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Abstract

This paper considers the problem of lossless source coding with side information at the decoder,

when the correlation model between the source and the side information is uncertain. Four parametrized

models representing the correlation between the source and the side information are introduced. The

uncertainty on the correlation appears through the lack of knowledge on the value of the parameters.

For each model, we propose a practical coding scheme based on non-binary Low Density Parity

Check Codes and able to deal with the parameter uncertainty. At the encoder, the choice of the coding

rate results from an information theoretical analysis. Then we propose decoding algorithms that jointly

estimate the source vector and the parameters. As the proposed decoder is based on the Expectation-

Maximization algorithm, that is very sensitive to initialization, we also propose a method to produce

first a coarse estimate of the parameters.

Part of this paper will be presented at the Data Compression Conference (DCC) 2013.

Part of this work was supported by the ANR-09-VERS-019-02 grant (ARSSO project).
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I. INTRODUCTION

The problem of lossless source coding with side information at the decoder has been well

investigated when the correlation model between the source X and the side information (SI)

Y is perfectly known. Slepian and Wolf showed that this case induces no loss in performance

compared to the conditional setup, i.e., the setup where the side information is also known at

the encoder [31]. Following this principle, several works, see, e.g., [26], [32], [37], propose

practical coding schemes for the Slepian-Wolf (SW) problem. Most of them are based on

channel codes [33], and particularly Low Density Parity Check (LDPC) codes [22], [23]. This

approach allows to leverage on many results on LDPC codes for the code construction and

optimization [20], [28] even if there is a need to adapt the developed algorithms to the case of

SW coding [6].

Nonetheless, most of these works assume perfect knowledge of the joint distribution P (X, Y ).

In [18], it is shown that the performance of the SW coding scheme remains the same if P (X) is

unknown. Here we consider the case where the correlation channel P (Y |X) is uncertain because

it is in general more difficult to obtain in practical situations. In this way, [30] considers the case

where P (Y |X) is given to the decoder but not perfectly known at the encoder. Here we assume

that P (Y |X) is uncertain at both the encoder and the decoder. A usual solution to address this

problem is to use a feedback channel [1], [11], [36], or to allow interactions between the encoder

and the decoder [38]. The advantage of the feedback channel is that the rate is adapted to the

true characteristics of the source. However, a feedback channel can be difficult to implement in

many practical situations such as sensor networks. Moreover, the feedback channel is in general

used by the decoder to ask for additional packets to the encoder or to stop the transmission.

Each time a new packet is received, the decoder processes again to try to reconstruct the source

from all the received packets. This can result in huge decoding delays.

When no feedback is allowed, several practical solutions based on LDPC codes and proposed
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for channel coding may be adapted to the SW problem. When hard decoding is performed,

as proposed in [21], [27] for channel coding, only symbol values are used, at the price of

an important loss in performance. An alternative solution is the min-sum decoding algorithm

proposed in [5], [29] for channel coding, respectively for binary and non-binary sources. The

min-sum algorithm uses soft information for decoding, but does not require the knowledge of the

correlation channel. However, for the min-sum to be as efficient as the soft decoding algorithm,

a coefficient is required for the initialization of the algorithm and needs to be chosen carefully.

Unfortunately, its value depends on the correlation channel.

In many applications, it is possible to restrict the correlation channel model to a given class

(e.g., binary symmetric, Gaussian, etc.) due to the nature of the problem. Consequently, in

this paper, we introduce four signal models. Each model assumes that the correlation channel

belongs to a given class and is parametrized by some unknown parameter vector. For two of

the models, the correlation channel between source symbols (Xn, Yn) is parametrized by an

unknown parameter πn, varying from symbol to symbol. One of these two models assumes

the knowledge of a prior distribution PΠ(πn) for πn. The case where no prior on πn is known

corresponds to arbitrarily varying sources [2], [4]. For the two other models, the correlation

channel is parametrized by an unknown parameter θ, fixed for the sequence {(Xn, Yn)}
+∞
n=1 but

allowed to vary from sequence to sequence. This corresponds to universal source coding [14].

The distinction between the two models is also in the knowledge of a prior for θ. The distinction

between varying parameters πn and a fixed parameter θ has been proposed earlier in [24] in the

case of channel coding.

The coding scheme we propose is based on non-binary LDPC codes. Hard and min-sum LDPC

decoding are not able to exploit the knowledge of the structure of the class. Therefore, the sum-

product LDPC decoding algorithm is considered. From an analysis of the performance bounds,

we explain for each model how to choose the coding rate and the LDPC coding matrix. Then,

we show that the classical sum-product LDPC decoding algorithm can be used for only one
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model. For the three other models, we propose a decoding algorithm that jointly estimates the

source vector and the parameters. As the method is based on the EM (Expectation Maximization)

algorithm [17], which is very sensitive to initialization, we also propose a method to obtain first

coarse estimates of the values of the parameters.

The paper is organized as follows. In Section II, the four signal models we consider are

described formally. Section III explains how to choose the coding rates and to design the

LDPC coding matrices. Section IV proposes a decoding method adapted to each model. Finally,

Section V presents simulation results.

II. SIGNAL MODEL

The source X to be compressed and the SI Y available at the decoder produce sequences

of symbols {Xn}
+∞
n=1 and {Yn}

+∞
n=1, respectively. X and Y denote the source and SI discrete

alphabets. Bold upper case letters, e.g., XN
1 = {Xn}

N
n=1, denote random vectors, whereas bold

lower case letters, xN
1 = {xn}

N
n=1, represent their realizations. When it is clear from the context

that the distribution of a random variable Xn does not depend on n, the index n is omitted.

The goal of this section is to model the uncertainty on the correlation channel P (Y |X). Each

of the four proposed models consists of a family of parametric distributions. In every case, the

source distribution P (X) is assumed perfectly known and does not depend on the uncertain

parameters. The first two models allow parameter variations from symbol to symbol.

Definition 1. (DP-Source). A Dynamic with Prior source (X, Y ), or DP-Source, produces a

sequence of independent symbols {(Xn, Yn)}
+∞
n=1 drawn ∀n from P (Xn, Yn) that belongs to a

family of distributions {P (X, Y |Π = π) = P (X)P (Y |X,Π = π)}π∈Pπ
parametrized by a

The four models defined in this section were also introduced with different names in two papers [9], [10], of the same authors.

M-Source was for DP-Source, WPM-Source for DwP-Source, P-Source for SP-Source, WP-Source for SwP-Source. The names

were changed for the sake of clarity.
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random vector Πn. The {Πn}
+∞
n=1 are i.i.d. with distribution P (Π) and take their values in a

discrete set Pπ. The source symbols Xn and Yn take their values in the discrete sets X and Y ,

respectively.

The DP-Source, completely determined by Pπ, P (Π), and {P (X, Y |Π = π)}π∈Pπ
, is sta-

tionary and ergodic, see [13, Section 3.5].

Definition 2. (DwP-Source). A Dynamic without Prior source (X, Y ), or DwP-Source, produces

a sequence of independent symbols {(Xn, Yn)}
+∞
n=1 drawn ∀n from P (Xn, Yn) that belongs to

a family of distributions {P (X, Y |π) = P (X)P (Y |X,π)}π∈Pπ
parametrized by a vector πn.

Each πn takes its values in a discrete set Pπ. The source symbols Xn and Yn take their values

in the discrete sets X and Y , respectively.

The DwP-Source, determined by Pπ and {P (X, Y |π)}π∈Pπ
, is non-stationary and non-ergodic [13,

Section 3.5]. The only difference between the DP- and DwP-Sources lies in the definition of

the parameters πn. In the DwP-Source, no distribution for πn is specified, either because its

distribution is not known or because πn is not modeled as a random variable.

The following models consider a time-invariant parameter vector.

Definition 3. (SP-Source) A Static with Prior source (X, Y ) (SP-Source) produces a sequence of

independent symbols {(Xn, Yn)}
+∞
n=1 drawn from a distribution belonging to a family {P (X, Y |Θ =

θ) = P (X)P (Y |X,Θ = θ)}θ∈Pθ
parametrized by a random vector Θ. The random vector Θ,

with distribution PΘ(θ), takes its value in a set Pθ that is either discrete or continuous. The

source symbols X and Y take their values in the discrete sets X and Y , respectively. Moreover,

the realization of the parameter θ is fixed for the sequence {(Xn, Yn)}
+∞
n=1.

The SP-source, determined by Pθ, PΘ(θ), and {P (X, Y |Θ = θ)}θ∈Pθ
, is stationary but non-

ergodic [13, Section 3.5].
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Definition 4. (SwP-Source). A Static without Prior source (X, Y ) (SwP-Source) produces a

sequence of independent symbols {(Xn, Yn)}
+∞
n=1 drawn from a distribution belonging to a family

{P (X, Y |θ) = P (X)P (Y |X,θ)}θ∈Pθ
parametrized by a vector θ. The vector θ takes its value

in a set Pθ that is either discrete or continuous. The source symbols X and Y take their values

in the discrete sets X and Y , respectively. Moreover, the parameter θ is fixed for the sequence

{(Xn, Yn)}
+∞
n=1.

The SwP-source, completely determined by Pθ and {P (X, Y |θ)}θ∈Pθ
, is stationary but non-

ergodic [13, Section 3.5]. The only difference between the SP- and SwP-Sources lies in the

definition of θ (no distribution for θ is specified in the SwP-Model). Note that both the encoder

and the decoder are aware of the model characteristics given in Definitions 1 to 4.

In the SW setup, the infimum of achievable rates for our models are given by

1) for the DP-Source [31],

R = H(X|Y ) (1)

where H(X|Y ) is calculated from P (X = x|Y = y) =
∑

π∈Pπ
P (π), P (X = x|, Y =

y, π).

2) for the DwP-Source [2],

R = sup
P (X,Y )∈Conv({Pπ(X,Y )}π∈Pπ )

H(X|Y ) (2)

where Conv({Pπ(X, Y )}π∈Pπ
) is the convex hull of the elements of {Pπ(X, Y )}π∈Pπ

,

3) for the SP-Source [16, Theorem 7.3.4],

R = PΘ-ess. supH(X|Y,Θ = θ), (3)

where PΘ-ess. sup is the essential sup (the sup on the support of the distribution) with

respect to the prior distribution PΘ,

4) for the SwP-Source [7],

R = sup
θ∈Pθ

H(X|Y, θ) . (4)
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We see that for the DwP-Model, the SP-Model and the SwP-Model, the infimum of achievable

rates are given by worst cases defined on the set of values the parameters may take (SP- and

SwP-Models), or on the convex hull of this set of values (DwP-Model).

III. ENCODING

The coding schemes we propose are based on LDPC codes for SW coding. As suggested

by [22], [23], LDPC codes initially introduced for channel coding can also be used for SW

coding, after adaptation of the coding process and the decoding algorithm. In channel coding,

LDPC codes were proposed for binary-input channels [12] and generalized to non-binary input

channels in [8]. The adaptation to the SW setup is described in [22] for the binary case. In

this paper, we propose a generalization of this adaptation to the non-binary case. This section

describes the encoding part and introduces the involved notations. Note that the encoding part is

as in the binary case, except that, now, the encoding operations are performed in GF(q). There

are more differences in the decoding part.

We assume that the source symbols X are discrete and belong to GF(q). The SW coding of

a source vector x of length N is performed by producing a vector s = HTx of length M < N .

The matrix H is sparse, with non-zero coefficients uniformly distributed in GF(q)\{0}. In the

following, ⊕, ⊖, ⊗, ⊘ are the usual operators in GF(q). In the bipartite graph representing the

dependencies between the random variables of X and S, the entries of X are represented by

Variable Nodes (VN) and the entries of S are represented by Check Nodes (CN). The set of

CN connected to a VN n is denoted N (n) and the set of VN connected to a CN m is denoted

N (m). The sparsity of H is determined by the VN degree distribution λ(x) =
∑

i≥2 λix
i−1 and

the CN degree distribution ρ(x) =
∑

i≥2 ρix
i−1 with

∑
i≥2 λi = 1 and

∑
i≥2 ρi = 1. In SW

coding, the rate r(λ, ρ) of a code is given by r(λ, ρ) = M
N

=
∑

i≥2 ρi/i∑
i≥2 λi/i

.

In order to perform the encoding of a source vector X, one needs to choose properly the

coding rate and to design the LDPC coding matrix, i.e., to impose good degree distributions
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(λ(x), ρ(x)) [20], [27]. The performance analysis of Section II suggests the following approach.

For the DP-Source, the LDPC coding matrix is designed for the known distribution P (X|Y ).

For the three other models, the LDPC coding matrix is designed for the worst cases defined

by (2)-(4).

IV. DECODING ALGORITHM

This section introduces LDPC-based decoding algorithms capable of dealing with the uncer-

tainty on the value of the parameters of the models. For the DP-Source, the decoding algorithm is

the sum-product LDPC decoder adapted to SW coding. For the other sources, the LDPC decoding

algorithm cannot be used directly because of the lack of knowledge on the parameters. We thus

propose to jointly estimate the encoded source sequence XN
1 and the unknown parameters. This

joint estimation is performed with an EM algorithm [17]. A method producing a first coarse

estimate of the parameters is also presented to properly initialize the EM algorithm.

A. DP-Source: Standard LDPC decoding

In [22] the standard sum-product LDPC decoding algorithm has been adapted to SW coding

of binary sources with perfect correlation channel knowledge. This section generalizes the

adaptation of the decoding algorithm to non-binary SW coding. Indeed, in the SW case, one

needs to take into account both the probability distribution of X and of the received codeword

S. For the DP-Source, the conditional distribution is perfectly determined as

P (Xn = k|Yn = yn) =
∑

π∈Pπ

P (π)P (Xn = k|Yn = yn,π) . (5)

The sum-product decoder performs an approximate Maximum A Posteriori (MAP) estimation

of x from the received codeword s and the observed side information y. The messages exchanged

in the dependency graph are vectors of length q. The initial messages for each VN n are denoted

m(0)(n, yn), with components

m
(0)
k (n, yn) = log

P (Xn = 0|Yn = yn)

P (Xn = k|Yn = yn)
, k = 0 . . . q − 1 . (6)
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The messages from CN to VN are computed with the help of a particular Fourier Transform

(FT), denoted F(m). Denoting r the unit root associated to GF(q), the i-th component of the

FT is given by [20] as Fi(m) =
∑q−1

j=0 r
i⊗je−mj/

∑q−1
j=0 e

−mj .

At iteration ℓ, the message m(ℓ)(m,n, sm) from CN m to VN n is

m(ℓ)(m,n, sm) = A[sm]F
−1


 ∏

n′∈N (m)\n

F
(
W
[
Hn′m

]
m(ℓ−1)(n′,m, yn′)

)

 (7)

where s̄m = ⊖sm ⊘ Hn,m, Hn′m = ⊖Hn′,m ⊘ Hn,m and W [a] is the q × q matrix such that

W [a]k,n = δ(a⊗ n⊖ k), 06k, n6q − 1. A[k] is a q × q matrix that maps a vector message m

into a vector message l = A[k]m with lj = mj⊕k −mk. Note that A[k] does not appear in the

channel coding version of the algorithm and is specific to SW coding. The derivation of (7) is

shown in the appendix. At a VN n, a message m(ℓ)(n,m, yi) is sent to the CN m and an a

posteriori message m̃(ℓ)(n, yn) is computed. They both satisfy

m(ℓ)(n,m, yn) =
∑

m′∈N (n)\m

m(ℓ)(m′, n, sm′) +m(0)(n, yn) , (8)

m̃(ℓ)(n, yn) =
∑

m′∈N (n)

m(ℓ)(m′, n, sm′) +m(0)(n, yn) . (9)

From (9), each VN n produces an estimate x̂
(ℓ)
n = argmaxk m̃

(ℓ)
k (n, yn) of xn. The algorithm

ends if s = HTx̂(ℓ) or if ℓ = Lmax, the maximum number of iterations.

When the conditional distribution P (Y |X) is uncertain, the previously described decoding

algorithm cannot be applied directly, because the initial messages (6) cannot be evaluated

accurately.

B. SwP-Source: EM algorithm

We first consider the SwP-Source and then extend the proposed algorithm to the cases of the

DwP- and SP-Sources. For the SwP-Source, one needs the actual value of the parameter vector θ

because the sum-product LDPC decoder requires the knowledge of the conditional distribution
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P (X|Y ). The EM algorithm is thus used to estimate jointly the source sequence X and the

parameter θ. A method to produce coarse estimates of the parameters is also described.

1) Joint estimation of θ and x: The joint estimation of the source vector x and of the parameter

θ from the observed vectors y and s is performed via the EM algorithm [17]. Knowing some

estimate θ
(ℓ) obtained at iteration ℓ, the EM algorithm maximizes, with respect to θ,

Q(θ,θ(ℓ)) = EX|y,s,θ(ℓ) [logP (y|X, s,θ)] (10)

=
∑

x∈GF(q)n

P (x|y, s,θ(ℓ)) logP (y|x, s,θ) (11)

=
N∑

n=1

q−1∑

k=0

P (Xn = k|yn, s,θ
(ℓ)) logP (yn|Xn = k,θ) .

Solving this maximization problem gives the update equations detailed in Lemma 1. For simplic-

ity, the correlation model between X and Y is assumed to be additive, i.e., there exists a random

variable Z such that Y = X⊕Z and θ parametrizes the distribution of Z. The Binary Symmetric

correlation Channel (BSC) of unknown transition probability θ = P (Y = 1|X = 0) = P (Y =

0|X = 1) is a special case, where Z is a binary random variable such that P (Z = 1) = θ.

Lemma 1. Let (X, Y ) be a binary SwP-Source. Let the correlation channel be a Binary Sym-

metric channel (BSC) with parameter θ = P (Y = 0|X = 1) = P (Y = 1|X = 0), θ ∈ [0, 1].

The update equation for the EM algorithm is [35]

θ(ℓ+1) =
1

N

N∑

n=1

|yn − p(ℓ)n | (12)

where p
(ℓ)
n = P (Xn = 1|yn, s, θ

(ℓ)).

Let (X, Y ) be a SwP-Source that generates symbols in GF(q). Let the correlation channel be

such that Y = X⊕Z, where Z is a random variable in GF(q), and P (Z = k) = θk. The update

equations for the EM algorithm are

∀k ∈ GF(q), θ
(ℓ+1)
k =

∑N
n=1 P

(ℓ)
yn⊖k,n∑N

n=1

∑q−1
k′=0 P

(ℓ)
yn⊖k′,n

(13)
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where P
(ℓ)
k,n = P (Xn = k|yn, s,θ

(ℓ)).

Proof: The binary case is provided by [35]. In the non-binary case, the updated estimate is

obtained by maximizing (10) taking into account the constraints 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.

Note that P
(ℓ)
k,n = P (Xn = k|yn, s,θ

(ℓ)) in (13) can be estimated with a sum-product algorithm

that assumes that the true parameter is θ
(ℓ).

2) Initialization of the EM algorithm: We now propose an efficient initialization of the EM

algorithm valid for irregular codes and for sources X and Y taking values in GF(q). This

generalizes the method proposed in [35] for regular and binary codes. The rationale is to derive

a Maximum Likelihood (ML) estimate of θ from a function u = HTx ⊕HTy of the observed

data HTx and y.

a) The BSC with irregular codes: In this case, each binary random variable Um is the sum

of random variables of Z. Although each Zn appears in several sums, the following assumption

is made in this section.

Assumption 1. Each Um is obtained from i.i.d. random variables Z
(m)
j .

The validity of this assumption depends on the choice of the matrix H and is not true in general.

Although it produces an approximate solution, this choice may lead to a reasonable initialization

for the EM algorithm. Furthermore, the number of terms in the sum for Um depends on the

degree of the CN m. One can use the CN degree distribution ρ(x) as a probability distribution

for these degrees, or decide to take into account the knowledge of the CN degrees. Both cases

lead to a probability model for the Um and enable to obtain an ML estimate for θ, as described

in the two following lemmas.

Lemma 2. Let U be a binary random vector of length M . Each Um is the sum of Jm identically

distributed binary random variables Z
(m)
j , i.e., Um =

∑Jm
j=1 Z

(m)
j , where the Z

(m)
j are independent
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∀j,m. {Jm}
M
m=1 are i.i.d. random variables taking their values in {2, . . . , dc} with known

probability P (J = j) = ρj . Denote θ = P (Z = 1), α = P (U = 1) and assume that θ and α are

unknown. Then their ML estimates θ̂ and α̂ from an observed vector u satisfy α̂ = 1
M

∑M
m=1 um

and θ̂ = f−1(α̂), where f is the invertible function f(θ) = 1
2
− 1

2

∑dc
j=2 ρj(1− 2θ)j , ∀θ ∈ [0, 1

2
].

Proof: The random variables Um are independent (sums of independent variables). They

are identically distributed because the Jm and the Z
(m)
j are identically distributed. α = P (U =

1) =
∑dc

j=2 ρjP (U = 1|J = j). Then, from [35], P (U = 1|J = j) =
∑j

i=1,i odd

(
j
i

)
θi(1 − θ)j−i

and from [12, Section 3.8], P (U = 1|J = j) = 1
2
− 1

2
(1−2θ)j . Thus α = f(θ). The ML estimate

α̂ of α given u is α̂ = 1
M

∑M
m=1 um. Finally, as f is invertible for θ ∈

[
0, 1

2

]
, then from [19,

Theorem 7.2], the ML estimate of θ is given by θ̂ = f−1(α̂).

Lemma 3. Let U be a binary random vector of length M . Each Um is the sum of jm identically

distributed binary random variables Z
(m)
j , i.e., Um =

∑jm
j=1 Z

(m)
j , where Z

(m)
j are independent

∀j,m. The values of jm are known and belong to {2, . . . , dc}. Denote θ = P (Z = 1) and

assume that θ is unknown. Then the entries of U are independent and the ML estimate θ̂ from

an observed vector u is the argument of the maximum of

L(θ) =
dc∑

j=2

N1,j(u) log

(
1

2
−

1

2
(1− 2θ)j

)
+

dc∑

j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)
(14)

where N1,j(u) and N0,j(u) are the number of symbols in u obtained from the sum of j elements

and respectively equal to 1 and 0.

Proof: The random variables Um are independent (sums of independent variables). There-

fore, the likelihood function satisfy L(θ) = logP (u|θ) =
∑M

m=1 logP (um|jm, θ). Then, as in

the proof of Lemma 2, we obtain (14).

The method of Lemma 2 is simpler to implement than the one of Lemma 3 but does not take

into account the actual matrix H , at the price of a small loss in performance.
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b) The non-binary discrete case: Only the case of a regular code is presented here, but

the method can be generalized to irregular codes (see the previous section). Assumption 1 also

holds in this case. Now, the probability mass function of Z is given by θ = [θ0 . . . θq−1] with

θk = P (Z = k) ∀k ∈ GF(q). Now, each Um is the sum of symbols of Z, weighted by the

coefficients contained in H . A first solution does not exploit the knowledge of these coefficients,

but uses the fact that the non-zero coefficients of H are distributed uniformly in GF(q)\{0}

(Lemma 4). A second solution takes into account the knowledge of the coefficients (Lemma 5).

Lemma 4. Let U be a length M random vector with entries in GF(q) such that each Um is

the sum of dc i.i.d. products of random variables, i.e., Um =
∑dc

j=1 H
(m)
j Z

(m)
j . The Z

(m)
j and

H
(m)
j are identically distributed random variables, mutually, and individually independent ∀j,m.

The H
(m)
j are uniformly distributed in GF(q)\{0}. The Z

(m)
j take their values in GF(q). Denote

θk = P (Z = k), αk = P (U = k) and assume that θ = [θ0 . . . θq−1] and α = [α0 . . . αq−1] are

unknown. Then the random variables of U are independent and the parameters satisfy α = f(θ),

with

f(θ) =
∑

n1,...,nq−1

(
dc

n1, . . . , nq−1

)(
1

q − 1

)dc

F−1

(
q−1∏

j=0

(F (W [j]θ)))nj

)
(15)

where the sum is over all the possible combinations of integers n1, . . . , nq−1 such that 0 ≤ nk ≤

dc and
∑q−1

k=1 nk = dc and
(

dc
n1,...,nq−1

)
is a multinomial coefficient.

Denote θ̂ and α̂ the ML estimates of θ and α, obtained from an observed vector u, with

α̂k = Nk(u)
M

where Nk(u) is the number of occurrences of k in the vector u. Then, if f is

invertible, θ̂ = f−1(α̂).

Proof: The random variables Um are independent (sums of independent variables). Then,

αk = P (U = k) =
∑

{hj}
dc
j=1

P ({hj}
dc
j=1)P (U = k|{hj}

dc
j=1) in which the sum is on all the

possible combinations of coefficients {hj}
dc
j=1. This can be simplified as αk =

∑
n1,...,nq−1

P (N1 =

n1, . . . , Nq−1 = nq−1)P (U = k|n1, . . . , nq−1) where nk is the number of occurrences of k in
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{hj}
dc
j=1. One has P (N1 = n1, . . . , Nq−1 = nq−1) =

(
dc

n1,...,nq−1

) (
1

q−1

)dc
. Then, the vector denoted

PU|n1,...,nq−1 = [P (U = 0|n1, . . . , nq−1) . . . P (U = q − 1|n1, . . . , nq−1)] (16)

can be expressed as PU|n1,...,nq−1 = F−1
(∏q−1

j=1 (F (W [j]θ)))nj

)
. Therefore,

α = [α0, . . . , αq−1] =
∑

n1,...,nq−1

(
dc

n1, . . . , nq−1

)(
1

q − 1

)dc

F−1

(
q−1∏

j=1

(F (W [j]θ)))nj

)
. (17)

The ML estimates α̂k of αk are α̂k = Nk(u)
M

. Finally, if f is invertible, then from [19, Theorem

7.2], the ML estimate of θ is given by θ̂ = f−1(α̂).

Lemma 5. Let U be a length M random vector with entries in GF(q) such that each Um is the

sum of dc i.i.d. random variables, i.e., Um =
∑dc

j=1 h
(m)
j Z

(m)
j . The Z

(m)
j are independent ∀j,m,

and identically distributed random variables taking their values in GF(q). The values of the

coefficients h
(m)
j are known and belong to GF(q)\{0}. Denote θk = P (Z = k), αk = P (U = k)

and assume that θ = [θ0, . . . , θq−1] and α = [α0, . . . , αq−1] are unknown. Then the random

variables of U are independent and the ML estimate θ̂ from an observed vector u maximizes

L(θ) =
M∑

m=1

logF−1
um

(
dc∏

j=1

F(W [h
(m)
j ]θ)

)
(18)

under the constraints 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.

Proof: The random variables Um are independent (sums of independent variables). The ML

estimate θ̂ is the value that maximizes the likelihood function given by

L(θ) = logP (u|θ, {h(m)
j }dc,Mj=1,m=1) (19)

=
M∑

m=1

logP (um|θ, {h
(m)
j }dcj=1) (20)

under the constraint that 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1. The second equality (20) comes from

the independence assumption. Following the steps of Lemma 4, we show that (20) becomes

L(θ) =
∑M

m=1 logF
−1
um

(∏dc
j=1 F(W [h

(m)
j ]θ)

)
.
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C. The DwP-Source

The DwP-Source is non-stationary. Consequently, if one assumes a stationary model such that

P (Xn = k|Yn = m) = αk,m (21)

and tries to produce an estimate α̂
(n)
k,m from observed sequences (x,y) of length n, then the

sequence of estimates α̂
(n)
k,m does not necessarily converge as n goes to infinity. However, such

an estimate is well defined for a fixed length n. Thus, we apply the procedure defined for the

SwP-Source to get α̂
(n)
k,m from y and u.

D. SP-Source: MAP with EM

For the SP-Source, the distribution PΘ(θ) is available and one can perform the MAP estimation

of Θ. Then, the EM equation (10) for the MAP estimation becomes [3]

Q(θ,θ(ℓ)) = EX|y,s,θ(ℓ) [logP (X|y, s,θ)] + logPΘ(θ) . (22)

Knowing some estimate θ
(ℓ) of θ at iteration ℓ, one has to maximize (22) with respect to θ to

obtain θ
(ℓ+1). As for the SwP-Source, the LDPC decoding algorithm initialized with θ

(l) provides

an approximate version of P (X|y, s,θ(ℓ)), required to perform the MAP estimation of θ(l+1).

A coarse estimation of θ can be obtained from u = HTx+HTy as

θ
(0) = argmax

θ∈Pθ

logPΘ(θ) + logP (u|H,θ) (23)

in order to initialize the EM algorithm. In the binary case and from the assumptions of Lemma 3

this corresponds to maximizing

LMAP(θ) = logPΘ(θ) +
dc∑

j=2

N1,j(u) log

(
1

2
−

1

2
(1− 2θ)j

)
+

dc∑

j=2

N0,j(u) log

(
1

2
+

1

2
(1− 2θ)j

)

(24)

with respect to θ. In the non-binary case and from the assumptions of Lemma 5 this corresponds

to maximizing

LMAP(θ) = logPΘ(θ) +
M∑

m=1

logF−1
um

(
dc∏

j=1

F(W [hszm,j]θ)

)
(25)
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under the constraints 0 ≤ θk ≤ 1 and
∑q−1

k=0 θk = 1.

However, this approach does not fully exploit the density over θ but only its mode, because

a hard value of θ is estimated at each iteration and used for the following iterations. To deal

with this problem, one could think of using Variational Bayesian Expectation Maximization

(VBEM) [3]. Unfortunately, the VBEM equations are intractable for most of the distributions,

particularly in the discrete case. The discrete additive model considered here is not a conjugate

exponential model, for which a tractable implementation exists.

V. SIMULATIONS

The performance of the initialization techniques obtained in Lemmas 2 to 5 are first compared.

Then, we evaluate the joint estimation methods proposed for the various models introduced in

Section II. In the following, the random variables are either binary or non-binary with values in

GF(4). The correlation model is such that there exists a random variable Z with Y = X ⊕ Z,

and X is distributed uniformly.

A. Performance of the initialization techniques (SwP-Model)

The binary case is considered first. Z is such that P (Z = 1) = θ, θ ∈ Pθ = [0, 0.18]. We

choose a code λ(x) = 0.4295x + 0.2750x2 + 0.0745x8 + 0.1150x9 + 0.0035x11 + 0.0930x14 +

0.0095x15 and ρ(x) = 0.2187x5 + 0.7760x6 + 0.0053x7, designed for the worst possible pa-

rameter θ = 0.18 and obtained from a code optimization realized with a differential evolution

algorithm [34]. The rate of this code is R = 0.75 bit/symbol. The initialization methods of

Lemmas 2 and 3 are evaluated and compared through two experiments. Indeed, the models

defined in the formulations of the lemmas are supposed to represent the behavior of the LDPC

encoding using Assumption 1. In this section, we want to determine whether this assumption is

meaningful.

First, we wish to evaluate the performance of the estimation methods on simulated code-

words, i.e., generated at random from the models as they are defined in the formulations of
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Fig. 1. MSE of the estimators for the binary case.

the lemmas. For that purpose, 50000 vectors U of length M are generated according to the

models introduced in Lemmas 2 and 3, for θ = 0.1. Assumption 1 is taken into account and

the symbols Um are drawn as sums of independent random variables. Then, the two proposed

estimation methods are applied and the Mean Squared Error (MSE) E
[
(θ − θ̂)2

]
is evaluated

as a function of N = M
R

. The estimated parameters are obtained numerically from a gradient

descent initialized at random in Pθ. This gives the two superposed lower curves of Figure 1,

showing that the methods of the two lemmas provide similar performance.

Second, as the models introduced in the lemmas are supposed to represent the effects of

the LDPC encoding, we also evaluate the performance of the estimators on actual codewords,

i.e., obtained from LDPC coding. Consequently, 10000 vectors z of length N are generated

considering θ = 0.1. Note that the estimation method requires the knowledge of u = HTy ⊖

HTx = HTz and thus vectors z are generated directly. The vectors u are then obtained by

multiplying z by a matrix H of the considered code. The two proposed estimation methods are
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Fig. 2. MSE of the estimators for the non- binary case.

then applied to each realization to evaluate the MSE. This gives the two superposed upper curves

of Figure 1. As before the two methods give the same performance. However, we observe a loss

of a factor 10 in MSE compared to the ideal case, due to the fact that the entries of U are

not independent. Nevertheless, the performance seems sufficient for the initialization of the EM

algorithm.

For the non-binary case, the probability distribution of Z is given by θ = [θ0, . . . , θ3] where

Pr(Z = k) = θk. The set Pθ is such that ∀θ ∈ Pθ, θ0 ≥ 0.76. We choose a code λ(x) =

0.413x + 0.375x2 + 0.012x4 and ρ(x) = x, giving R = 1.6 bit/symbol. In this case, the code

was tuned for the worst case θ = [0.76, 0.08, 0.08, 0.08]. We do not perform code optimization

here because it is not defined, neither for the non-binary SW setup (see [6] for the binary

SW setup), neither for the models we consider (see [20] for density evolution for non-binary

codes with Gaussian approximation). However, a code with variable node degree 2 exhibit good

performance in the non-binary case [25] and the check node degree distribution is chosen to
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obtain the rate R = 1.6 bit/symbol. The experiments described in the binary case are repeated

for the methods proposed in Lemmas 4 and 5. The parameter estimates are now obtained from

a projected gradient descent. Figure 2 shows the MSE of the two cases obtained by averaging

over 1000 vectors of length 10000, generated from θ = [0.82 0.06 0.06 0.06] The conclusions

of the binary case hold also in this setup and in the following, the method of Lemma 4 is used

since it is less complex.

B. Complete coding scheme for the SwP- and SP-Sources

The performance of the complete scheme is now evaluated, in the non-binary case. The

parameter θ of the distribution of Z can take the following forms: θ(0) = [1 − 3α, α, α, α] or

θ
(1) = [α, 1−3α, α, α] or θ(2) = [α, α, 1−3α, α] or θ(3) = [α, α, α, 1−3α], where α ∈ [0, 0.08].

The worst case in terms of rate is given by α = 0.08 and corresponds to four distinct elements

of Pθ.

The case of the SwP-Source is treated first, and four setups are compared. In each setup,

100 source vectors of length 1000 are generated. For each vector, a θ
(i) is selected uniformly at

random and α is sampled uniformly at random in [0, 0.08]. The considered LDPC code is the one

defined in Section V-A for the non-binary case. We set 20 iterations for the LDPC decoder and

3 iterations for the EM algorithm (when required). Three performance criteria are considered:

the coding rate, given by the choice of the code, the mean error calculated for each vector as
∑1000

n=1 1
Xn 6=X̂n

1000
where 1 is the indicator function, and the mean decoding time. All the results are

presented in Table I.

For the genie-aided setup, θ is given to the decoder.

For the second setup, a learning sequence of 200 source symbols is first transmitted by the

encoder, to enable the decoder to produce a ML estimate of θ. This results in a rate increase

because the learning sequence is transmitted without the help of the SI, at H(X) = 2 bits/symbol.

Note that the mean decoding time is smaller than in the genie-aided setup, because the LDPC
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Setup Err Time (s) Rate (bit/symb.)

Genie-aided < 10−5 5.4 1.6

Learn. Seq. < 10−5 4.2 1.7

EM < 10−5 9.1 1.6

EM random 7.2× 10−3 47.0 1.6

TABLE I

SETUP COMPARISON FOR THE SWP-SOURCE

code processes blocs of only 800 symbols.

The third setup corresponds to the method presented in the paper. Coarse estimate of θ

obtained from Lemma 4 initializes the EM algorithm. Here Pθ consists of disjoint sets. The

first idea is to try to estimate θ successively with the four possible θ
(j), and to keep the θ̂

(j)

that maximizes L(θ̂
(j)
), introduced in (18). Unfortunately, we see that this solution only works

when j = 0. This suggests that the method performs well only if z has a subsequent number

of null entries. For this reason, the following approach is applied. For j = 0 . . . 3, we compute

ũ(j) = HTx⊖HTy⊖HT j where j is a column vector full of j. Then an estimate θ̂
(j)

is produced

from each ũ(j). The corresponding log-likelihood value L(θ̂
(j)
) is calculated and we keep the

θ̂
(j)

that maximizes L(θ̂
(j)
). In this case, the method performs well.

In the fourth setup, the EM algorithm is initialized at random. We first assume that the θ
(0)

is the true distribution, and initialize α at random in [0, 0.08]. If the EM algorithm does not

converge with this assumption, the procedure is repeated, assuming that the distribution is θ
(1),

and so on until convergence or until θ(3) has been tested. We see that this method increases the

decoding time and produces poor performance.

For the SP-Source, the same model is considered and the prior distribution on θ is such that

Pr(θ(j)) = pj , pθ = [p0 . . . p3] = [0.5, 0.25, 0.125, 0.125] and α is distributed uniformly on

[0, 0.08]. The four setups: genie-aided, learning sequence, method described in the paper, EM
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Setup Err Time (s) Rate (bit/symb.)

Genie-aided < 10−5 5.4 1.6

Learn. Seq. < 10−5 4.2 1.7

EM < 10−5 9.1 1.6

EM random 8.4× 10−3 41.0 1.6

TABLE II

SETUP COMPARISON FOR THE SP-SOURCE

initialized at random, are tested again over 100 source vectors of length 1000. In the genie-

aided setup, θ is given to the decoder. In the learning-sequence case, a MAP estimate of θ

is produced from a learning sequence of length 200. For the method described in the paper,

the initialization method is performed as before by trying to estimate θ successively with the

four possible θ
(j). But now, the selection is performed by keeping the θ̂

(j)
that maximizes

LMAP(θ̂
(j)
) = L(θ̂

(j)
)+log pj . For the EM initialized at random, the successive assumptions θ(j)

are tested as before, beginning with the θ
(j) of highest probability. The results are presented in

Table II. We see that there is no change compared to the SwP-setup, except that the EM random

is slightly faster.

C. Comparison to a solution with feedback

In this section we compare our no-feedback coding approach with a 1-bit feedback transmis-

sion for a source generated from the SwP-Model of Section V-B.. The 1-bit feedback is sent by

the receiver to the encoder to ask for additional packets or stop the transmission. The goal is

to save rate by avoiding sending data at the worst rate as in the no-feedback method. However,

it results in multiple decoding and thus potentially large delays. It is therefore of interest to

study the rate/decoding delay tradeoff. Only an evaluation of the achievable rate and estimated

mean-time decoding are provided, because it is sufficient to compare the advantages and the
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drawbacks of the solution with feedback. In the solution with feedback we consider, when the

decoder cannot decode with the received codeword, it requests more check equations via the

feedback channel. Each time it receives new equations, the decoder tries to reconstruct the source

vector with the use of a sum-product LDPC decoder.

Denote n the length of the source vector and α = 0.08, consider K rate levels R1, . . . , Rk, . . . , RK

associated to K intervals I1 = [0, α/K] . . . IK = [α(K−1)/K, α]. The coding system processes

as follows. The encoder first sends nR1 symbols to the decoder. The decoder tries to reconstruct

the source, assuming the true parameter is α/K and considering successively the four assump-

tions θ
(0) to θ

(3). If it fails, it sends a request via the feedback channel and the encoder sends

n(R2−R1) new symbols. The decoder then tries to reconstruct the source from the nR2 received

symbols, assuming the true parameter is 2×α/K. The process continues until the source vector

has been decoded. Note that here, it is assumed that the Ik are small enough to allow the decoder

to perform good with a parameter that is not exactly the true one.

Five setups are compared, in terms or achievable rate (R) and of estimated mean decoding

time (T ). The results are shown in Figure 3. Denote t the decoding time of one LDPC decoder

iteration and Nit the required number of iterations. In the following, we set K = 8, t = 0.2s,

Nit = 20. Remark that the entropy of a source of parameter α is the same whatever θ
(i) and

denote h(α) = H(X|Y, α). In each case, we assume that a code or a sequence of codes reaching

the entropy can be constructed.

For the solution with feedback, assume that we can construct a sequence of codes such

that R1 = h(α/K), . . . RK ,= h(α) and achieving small probability of error respectively for

α ∈ I1, . . . , α ∈ IK . Thus, α ∈ Ik, Rk = h(kα/K). We also assume that the delay induced by

the feedback is negligible compared to the decoding time. Then, for α ∈ Ik the mean decoding

time is estimated as Tk = 2× t×Nit ×k where the coefficient 2 comes from the assumption that

θ
(i) is selected uniformly at random. In the curve of Figure 3, the circles represent the (Rk, Tk)

and the line can be seen as an interpolation when K increases.

February 1, 2013 DRAFT



23

0

10

20

30

40

50

60

70

0.2 0.4 0.6 0.8 1 1.2 1.4

T
 (

s)

R (bits/symbol)

Feedback
Genie-aided

Learning sequence
EM

EM random

Fig. 3. Rate/Time performance of a solution with feedback

For the genie-aided setup, the rate is dimensioned for the worst case, i.e., R = h(α) and

an approximation of the mean decoding time is calculated as T = Nit. For the setup with

learning sequence, assuming a sequence length representing a fraction 1/5 of the total length,

R = 4/5h(α)+1/5H(X) and T = Nit. For the coding scheme described in the paper, R = h(α)

and we approximate T = 2×Nit, assuming that 2 iterations of the EM algorithm are required,

and that the θ
(i) is correctly retrieved at the initialization step. For the coding scheme with EM

initialized at random, R = h(α) and we approximate T = 3× 2×Nit, assuming that 3 iterations

of the EM algorithm are required, and that θ(i) is selected uniformly at random.

We see that a solution with feedback can induce a considerable rate gain but at the price of

huge decoding delays. Remark that the choice of the parameter K is important. If K decreases,

the size of the Ik increases which reduces the mean decoding time. On the other hand, as for

α ∈ Ik, the effective coding rate is Rk, the rate needed to decode for α can increase.
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m Err Time (s)

1 < 10−5 6.6

100 < 10−5 6.9

500 < 10−5 7.2

random < 10−5 10.8

TABLE III

SETUP COMPARISON FOR THE DWP-SOURCE

D. DwP-Source

The solution proposed for the DwP-Source is now evaluated in the non-binary case. The

distribution of Z is given by π = [1 − 3π, π, π, π], where π can take four different values:

π0 = 0, π1 = 0.02, π2 = 0.04 and π3 = 0.06, defining four states. Indeed, for the DwP-Model,

the worst case is taken on the convex hull of the possible distributions.

We now consider source vectors of length 1000 and fix a block length m. For each block of

length m in a vector, a probability distribution for the states is generated uniformly at random.

The values m = 1, 100 and 500 are tested. A fourth setup is tested for m generated uniformly

at random in {1, ..., 1000}. More precisely, a first value m0 is generated, a second one m1 is

generated after m0 symbols and so on. The method proposed for the SwP-Source is then applied

with the same code over 100 realizations for each m. The complete decoding technique described

for the SwP-Source is used: coarse estimate of the parameter from Lemma 4 followed by EM

algorithm. The decoder is provided the information that the set of possible distributions for Z

is on the form [1 − 3θ, θ, θ, θ] and θ ∈ [0, 0.06]. The results are presented in Table III. Mean

error and mean decoding time are measured. We see that smaller m give smaller decoding time,

because with a small m, the source behavior is better approximated by the SwP-Model.

Now consider a DwP-Model with four states, giving four possible distributions for Z: π(0) =

[0.91, 0.03, 0.03, 0.03], π
(1) = [0.03, 0.91, 0.03, 0.03], π

(2) = [0.03, 0.03, 0.91, 0.03], π
(3) =
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[0.03, 0.03, 0.03, 0.91]. In this case, from (2), the infimum of achievable rates is given by R = 2

bits/symbol = H(X) bits/symbol, because the infimum of achievable rates is given by the worst

cases on the convex hull of the set of possible distributions. Therefore, the SI cannot be exploited.

VI. CONCLUSION

This paper introduced four signal models modeling the uncertainty on correlation channel

between the source and the SI. Practical coding schemes based on non-binary LDPC codes were

proposed for the SW setup and for the four models. Simulation results exhibit good performance

in terms of probability of error, rate, or decoding delay, compared to the solution with a learning

sequence or the solution with an EM algorithm initialized at random.

Future works will be on the design of good degree distributions for our models with non-

binary symbols, and on the extension to the lossy case. We will also investigate correlation

model selection, i.e., the choice of one of the four source correlation models and of the structure

of the family distribution for the model.
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APPENDIX

In this Appendix, we detail the derivation of the update rule (7) at a CN for the SW problem,

when the LDPC code is non binary and the decoder is the sum-product algorithm. This update

rule derives from the parity check equation at CN m, given by
∑

n′∈N (m) Hm,n′ ⊗xn′ = sm, that

can be restated as

xn = sm ⊘Hm,n ⊖
∑

n′∈N (m)\n

(Hm,n′ ⊘Hm,n)⊗ xn′ . (26)

The update rule at a CN, and for the sum-product algorithm, consists in computing the reliability

information on the variable xn as a function of the reliability information on the variables xn′ ,
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denoted m(ℓ−1)(n′,m, yn′). Thus, the k-th component of the CN message m to VN n (7) is

log
P
(
Xn = 0|sm, {m

(ℓ−1)(n′,m, yn′)}n′∈N (m)\n

)

P
(
Xn = k|sm, {m(ℓ−1)(n′,m, yn′)}n′∈N (m)\n

) (27)

We first detail the impact of the operator ⊗ on a message, to study the term ⊖(Hm,n′ ⊘

Hm,n) ⊗ xn′ in (26). Given a random variable Z taking its values in GF(q), and with a prob-

ability vector p = [P (Z = 0), . . . , P (Z = q − 1)]T, the probability vector of a ⊗ Z sat-

isfies q = [P (a ⊗ Z = 0), . . . , P (a ⊗ Z = q − 1)]T = W [a]p, where the matrix W [a]

has been defined just after equation (7). Similarly, l =
[
log P (a⊗Z=0)

P (a⊗Z=0)
, . . . , log P (a⊗Z=0)

P (a⊗Z=q−1)

]
is

obtained from m =
[
log P (Z=0)

P (Z=0)
, . . . , log P (Z=0)

P (Z=q−1)

]
as l = W [a]m. Therefore, in (27), we need

W
[
Hn′m

]
m(ℓ−1)(n′,m, yn′), ∀n′ ∈ N (m)\n, where Hn′m = ⊖Hn′,m ⊘Hn,m.

We now detail the impact of the operator ⊖
∑

on a message to deal with ⊖
∑

n′∈N (m)\n(Hm,n′⊘

Hm,n) ⊗ xn′ . The probabilities of a sum of random variables in GF(q) can be evaluated with

the help of a particular Fourier transform [15]. From [20], the i− th component of the Fourier

transform applied on a message vector m is Fi(m) =
∑q−1

j=0 r
i⊗je−mj/

∑q−1
j=0 e

−mj and the k-th

component of its inverse is F−1
k (f) = log

(∑q−1
i=0 fi/

∑q−1
i=0 r

−i⊗kfi
)
.

Finally, the term sm⊘Hm,n, specific to SW coding, is taken into account. Denote Γ a random

variable taking its values in GF(q) and m =
[
log P (Γ=0)

P (Γ=0)
, . . . , log P (Γ=0)

P (Γ=q−1)

]
. The message vector

l =
[
log P (a⊕Γ=0)

P (a⊕Γ=0)
, . . . , log P (a⊕Γ=0)

P (a⊕Γ=q−1)

]
corresponding to a⊕Γ is obtained as l = A[a]m. Setting

a = sn ⊘Hm,n gives the final message vector m(ℓ)(n,m, yn).
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