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ABSTRACT

This paper proposes an improved cross-layer control mecha-
nism to efficiently stream videos to mobile users over an LTE
network. A proxy-based filtering algorithm among scalable
layers is considered to decide the number of SVC layers to
transmit for each frame according to the communication con-
ditions and to the class to which the video belongs to. The
problem is cast in the context of Markov Decision Processes
which allow the design of foresighted policies maximizing
some long-term accumulated reward. Optimal actions to ap-
ply to the system are obtained by reinforcement learning. The
proposed solution is implemented in an LTE simulation plat-
form. Experiments show the performance of the proposed
class-based layer filtering algorithm for a single video trans-
mission and its robustness to content changes.1

Index Terms— Video, 4G mobile communication, opti-
mization

1. INTRODUCTION

Today, we are facing an explosion of the video traffic on wire-
less network due to the proliferation of multimedia-friendly
portable devices [1]. This trend is expected to intensify fur-
ther in the near future. Even if the rates provided by next-
generation mobile networks are increasing, the demand for
high-quality multimedia content is growing faster [2].

Network congestion will be the main cause of QoS deteri-
oration in the mobile network [3]. It may occur in the wireless
part, due to the nature of the wireless channel and the limited
bandwidth, or in the backhaul part. Service providers need to
find solutions to deliver multimedia contents in the most effi-
cient way to provide users with the best quality of experience
(QoE) while accounting for scarce network resources.

In the current implementation, a multimedia session is
controlled either by the client,e.g., via HTTP adaptive
streaming [4] or by the server via RTP [5]. In both cases,
the network is not aware of the video traffic and the control
of any congestion in the network relies only on the way the
multimedia session is managed.

1This work is supported by the European Commission under the ME-
DIEVAL project (grant agreement no FP7-258053). Michel Kieffer is partly
supported by the Institut Universitaire de France.

Long Term Evolution (LTE) [6] substantially improves
end-user throughputs, sector capacity and reduces user plane
latency, bringing significantly improved user experience.LTE
provides IP connectivity between the User Equipment (UE)
and the Packet Data Network (PDN) without any disruption
during mobility. LTE supports different types of services in-
cluding web browsing, video streaming, VoIP, online gaming,
real time video, etc. [7].

In order to improve the received video quality, in the con-
text of LTE networks, control may be done in Medium Access
Control (MAC) or in PHYsical (PHY) level. In [8] a QoS-
aware scheduling algorithm is proposed for real time video
delivery over LTE cellular networks. A cross-layer optimized
system is proposed to achieve a good perceived video quality
under delay constraint by dynamically adapting the resource
allocation to the instantaneous channel quality. This requires
scheduler adaptation in the eNodeB (eNB). In [9] a quality-
oriented video delivery over LTE algorithm based on modu-
lation and coding adaptation is proposed. In this algorithm,
PHY layer technologies, MIMO configuration, and MCS are
dynamically adjusted.

In [10, 11], video delivery control techniques are pro-
posed for single-video delivery. In [10] a smoothing buffer
is used in the eNB to smooth the transmission rates with min-
imal information about the video to be transmitted. This ap-
proach is mapped to be used in an LTE network where a four-
state Markov channel model is used to represent the channel
variations. In [11], a cross-layer optimization of variouspa-
rameters of the coding and transmission chain is performed
to deliver video to mobile users. The problem is cast in a
Markov Decision Process (MDP) framework [12]. Coarse
models of the source and of the channel have been consid-
ered due to the increase of complexity of the optimization
algorithm with the number of state values.

In [13], we proposed an online control mechanism to max-
imize the quality of the received video, while accounting for
the source type (I, or P) of the transmitted frames. The con-
trol problem is again cast in the framework of MDP. The
solution in [13] was proposed for single-user video deliv-
ery with coarse description of the system characteristics.In
this paper, we propose to better account for the variability
of video characteristics among video streams and within a
video stream. Videos are mainly characterized by their Rate-



Distortion (RD) function which depends on the activity in
the video, as well as the their spacial and temporal resolu-
tion. A cross-layer optimization mechanism should account
for these characteristics, which have a significant impact on
the user QoE. Various video classes may be defined to to take
these characteristics (activity, resolution) into account. Then,
the proposed solution consists in learning optimal policies for
each class. This allows a finer adaptation of the policy to the
video content. Determining the class a video or a frame of it
belongs to may be done at the server or in the network using,
e.g, [14, 15]. The proposed class-based control algorithm is
implemented on an LTE simulation platform [16]. Typically,
in case of 3GPP mobile network, the last buffer in a multime-
dia session is the Radio Link Control (RLC) layer. The RLC
buffer is monitored and controlled to avoid the underflow or
overflow situations which can cause disruptive or low quality
of the multimedia content.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the considered unicast video streaming. Sec-
tion 3 details the optimization algorithm and the use of video
classification. Section 4 presents the performance of the pro-
posed class-based layer filtering process implemented on an
LTE simulation platform.

2. SYSTEM ARCHITECTURE

Consider the video streaming system to a mobile receiver
sketched in Figure 1.

Fig. 1. Proposed class-based layer filtering process using
H.264/SVC in LTE network for a unicast connection

The considered system is based on the LTE network topol-
ogy with an emphasis on the downlink radio access sector be-
tween the eNB and the UE. For each unicast connection, a
video server hosts a scalable video coder providingL SNR
layers and can be situated inside or outside the core network.
Frames are generated with a constant period of timeT . The
video packets travel through a limited delay core LTE net-
work to reach a Post-Encoding (PE) buffer situated in a proxy
where a controller performs layer filtering. For each frame,
SNR layers may be sent, kept, or dropped. The layer filter-
ing process should maximize the video quality at the receiver
side by taking into account most factors impacting it: video
class, frame type, number of SNR layers, and lost packets due
to possible RLC buffer overflow. Filtered layers are then sent
to the eNB. The RLC buffer status in the eNB is monitored
to estimate the channel state. In fact, there is one RLC buffer

per radio bearer, and therefore per video service. Moreover,
the RLC buffer is the last buffer in the Layer2 protocol stack
that can provide information about the data flow through the
stack. The MAC scheduler, as well as its PHY layer, its ra-
dio front-end, the wireless channel, the physical layer of the
receiver, and the part of the MAC layer at receiver side man-
aging ACK/NACK procedures are considered as the channel.

3. LAYER FILTERING ALGORITHM

3.1. Single user layer filtering

In [13] a layer filtering process for a unicast video deliveryis
proposed. It is cast in the MDP framework [12]. Time is slot-
ted into discrete-time intervals of lengthT . Thet-th time slot
is the time interval[t, t+1)T . The states of the system consist
of the frame typesF and the level of the RLC buffersR. The
system state is thens = (sF, sR) ∈ S. The actions indicate
the number of scalability layers to transmit, keep or drop from
the PE buffer. Action chosen at time slott is described by the
vectorat = (aℓ,f )twhereℓ ∈ {1, ..., L} is the layer index and
f ∈ {1, ..., F} is the frame index. The possible values ofaℓ,f

are0, 1, and−1 corresponding respectively to keeping, send-
ing, and dropping a frame. Actions corresponding to sending
enhancement layers and keeping or dropping base layer of the
same frame are excluded.

The effect of an action is expressed via a reward function
rt (st, at) depending on the PSNR or any other video quality
metric [17, 18, 19], and the level of the RLC buffer to deter-
mine the optimal policy. In absence of overflow and frame
drop, the reward function provides an estimate of the video
quality at the receiver

r̂t (st, at) =
L∑

ℓ=1

max(0, aℓ,f,t)qt(s
F
t , ℓ) (1)

whereq
(
sf , ℓ

)
is the quality increment measure provided by

the transmission of layerℓ from a frame of typesF. When
there is a frame drop, concealment is performed at receiver
side, the video quality of the current frame is assumed to be
equal to that of the previous frame reduced by a factorλ(sf)
depending on the type of the lost frame (lost I frames will have
more impact on the next frames than lost P frames). One then
gets

r̂t (st, at) = r̂t−1 (st−1, at−1) − λ(sF
t ). (2)

The optimal foresighted policy [12] maximizing the
discounted sum of present and future rewards is evaluated
through reinforcement learning (RL). In fact, unlike policy
or value iteration [12] where state transition probabilityare
needed to find the optimal policy, RL aims at estimating a
good policy without requiring knowledge of state transition
probabilities which is very practical in the considered situ-
ation, where system state transition are partially unknown.
RL leads to a two-phase algorithm. In theexploration phase,



the system states (frame type, buffer state, channel state)are
explored by taking random actions and measuring the result-
ing rewards. In theexploitation phase, the optimal actions
learned in the exploration phase are applied as a function of
the system state.

System states can be chosen with a fine granularity lead-
ing to a fine description of the system (e.g, number of PDU in
the RLC buffer) and finely tuned actions. This may result in a
very long exploration phase before getting the optimal action
to take in each system state, see Figure 2. On the other hand,

Fig. 2. Cumulative PSNR reward for foresighted policies ob-
tained using the technique in [13].

system states can be chosen with a coarse granularity leading
to an averaged description of the system (using,e.g, a coarse
quantization of the number of PDU in the RLC buffer) which
may decrease the learning time. The second choice, consid-
ered in [13], is more robust to small system changes since it
corresponds to an average behavior of the system.

With this approach, video characteristics are not accu-
rately taken into account at the learning process, and only
policy optimalin average are obtained. Better tuned policies
may be obtained by taking more characteristics into account.

3.2. Class-based layer filtering

In order to improve the accuracy of the solution in [13], we
propose to add a new state in the system model. Consider
sC ∈ {1, . . . , C} corresponding to index of the class the
frame, Group of Picture (GoP), or video belongs to. A video
class can be considered at different granularity levels, itcan
be related to an entire video, or it can be updated at each
frame, GoP, or set of GoPs. When considering classes at a
finer granularity than the video level, the evolution of the
class state may be distributed by a Markov chain as in [20].

Information related to the video class can be derived in the
proxy according the R-D characteristics of the stored video
packets in the PE buffer or it can be defined by the server and
marked in the header of the compressed flow at each time the
class changes. Depending on the classsC

t at timet, different
policies may be used. Due to the unknown class state transi-
tion probabilities, RL is used which allows estimating a good
policy without requiring an accurate knowledge of the class

transition probabilityP (sC
t+1|s

C
t ).

4. EXPERIMENTAL RESULTS

The proposed solution consists of on the following steps:
First, action-state learning matrices are derived either dynam-
ically using the delivered flows or offline for different video
classes and stored in the layer filtering block, see Figure 1.
Second, for each frame to be filtered, the video classsC

t is
identified. Third, the optimal policy corresponding to video
classsC

t is used while filtering the transmitted frame. One has
to verify the robustness of the algorithm with respect to the
video class.

4.1. LTE SIMULATOR

In this section we briefly describe the layer2 of the LTE
downlink link level simulator framework and the implemen-
tation of the proposed algorithm.

Open Air Interface (OAI) [16] provides an open source
wireless technology platform with both hardware and soft-
ware components. It hosts a prototype representative of the
LTE infrastructure offering the possibility of a large scale sim-
ulation. From the packet delivery point of view, the simu-
lation is soft real-time with an emulation which permits the
existence of several instances (eNB and UE) on the same ma-
chine.

Video delivery begins at the server side where video pack-
ets are transmitted to the proxy and stored in the PE buffer.
Video class as well as the frame type are assumed delivered by
the server and marked in the header of the transmitted video
packets. Decision making is then performed by the layer fil-
tering control block using information about the frame type,
the video class from the stored video packets and the level of
the RLC buffer from the eNB. The filtered layers travel to the
eNB via OAI. Once transmitted, video packets are segmented
and placed in the RLC buffer. The new RLC buffer status is
then fed back to the layer filtering block and the system state
is updated. Based on the new system state a PSNR reward is
generated and used to update the policy during the exploration
phase of the RL. Then, the algorithm continues its loop.

4.2. Considered tests

The performance of the proposed layer filtering process has
been evaluated with two classes (C = 2) at the video level.
Foreman.qcif (Average Encoding Rate (AER)3.1 Mbps) and
Carphone.qcif (AER 3 Mbps) are considered belonging to
video classsC = 1 due to their similar R-D characteristics
and low activity level. Then,Football.cif (AER 5.2 Mbps),
andBasket.cif (AER 5 Mbps)100 s long both extracted from
real TV programs belong to video classsC = 2, characterized
by very high activity level. Video classification is performed
offline; it can also be realised using [20, 21, 14, 15].



The Packet Data Units (PDUs) in the RLC buffer are of
variable size, depending on the the condition of the channel
assigned by the eNB to the UE. The maximum number of
PDU in the RLC buffer isRMAX = 128. Five states for the
RLC are considered corresponding to a quantization of the
number of PDU in the buffer. The intervals are[0, 0.6) RMAX ,
[0.6, 0.75) RMAX , [0.75, 0.85) RMAX , [0.85, 0.95) RMAX , and
[0.95, 1] RMAX . The fifth interval is smaller than the others
to anticipate overflow and prevent PDUs from being dropped.
All videos are encoded at30 fps using the H.264/SVC en-
coder (JSVM 9.19) [22] with three MGS scalability layers per
frame (L = 3). The period at which the controller is operat-
ing isT = 1/30 s. IPPP GoPs of16 frames are considered. A
base layer only control scheme [23] for the encoder is adopted
to minimize the drift when refinement layers are lost. Thus,
two possible frame typesF are considered: I or P frame. OAI
emulates the LTE channel variation and the MAC scheduler
selects the appropriate Modulation Coding Scheme (MCS) so
that the channel rate values range from0.5 to 4 Mbps, the
optimal action for each possible state is determined for the
foresighted policy. In our simulations, no handover is con-
sidered and the receiver buffer size is assumed infinite. The
robustness of the proposed approach to variations of the char-
acteristics of the system is evaluated.

4.2.1. Intra-class robustness

To make sure that an optimal filtering policy learned for a
video is satisfying for another sequence within the same class,
intra-class robustness is evaluated. The performance of the
proposed algorithm is evaluated based on the decoded PSNR
received at the UE. The policy is learned usingCarphone
or Foreman at a channel rate of2Mbps. These two policies
are then used to filter SVC layers while transmittingCar-
phone sequence. Results are shown in Figure 3. The dotted

Fig. 3. Decoded PSNR usingCarphone andForeman fore-
sighted policies for different rates.

curve represents the average PSNR ofCarphone as a func-
tion of the channel rate. TheCarphone-tuned policy applied
on Carphone (no mismatch). Solid curve represents the av-
erage PSNR ofForeman - tuned policy applied onCarphone

(mismatch). In case of mismatch in the same class the PSNR
is slightly decreased compared to case of no mismatch.

4.2.2. Inter-class robustness

Inter-class robustness is now evaluated. The class of each se-
quence is assumed available while transmitting the video. The
experiment consists in learning the three optimal foresighted
policies using:Basket, Football, and thenForeman. The three
policies are then applied separately on theBasket sequence.
Results are shown in Figure 4. One can see that curves refer-

0.5 1 1.5 2 2.5 3 3.5 4
40

42

44

46

48

50

Rate (Mbit/s)
D

ec
o
d

ed
P

S
N

R
(d

B
)

Learning using Foreman

Learning using Foot

Learning using Basket

0.5 1 1.5 2 2.5 3 3.5 4
40

42

44

46

48

50

Rate (Mbit/s)
D

ec
o
d

ed
P

S
N

R
(d

B
)

Learning using Foreman

Learning using Foot

Learning using Basket

Fig. 4. Decoded PSNR ofBasket video using optimal fore-
sighted policies of different video class.

ring to videos which fall in the same video class (Basket and
Football) show a comparable behavior. On the other hand,
applying the optimal actions learned withForeman (not the
same class asBasket) gives a PSNR degraded in average of
2 dB compared to using the optimal actions learned withBas-
ket sequence. This result shows the importance of using video
classes in the system state in order to consider variations of
the video characteristics. Later, more videos classes willbe
considered to test the robustness with various video contents.

5. CONCLUSION

This paper proposes a cross-layer optimization solution toef-
ficiently deliver scalable video over LTE networks. Optimal
SVC layer filtering decisions are learned for different video
classes in order to take into consideration the variabilityof
the video characteristics mainly related to their rate-distortion
properties, as well as their spacial and temporal resolution.
The proposed algorithm is implemented on an LTE simula-
tion platform. Intra-class robustness shows that the solution is
robust for video sequences belonging to the same class. When
applying a policy learned for one class to a video belonging
to an other class, a more significant quality decrease is ob-
served. This illustrates the importance of accounting for the
class a video belong to in such layer filtering algorithm. More
classes and more videos in each class will be considered in the
final version of the paper.
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