristics of the stored vide&arphone.qcif (AER 3 Mbps) are considered belonging to
packets in the PE buffer or it can be defined by the server anddeo classs® = 1 due to their similar R-D characteristics
marked in the header of the compressed flow at each time thand low activity level. ThenFootball.cif (AER 5.2 Mbps),
class changes. Depending on the clgsat timet, different  andBasket.cif (AER 5 Mbps) 100 s long both extracted from
policies may be used. Due to the unknown class state trangieal TV programs belong to video clags= 2, characterized
tion probabilities, RL is used which allows estimating adoo by very high activity level. Video classification is perfoeoh
policy without requiring an accurate knowledge of the clasoffline; it can also be realised using [20, 21, 14, 15].

3.2. Class-based layer filtering



The Packet Data Units (PDUSs) in the RLC buffer are of(mismatch). In case of mismatch in the same class the PSNR
variable size, depending on the the condition of the channés$ slightly decreased compared to case of no mismatch.
assigned by the eNB to the UE. The maximum number of
PDU in the RLC buffer isR¥A* = 128. Five states forthe ;55 | o oo o e
RLC are considered corresponding to a quantization of the
number of PDU in the buffer. The intervals d6e0.6) RMAX,  Inter-class robustness is now evaluated. The class of @ach s
[0.6,0.75) RMAX [0.75,0.85) RMAX, [0.85,0.95) RMAX and  quence is assumed available while transmitting the videe. T
[0.95,1] RMAX | The fifth interval is smaller than the others experiment consists in learning the three optimal foresigh
to anticipate overflow and prevent PDUs from being droppedpolicies usingBasket, Football, and therForeman. The three
All videos are encoded &0 fps using the H.264/SVC en- policies are then applied separately on Basket sequence.
coder (JSVM 9.19) [22] with three MGS scalability layers perResults are shown in Figure 4. One can see that curves refer-
frame (L = 3). The period at which the controller is operat-
ingisT = 1/30s. IPPP GoPs df6 frames are considered. A 5
baselayer only control scheme [23] for the encoder is adopted
to minimize the drift when refinement layers are lost. Thus,
two possible frame type" are considered: | or P frame. OAl
emulates the LTE channel variation and the MAC scheduler
selects the appropriate Modulation Coding Scheme (MCS) so
that the channel rate values range frorf to 4 Mbps, the
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foresighted policy. In our simulations, no handover is con- a0l ‘ ‘ ‘ ‘ ‘ ‘
sidered and the receiver buffer size is assumed infinite. The 0.5 1 1.5 2 2.5 3 3.5 4
robustness of the proposed approach to variations of the cha Rate (Mbit/s)

acteristics of the system is evaluated.
Fig. 4. Decoded PSNR dBasket video using optimal fore-
421 Intra-class robustness sighted policies of different video class.
To make sure that an optimal filtering policy learned for aring to videos which fall in the same video cla8agket and
video is satisfying for another sequence within the sanesgla Football) show a comparable behavior. On the other hand,
intra-class robustness is evaluated. The performanceeof tlapplying the optimal actions learned willoreman (not the
proposed algorithm is evaluated based on the decoded PSNRRme class aBasket) gives a PSNR degraded in average of
received at the UE. The policy is learned usi@grphone 2 dB compared to using the optimal actions learned Bik
or Foreman at a channel rate dfMbps. These two policies ket sequence. This result shows the importance of using video
are then used to filter SVC layers while transmitti@gr-  classes in the system state in order to consider variatibns o
phone sequence. Results are shown in Figure 3. The dottetthe video characteristics. Later, more videos classesbsill
considered to test the robustness with various video ctsiten

il —— Foreman 5. CONCLUSION

This paper proposes a cross-layer optimization solutiai-to

%Z ficiently deliver scalable video over LTE networks. Optimal
2. | SVC layer filtering decisions are learned for different wide
ul | classes in order to take into consideration the variabdity
ol ] the video characteristics mainly related to their rateedigon
L 1 . . J properties, as well as their spacial and temporal resaiutio
Channel rate (Kbps) The proposed algorithm is implemented on an LTE simula-

tion platform. Intra-class robustness shows that the el
Fig. 3. Decoded PSNR usinGarphone and Foreman fore-  robust for video sequences belonging to the same class. When
sighted policies for different rates. applying a policy learned for one class to a video belonging
to an other class, a more significant quality decrease is ob-
curve represents the average PSNRCafphone as a func- served. This illustrates the importance of accounting ffier t
tion of the channel rate. Th@arphone-tuned policy applied class a video belong to in such layer filtering algorithm. &lor
on Carphone (no mismatch). Solid curve represents the av-classes and more videos in each class will be considered in th
erage PSNR offoreman - tuned policy applied oCarphone  final version of the paper.
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