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Abstract

In parameter estimation, it is often desirable to supplement the estimates with an assessment of their quality. A new family
of methods proposed by Campi et al. for this purpose is particularly attractive, as it makes it possible to obtain exact, non-
asymptotic confidence regions under mild assumptions on the noise distribution. A bottleneck of this approach, however, is the
numerical characterization of these confidence regions. So far, it has been carried out by gridding, which provides no guarantee
as to its results and is only applicable to low dimensional spaces. This paper shows how interval analysis can contribute to
removing this bottleneck.
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1 Introduction

When a vector p of parameters of some approximate
mathematical model is estimated from a noisy data
vector y, this is usually via the minimization of some
cost function J (p), for instance J (p) = ‖y − ym (p)‖22,
where ym (p) is the vector of model outputs, assumed
here to be a deterministic function of p and ‖·‖2 is a
(possibly weighted) ℓ2 norm. Then p̂ = argminp J (p).
Even if y and ym (p̂) are reassuringly similar, it would
be naive to consider p̂ as the final answer to the esti-
mation problem. One should instead attempt to attach
some quality tag to p̂ by assessing the reliability of the
numerical values thus obtained. A key issue is drawing
conclusions that are as little prejudiced as possible, and
the approaches recently proposed by Campi et al. for
this purpose [1, 3] are particularly attractive. A diffi-
culty with these approaches, however, is the numerical
characterization of these confidence regions. So far, it
has been carried out by gridding, which provides no
guarantee as to its results and is only applicable to low
dimensional spaces.

The aim of this paper is to show how interval analy-
sis can contribute removing this bottleneck, by provid-
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ing guaranteed results, as well as results in high dimen-
sional spaces. The approaches Leave-out Sign-dominant
Correlated Regions (LSCR) [1] and Sign-Perturbed Sums
(SPS) [3] recently proposed by Campi et al. are briefly
recalled in Section 2. Section 3 shows how interval anal-
ysis can be used to characterize the exact confidence re-
gions defined by LSCR and SPS in a guaranteed way.
Examples are in Section 4 and conclusions in Section 5.

2 LSCR and SPS

The most striking feature of LSCR and SPS is that they
avoid a large number of the usual assumptions about the
noise corrupting the data yet provide an exact charac-
terization of parameter uncertainty in non-asymptotic
conditions. Both require only the noise samples to be
independently distributed with distributions symmetric
with respect to zero. For LSCR, arbitrary noise can even
be dealt with if the regressors are random, independently
identically and symmetrically distributed, and indepen-
dent of the noise [2, 5].

LSCR [1] looks for a region Θ to which the parameter
vector p∗ of the model assumed to have generated the
data belongs with a specified probability. Let εt(p) be a
prediction error, such that εt(p

∗) is a realization of the
noise corrupting the data at time t. It may, for instance,
be the difference between some output measurement yt,
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and the corresponding model output ymt (p). The pro-
cedure for computing one such confidence region is as
follows:

(1) Select two integers r > 0 and q > 0.
(2) For t = 1 + r, . . . , k + r = n, compute

cεt−r,r (p) = εt−r (p) εt (p) , (1)

(3) Compute sεi,r (p) =
∑

k∈Ii
cεk,r (p) , i = 1, . . . ,m,

where Ii is a subset of a set I of indexes and the
collection G of these subsets Ii, i = 1, . . . ,m, forms
a group under symmetric difference, i.e., (Ii ∪ Ij)−
(Ii ∩ Ij) ∈ G.

(4) Find the set Θε
r,q such that at least q of the sεi,r (p)

are larger than 0 and at least q are smaller than 0.

The probability that p∗ belongs toΘε
r,q is 1−2q/m. The

shape and size of Θε
r,q depend not only on the values

given to q and r but also on the group G and its number
of elements m. A procedure for generating a group of
appropriate size is suggested in [4].

The set Θε
r,q may be defined more formally as Θε

r,q =

Θε,1
r,q ∩Θε,2

r,q , with, for j = 1, 2,

Θε,j
r,q =

{
p ∈ P such that

m∑

i=1

τ ε,ji (p) > q

}
, (2)

where P is the prior domain for p and where τ ε,ji (p) =

1 if (−1)jsεi,r (p) > 0 and τ ε,ji (p) = 0 else. The set

Θε,1
r,q contains all values of p ∈ P such that at least q of

the functions sεi,r (p) are smaller than 0, whereas Θε,2
r,q

contains all values of p ∈ P such that at least q of the
functions sεi,r (p) are larger than 0.

When the model studied is driven by an input ut, one
may obtain a similar confidence region by substitut-
ing cut−s,s (p) = ut−s (p) εt (p) for (1) in the procedure
above, thus replacing autocorrelations by intercorrela-
tions. One then computes a set Θu

s,q, again such that

Pr
(
p∗ ∈ Θu

s,q

)
= 1− 2q/m.

The fact that the set Θε
r,q (or Θ

u
r,q) obtained by this ap-

proach is exact does not mean that its volume is mini-
mal, and the resulting confidence region may turn out to
be much too large to be useful. One may then intersect
several such regions. For a given value of q and m, as-
sume that nε confidence regions Θ

ε
r,q and nu confidence

regions Θu
s,q have been obtained for nε values of r and

nu values of s. The probability that p∗ belongs to the
intersection Θ of these (nε + nu) regions then satisfies
Pr (p∗ ∈ Θ) > 1− (nε + nu)2q/m. The price to be paid
for taking the intersection of several confidence regions
is that the probability that p∗ belongs to the resulting

confidence region is no longer known exactly, as only a
lower bound for this probability is available.

SPS [3] also provides a confidence region to which p∗ be-
longs with a specified probability, by exploiting the sym-
metry of the noise distribution and the independence be-
tween noise samples. It is designed for linear regression,
where yt = ϕT

t p
∗ + wt, t = 1, . . . , n, with ϕt a known

regression vector that does not depend on the unknown
parameters. It computes an exact confidence region for
p∗ around the least-squares estimate p̂, which is the so-
lution to the normal equations

∑n

t=1 ϕt

(
yt −ϕT

t p̂
)
= 0.

For a generic p, define

s0 (p) =
n∑

t=1

ϕt

(
yt −ϕT

t p
)
, (3)

and the sign-perturbed sums

si (p) =
n∑

t=1

αi,tϕt

(
yt −ϕT

t p
)
, (4)

where i = 1, . . . ,m − 1 and αi,t are independent and
identically distributed (i.i.d.) random signs, so αi,t = ±1
with equal probability, and

zi (p) = ‖si (p)‖
2
2 , i = 0, . . . ,m− 1. (5)

A confidence regionΣq is obtained as the set of all values
of p such that z0 (p) is not among the q largest values of

(zi (p))
m−1
i=0 . In [3], it has been shown that p∗ belongs to

Σq with exact probability 1 − q/m. Σq may be defined
more formally as

Σq =

{
p ∈ P such that

m−1∑

i=1

τi (p) > q

}
(6)

where τi (p) = 1 if zi (p) − z0 (p) > 0 and τi (p) = 0

else. This is justified by the fact that if
∑m−1

i=1 τi (p) > q,
then one has τi (p) = 1 for at least q out of the m − 1
functions τi (p). As a consequence, there are at least q
functions zi (p) such that zi (p) > z0 (p) and z0 (p) is

not among the q largest values of (zi (p))
m−1
i=0 .

3 Guaranteed characterization

In LSCR and SPS, one has to characterize a set or an
intersection of sets defined as

Ψq =

{
p ∈ P such that

m∑

i=1

τi (p) > q

}
, (7)

where τi (p) is some indicator function τi (p) = 1 if
fi (p) > 0 and τi (p) = 0 else, with fi (p) depending on
the model structure, the measurements, and the param-
eter vector p.
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3.1 Set inversion

Characterizing Ψq may be alternatively formulated as a
set-inversion [9] problem Ψq = P ∩ τ−1 ([q,m]), with

τ (p) =
m∑

i=1

τi (p) , (8)

which may be efficiently solved via interval analysis [8,
10] using the SIVIA algorithm [8]. For that purpose, in-
clusion functions for the τi’s and consequently for the
fi’s are required. SIVIA recursively partitions P into
boxes (vectors of intervals) proved to belong toΨq, boxes
proved to have no intersection with Ψq, and undeter-
mined boxes for which no conclusion can be obtained.
SIVIA bisects undetermined boxes until their width is
less than some precision parameter ε.

3.2 Contractors for guaranteed characterization

Indetermination often results from range overestimation
by inclusion functions. As a consequence, boxes have to
be bisected by SIVIA many times to allow one to con-
clude on the position of the resulting boxes with respect
to Ψq. This may entail an intractable computational
complexity, even for a moderate dimension of p.

Contractors [8] partly address this issue. Consider a set-
inversion problem where one has to characterize the set

X = [x] ∩ f−1 (Y) , (9)

with f : D ⊂ R
n → R

m, Y ⊂ R
m, and [x] ⊂ D some

initial search box forX. A contractor Cf ,Y associated with
the generic set-inversion problem (9) is a function taking
a box [x] as input and returning a box Cf ,Y ([x]) ⊂ [x]
such that [x] ∩ X = Cf ,Y ([x]) ∩ X, so no part of X in [x]
is lost. It allows parts of the candidate box [x] that do
not belong to X to be eliminated, without bisection.

In the problems considered here, the role of x is taken
by p. The fact that the function τ introduced in (8) is
not differentiable forbids the use of most classic contrac-
tors [8]. The new contractor proposed here assumes that
the functions fi are differentiable and is implemented
in two steps. First, a set of m possibly overlapping sub-
boxes of [p] is built, trying to remove all values of p from
[p] such that fi (p) < 0, i = 1, . . . ,m, see Sections 3.2.1
and 3.2.2. Second, the union of all non-empty intersec-
tions of at least q of these boxes is computed to get a
possibly contracted box, see Section 3.2.3.

3.2.1 Contractor for LSCR and SPS

The first step uses the centered form of fi, which, for
some m ∈ [p], may be written as

[fi,c] ([p]) = fi (m) + ([p]−m)
T
[gi] ([p]) (10)

= fi (m) +

np∑

j=1

([pj ]−mj) [gi,j ] ([p]) , (11)

where gi is the gradient of fi and [gi] ([p]) is the natural
inclusion function for gi, see [8]. Using (11), we build a
contractor Cfi,[0,∞[ for the set of all values of p ∈ [p]
such that fi (p) > 0, as follows.

With the k-th component [pk] of [p], when 0 /∈ [gi,k] ([p]),
Cfi,[0,∞[ associates the contracted interval

[
p′i,k
]
= [pk] ∩

((
([fi,c] ([p]) ∩ [0,∞[)− fi (m)

−

np∑

j=1,j 6=k

([pj ]−mj) [gi,j ] ([p])

)
/ [gi,k] ([p]) +mk

)
.

(12)

When 0 ∈ [gi,k] ([p]), Cfi,[0,∞[ leaves [pk] unchanged, i.e.,
[p′i,k] = [pk]. Due to the pessimism of centered forms
on large boxes, the contractor Cfi,[0,∞[ becomes efficient
only when [p] is small enough.

Considering them functions fi and applying all the con-
tractors Cfi,[0,∞[, i = 1, . . . ,m, to [p], one obtainsm pos-
sibly contracted boxes [p′

1] = Cf1,[0,∞[ ([p]) , . . . , [p
′
m] =

Cfm,[0,∞[ ([p]). Some of them may be empty, in which
case, [p′

i] = ∅ indicates that there is no p ∈ [p] such that
fi (p) > 0.

3.2.2 Contractor for SPS

We take advantage of the fact that the functions si (p),
i = 0, . . . ,m are affine in p to reduce the number of
occurrences of p in their formal expression, and thus
the pessimism of the corresponding inclusion functions.
Equation (3) is rewritten as

s0 (p) = b0 −A0p (13)

with b0 =
∑n

t=1 ϕtyt and A0 =
∑n

t=1 ϕtϕ
T
t . Similarly,

(4) is rewritten as

si (p) = bi −Aip (14)

with bi =
∑n

t=1 αi,tϕtyt and Ai =
∑n

t=1 αi,tϕtϕ
T
t .
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Equations (5), (13), (14), and the fact that the Ai’s are
symmetric imply that

zi (p)− z0 (p) = pT
(
A2

i −A2
0

)
p− 2

(
bT
i Ai − bT

0 A0

)
p

+
(
bT
i bi − bT

0 b0

)
. (15)

The matrices A2
i −A2

0 are symmetric and may thus be
diagonalized as A2

i − A2
0 = UT

i DiUi, where Ui is an
orthonormal matrix (i.e., such that UT

i = U−1
i ), and

Di = diag
(
di,1, . . . , di,np

)
is a diagonal matrix. With

the change of variables π = Uip, (15) becomes

zi (p)− z0 (p) = πTDiπ − 2βT
i π + γi, (16)

where βT
i =

(
bT
i Ai − bT

0 A0

)
UT

i and γi = bT
i bi −

bT
0 b0. Then, provided that di,j 6= 0 for j = 1, . . . , np, (16)

can be rewritten as

zi (p)− z0 (p) =

np∑

j=1

di,j

(
πj −

βi,j

di,j

)2

+ γi −

np∑

j=1

β2
i,j

di,j
.

(17)

Let [π] = Ui [p]. A contractor for [πj ] is obtained from
(17) as follows

[
π′
j

]
= [πj ] ∩

{
±

(
1

di,j

((
([zi] ([p])− [z0] ([p])) ∩ [0,∞[

)

−

np∑

k=1
k 6=j

di,k
(
[πk]−

βi,k

di,k

)2
− γj +

np∑

k=1

β2
i,k

di,k

)) 1
2

+
βi,j

di,j

}
.

(18)

The contractor Czi−z0,[0,∞[ for [p] is then such that

[p′
i] = Czi−z0,[0,∞[ ([p]) = [p] ∩

(
UT

i [π′]
)
. (19)

When n is large enough, and provided that the ϕt’s have
been well designed, it is very unlikely that A2

i − A2
0 is

rank deficient. If this occurs, (17) and (18) have to be
rewritten distinguishing the zero and nonzero di,j ’s.

Proposition 1 Provided that di,j 6= 0 for j = 1, . . . , np,
for all [p′

i], i = 1, . . . ,m − 1, built using (18) and (19),
[p′

i] ⊂ [p] and

[p′
i] ∩ (zi − z0)

−1
([0,∞[) = [p] ∩ (zi − z0)

−1
([0,∞[) .

(20)

Proof [p′
i] ⊂ [p] is true by construction. It remains

to be proved that [p] ∩ (zi − z0)
−1

([0,∞[) ⊂ [p′
i] ∩

(zi − z0)
−1

([0,∞[). Let p0 ∈ [p] ∩ (zi − z0)
−1

([0,∞[)
and π0 = Uip

0 ∈ [π]. To prove that p0 ∈ [p′
i] ∩

(zi − z0)
−1

([0,∞[), it suffices to prove that π0 ∈ [π′].
By definition of p0, one has

np∑

j=1

di,j

(
π0
j −

βi,j

di,j

)2

+ γi −

np∑

j=1

β2
i,j

di,j
= zi

(
p0
)
− z0

(
p0
)

> 0. (21)

Since π0 ∈ [π], after some manipulations of (21), one
gets for j = 1, . . . , np

π0
j ∈ [πj ] ∩

{
±

(
1

di,j

((
([zi] ([p])− [z0] ([p])) ∩ [0,∞[

)

−

np∑

k=1
k 6=j

di,k

(
[πk]−

βi,k

di,k

)2
− γj +

np∑

k=1

β2
i,k

di,k

)) 1
2

+
βi,j

di,j

}
.

Thus π0
j ∈

[
π′
j

]
, which completes the proof. ⋄

Applying the contractors Czi−z0,[0,∞[, i = 1, . . . ,m, to
[p], as in Section 3.2.1, one obtainsm possibly contracted
boxes Cz1−z0,[0,∞[ ([p]) , . . . , Czm−z0,[0,∞[ ([p]).

3.2.3 Building a q-relaxed intersection

During the second step, the contractor builds a box [p′]
enclosing the q-relaxed intersection [6, 7]

P =

q⋂

j∈{1,...,m−1}

[
p′
j

]
=

⋃

J⊂[1,...,m−1]
card(J)>q

⋂

j∈J

[
p′
j

]
, (22)

of the boxes in L = {[p′
1] , . . . , [p

′
m]}, i.e., the union of

all intersections of at least q boxes in L, such that [p′]
satisfies

P ⊂ [p′] ⊂ [p] . (23)

Proposition 2 For any box [p′] satisfying (23), one has
Ψq ∩ [p′] = Ψq ∩ [p], with Ψq as defined in (7).

Proof Assume that there exists p0 ∈ [p] such that
p0 ∈ Ψq ∩ [p] but p0 /∈ Ψq ∩ [p′]. Since p0 ∈ Ψq ∩ [p],
we have p0 ∈ Ψq. According to (7),

∑m

i=1 τi (p0) > q.
There are thus at least q functions τi such that τi (p0) >
1. Assume, without loss of generality, that τ1 (p0) >

1, . . . , τq (p0) > 1. Since τi (p0) > 1, i = 1, . . . , q, by
definition of Cfi,[0,∞[, one has p0 ∈ [p′

i], i = 1, . . . , q
and p0 ∈

⋂
i=1,...,q [p

′
i]. By definition of P and [p′],

p0 ∈
⋂

i=1,...,q [p
′
i] ⊂ P ⊂ [p′], which contradicts the

initial assumption. ⋄

3.2.4 Evaluating the q-relaxed intersection

Consider m scalar intervals [p1] , . . . , [pm]. Algorithm 1,
which formalizes a computation carried out on an ex-
ample in [7], builds the smallest interval containing the
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1 [p] = ∅;

2 Reindex the boxes [pi] in such a way that

p
1
6 p

2
6 · · · 6 p

m
;

3 For i = q to m

4 if
∑m

j=1

(
p
i
∈ [pj ]

)
> q then p = p

i
; break;

5 Reindex the boxes [pi] in such a way that

p1 > p2 > · · · > pm

6 For i = q to m

7 if
∑m

j=1 (pi ∈ [pj ]) > q then p = pi; break;

Algorithm 1. [p] = q relaxed intersection ([p1] , . . . , [pm])

union of all intersections of q intervals with a complexity
O (m logm). This is the smallest interval containing P
as defined by (22) in the scalar case. At Steps 4 and 7 of
Algorithm 1, (p ∈ [pj ]) = 1 if p ∈ [pj ] and (p ∈ [pj ]) = 0
otherwise. The extension to boxes is obtained by apply-
ing Algorithm 1 componentwise.

4 Examples

All computations were carried out with Intlab [11],
the interval-analysis toolbox in Matlab, on an In-
tel Core i7 at 3.7 GHz with 8 GB RAM. The com-
putations required by SIVIA and the q-relaxed in-
tersection, which form the major part of the com-
putational burden, could be speeded up consid-
erably in C++. The source code is available at
http://www.l2s.supelec.fr/perso/kieffer-0.

4.1 Nonlinear estimation

Consider the two-compartment model described by Fig-
ure 1. Only the content of the second compartment is
observed. The model parameters to be estimated are

p = (k01, k12, k21)
T
. The data are generated by this

model for p∗ = (1, 0.25, 0.5)
T
. They satisfy

yt = α (p∗) (exp (λ1 (p
∗) t)− exp (λ2 (p

∗) t)) + wt,

where α (p) = k21/

√
(k01 − k12 + k21)

2
+ 4k12k21,

λ1,2 (p) = − 1
2 ((k01 + k12 + k21)± α (p) /k21) and the

wt’s are realizations of i.i.d. N
(
0, σ2

)
variables, for

t = 0, T, . . . , (n− 1)T . The variance of the measure-
ment noise is σ2 = 10−4. The sampling period is
T = 0.2 s, and n = 64. To facilitate illustration, only
k01 et k12 are estimated. The value k∗21 of k21 is assumed
known. The prediction errors are εt (p) = yt − ymt (p) ,
with ymt (p) = α (p) (exp (λ1 (p) t)− exp (λ2 (p) t)), for
t = 0, T, . . . , (n− 1)T .

1

k
01

k
21

k
12

2

u

Fig. 1. Two-compartment model

90 % confidence region
LSCR - SIVIA

k
01

k
12

k
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k
12

90 % confidence region
LSCR - Gridding
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zoomzoom

k
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0.2

0.25

0.3

0.35

k
12

0.2 0.4 0.6 0.8 1 1.2
0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Gridding (left) and paving (right) of search space
obtained using LSCR in the two-compartment model case
for the characterization of the confidence region Θε

r,q; the
two bottom subfigures are obtained by zooming in on one of
the connected components of Θε

r,q

Here, the set Θε
r,q has been characterized using LSCR

with r = 1 and q = 3, which corresponds to a 90 % con-
fidence region, see Figure 2. The initial search set in pa-
rameter space is P = [0, 5]× [0, 5]× [0.5, 0.5]. The top left
part of Figure 2 represents the result obtained in 284 s
by gridding as in [1] with a grid step-size ε = 0.0025. The
top right part of Figure 2 has been obtained by SIVIA
with ε = 0.0025 in 175 s. The top right part of Figure 2
proves that the confidence region consists of two discon-
nected subsets, a consequence of the lack of global iden-
tifiability of the model (exchanging the values of k01 and
k12 does not change the model output). Figure 2 (bot-
tom part) zooms on one of the two confidence subsets,
which turns out to contain the actual value of the un-
known parameters, although this is not guaranteed, of
course.

Table 1 shows the evolution of the computing times
for the gridding approach and SIVIA. The increase is
quadratic with 1/ε for gridding. It is slower with SIVIA,
since only undetermined boxes are further bisected when
ε decreases. An additional advantage of SIVIA is that
the results provided are guaranteed.
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ε 0.1 0.025 0.01 0.0025 0.001

Gridding (s) 0.26 2.9 18 284 1750

SIVIA (s) 15 57 93 175 400

Table 1
Computing times for the example of Section 4.1

4.2 FIR model

Consider now the system

yt = ymt (p∗) + wt, (24)

with the FIR model ymt (p) =
∑na−1

i=0 aiut−i, where

p = (a0, . . . , ana−1)
T

and ut = 0 for t 6 0. For
t = 1, . . . , n, the wt’s are i.i.d. noise samples. In linear
regression form, (24) becomes yt = ϕT

t p
∗ + wt with

ϕT
t = (ut, . . . , ut−na+1) and p∗ =

(
a∗0, . . . , a

∗
na−1

)T
.

To evaluate the performance of the proposed technique
for a large number of parameters, FIR models with na =
20 random parameters in [−2, 2]

na are generated. Then,
n = 512, 1024, 2048, 4096, and 8192 noise-free data
points are generated applying a random i.i.d. sequence ut

of±1, which is the D-optimal input under the constraint
that the input has to remain in [−1, 1]. White Laplacian
noise is then added to these data. The standard deviation
of the noise is set up to get SNRs from 10 dB to 40 dB.

Our aim is to characterize a 95% confidence region with
SPS. A possible choice is m = 255 and q = 13. The
initial search box in parameter space is taken as P =[
−104, 104

]20
. Getting accurate inner and outer approx-

imations using unions of non-overlapping boxes is hope-
less with na = 20 parameters, because of the curse of
dimensionality. Our aim is instead to provide a guaran-
teed outer-approximation of the confidence region 1 . For
that purpose, the contractor of Section 3.2.2 is applied
once to P (iterations are useless). A box estimate is ob-
tained in 5 s in average, whatever the value of n. This is
because the computational complexity of the contractor
of Section 3.2.2 is mainly determined by m and na. Fig-
ure 3 represents the width of the largest component of
the resulting outer box as a function of the SNR and of
the number of data points.

On a log-log scale, maximum width seems linear in the
SNR and in the number of samples. In the latter case,
the slope is about −1/2, consistent with what is ob-
served when maximum-likelihood estimation is carried
out assuming an additive Gaussian noise, although this
hypothesis on the noise is neither true nor assumed here.

1 The computed least-square estimate belongs to the confi-
dence region, as showed in [3]. It thus forms a (point) inner
approximation.
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Fig. 3. Width of the largest component of the outer box re-
sulting from a single application of the contractor of Sec-
tion 3.2.2 as a function of the number of data points and of
the SNR.

5 Conclusions

Interval analysis provides tools to evaluate guaranteed
inner and outer-approximations of non-asymptotic con-
fidence regions defined by LSCR and SPS. Symbolic ma-
nipulations are particularly useful to design more effi-
cient contractors and struggle against the curse of di-
mensionality.
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