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Improved Set-Membership Estimation Approach based on Zonotopes
and Ellipsoids

S. Ben Chabane, C. Stoica Maniu, T. Alamo, E.F. Camacho, D. Dumur

Abstract—This paper presents an improved approach for guar-
anteed state estimation combining set-membership estimation
techniques based on zonotopes and ellipsoids, applied on linear
discrete-time systems with unknown but bounded perturbations
and noises. The proposed approach starts with a zonotopic
approximation and continues with an ellipsoidal approximation;
this allows to manage the trade-off between the accuracy of the
zonotopic estimation and the reduced complexity of the ellipsoidal
estimation. A new criterion based on the P -radius of a zonotope
is proposed to make the transition from the zonotopic estimation
to the ellipsoidal estimation. An illustrative example is analyzed
to show the advantages of the proposed approach.

I. INTRODUCTION

More often, the state estimation problems are solved by
implementing a stochastic approach based on a probabilistic
description of the perturbations and measurement noises [1].
This requires to assume that the individual perturbations are
realizations of random variables characterized statistically by
their average, covariance, probability density etc. However,
sometimes the probabilistic assumptions are difficult to verify.
Thus, it may be more realistic to assume that the errors belong
to compact bounded sets. This corresponds to the deterministic
approach or the set-membership estimation [2], [3], [4], [5],
where perturbations are considered unknown but bounded.
The set-membership estimation method leads to an estimation
set containing the state vector. While their use was severely
restricted in the 80s due to the low capacity of available
computers, these approaches have been widely used over the
last two decades by many researchers [6], [7], [8], [9], [10].

There are several sets used to implement set-membership
estimation techniques: parallelotopes [8], [9], ellipsoids [2],
[6], [10], [11], [12], zonotopes [13], [14], [15], [16].

Ellipsoids have been used by different authors [11], [12],
[17] due the simplicity of formulation. To minimize the size
of the ellipsoidal estimation, two criteria are mainly considered
in the literature. Firstly, the minimization of the determinant
of the shape matrix of an ellipsoid is proposed. This is
equivalent to the minimization of the square of the volume of
the ellipsoid, but sometimes can lead to very narrow ellipsoids
corresponding to very large uncertainties in some states [11].
Secondly, the trace criterion, which is equal to the sum of
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squares of the half lengths of the axes of the ellipsoid, leads
to better conditioned ellipsoids [11].

In addition, zonotopes are proposed to obtain a better
estimation accuracy than ellipsoids. To minimize the size of
the zonotopic estimation, several methods are proposed in
the literature. In [14], a method based on the Singular Value
Decomposition is used in order to obtain a zonotopic outer
approximation of the intersection of the uncertain trajectory
and the region which is consistent with the measured output.
In [15], the minimization of the segments and the volume of
the zonotope are used. The segments minimization method is
faster but less accurate than the minimization of the volume
of the zonotope. In [16], the minimization of the P-radius of
the zonotope leads to a good trade-off between the rapidity
of the segments minimization and the accuracy of the volume
minimization of a zonotope.

This paper proposes an improved method which combines
the advantages of the zonotopic set-membership state esti-
mation (i.e. accuracy) and of the ellipsoidal set-membership
estimation (i.e. reduced complexity). This is formulated as
an optimization problem which starts with the zonotopic
estimation and continues with the ellipsoidal estimation. A
new criterion based on the P-radius of the zonotopic estimation
is used to make the transition. In fact, when the P-radius of
the zonotope is decreasing very slowly in the last iterations,
an outer ellipsoidal approximation of the zonotope is consid-
ered to continue the state estimation with the ellipsoidal set-
membership technique. This ellipsoid is obtained by scaling
the ellipsoid related to the P-radius of the zonotope. This
combined method (which is the novelty of this paper) leads to
a less complex estimation than the zonotopic estimation based
on the minimization of the P-radius and more accurate than
the ellipsoidal estimation.

This paper is organized as follows. In Section II, the class
of the uncertain systems used in this paper and the estimation
problem are formulated. Section III and Section IV present
the methods used in ellipsoidal state estimation and zonotopic
state estimation, respectively. The next section presents the
proposed method based on both zonotopes and ellipsoids to
estimate the state. Section VI proposes an illustrative exam-
ple which allows comparing the results obtained with ellip-
soidal set-membership estimation techniques, zonotopic set-
membership estimation and the proposed approach. Finally,
some concluding remarks and perspectives are drawn.

Notations and definitions
An ellipsoid is defined by E(c, P ) = {x : (x − c)>P−1(x −
c) ≤ 1}, where c ∈ Rn is the center of the ellipsoid and the
matrix P = P> � 0 characterizes its shape and size. This



ellipsoid is non-empty bounded (i.e. ∃P−1).
A strip is defined by the following set S(y, d) = {x ∈ Rn :

|y − d>x| ≤ 1}.
The unitary interval is defined by B = [−1, 1].
The Minkovsky sum of two sets A and B is defined by
A⊕ B = {a+ b : a ∈ A, b ∈ B}.

A m-zonotope in Rn is defined by Z = {x ∈ Rn : x =
p + Hz, z ∈ Bm}, where the vector p ∈ Rn is the center
of the zonotope, the matrix H ∈ Rn×m represents the linear
transformation and Bm is a box (interval vector) composed by
m unitary intervals.

Given a zonotope Z , denote by VZ the set of its vertices.
The P -radius of a m-zonotope Z is a distance d(x) =

max
x∈Z
‖x− p‖2P , with P = P> � 0.

II. PROBLEM STATEMENT

Consider the following linear discrete-time invariant system
with the state and measurement equations:{

xk+1 = Axk + Fωk
yk = c>xk + σvk

(1)

where xk ∈ Rn is the state vector, yk ∈ R is the measurement
output, ωk ∈ Rn and vk ∈ R represent the state disturbances
and the measurement noises, respectively. Here, A, c, F
and σ have the appropriate dimensions, with the additional
hypothesis that the pair (c>, A) is detectable. It is assumed
that the initial state x0 belongs to the bounded set X0 and
the perturbations and measurement noises are bounded by the
compacts sets ωk ∈ W and vk ∈ V , respectively.

With these assumptions, using the set-membership theory
and assuming that xk ∈ X̂k (bounded set), the system state is
contained in the set X̂k+1, which is computed in two steps.
The first is the prediction step, where the predicted state set
X̄k+1 is given by:

X̄k+1 = AX̂k ∪ FW (2)

The second is the correction step, where the guaranteed state
set X̂k+1 is given by:

X̄k+1 ∩ Xyk+1
⊆ X̂k+1 (3)

where

Xyk+1
= {xk+1 ∈ Rn : |c>xk+1 − yk+1| ≤ σ} (4)

is the consistent state set using the output measurement yk+1.
The aim is to find the optimal set X̂k+1 that contains the

state vector xk+1. In the following, two methods to compute
this set using ellipsoids and zonotopes are presented.

III. ELLIPSOIDAL STATE ESTIMATION

This section considers an ellipsoidal state estimation [11]
for the system (1). The initial state vector x0 belongs to the
ellipsoid E0(c0, P0), W is the ellipsoid E(0, I2) and V = B.

The size of an ellipsoid is measured by either its volume or
by the sum of squares of the length of its semiaxes. The first
is proportional to the square of the product of the length of its

axes, which corresponds to the determinant criterion and the
second corresponds to the trace criterion [11].

In the following, the two-step estimation procedure (pre-
diction and correction) is addressed using the trace and the
determinant criteria.

A. Prediction step

The prediction set, computed by considering ellipsoidal sets
for X̄k+1, X̂k and W in (2), is given by:

Ēk+1(ck+1, Pk+1) = AÊk(ck, Pk) ∪ FE(0, I2) (5)

such that xk belongs to the guaranteed state set Êk(ck, Pk).
Equation (5) can be rewritten as:

Ēk+1(ck+1, Pk+1) = Êk(Ack, APkA
>) ∪ E(0, FF>) (6)

Applying the property of the sum of ellipsoids [11] means that
there exists φ ∈ (0, 1) such that:{

ck+1 = Ack
Pk+1 = φ−1P1 + (1− φ)−1P2

(7)

with P1 = APkA
> and P2 = FF>.

The objective is to find φ which minimizes either the trace
criterion:

φ∗ = arg0<φ<1 min tr(Pk+1) (8)

or the determinant criterion:

φ∗ = arg0<φ<1 min log det(Pk+1) (9)

These two cases are detailed below.
1) Trace criterion: The advantage of this method consists

in providing an explicit solution for φ∗ (see [11] for the proof
of concept):

Pk+1 =
(√

tr(P1) +
√
tr(P2)

)( P1√
tr(P1)

+
P2√
tr(P2)

)
(10)

leading to the following optimal value:

φ∗i =
(√

tr(P1) +
√
tr(P2)

)−1√
tr(Pi) (11)

2) Determinant criterion [11]: There is no explicit solution
for this minimization problem. The recursive algorithm gives:

Pk+1 = φ−1P1 + (1− φ)−1P2, such that φ ∈ (0, 1) (12)

The optimal value φ∗ is obtained by solving a convex
optimization problem of one dimension:

φ∗ = arg0<φ<1 min log det(φ−1P1 + (1− φ)−1P2) (13)

Then, standard iterative methods for solving convex con-
strained optimization problems can be applied.



B. Correction step

The goal of the correction step is to compute the intersection
between the ellipsoid resulting after the prediction step and
the strip representing the measured output. For this, the Outer
Bounding Ellipsoid (OBE) algorithm [6] is used based on the
minimal volume (determinant criterion) and minimal trace.
In this step, the set Êk+1(ĉk+1, P̂k+1) is found. This set
is consistent with the measurement and it is computed by
considering ellipsoidal sets for X̂k+1 and X̄k+1 in (3), i.e.:

Ēk+1(ck+1, Pk+1) ∩ Xyk+1
⊆ Êk+1(ĉk+1, P̂k+1) (14)

with the measurement consistent state set Xyk+1
= {xk+1 ∈

Rn : (y′k+1 − c′>xk+1)2 ≤ 1}, with y′k+1 = yk+1σ and c′ =
cσ. From the intersection between an ellipsoid and a strip [6],
it leads to:

ĉk+1 = ck+1 +
ψδ

1 + ψg
Pk+1c

′

P̂k+1 = (1 + ψ − ψδ2

1 + ψg
)(Pk+1 −

ψ

1 + ψg
Pk+1c

′c′>Pk+1)

(15)
with g = c′>Pk+1c

′, δ = y′k+1 − c′>ck+1 and ψ ≥ 0.
The new ellipsoid contains the free parameter ψ ≥ 0, which

actually defines its position, size and orientation. Several
criteria were developed to calculate this parameter. In the
following, the determinant criterion and the trace criterion [6]
will be presented.

1) Trace criterion [6]: Applying the fact that tr(M +
uv>) = tr(M) + v>u with M = Pk+1, u = Pk+1c

′ and
v = − ψ

1+ψgPk+1c
′ to the trace of P̂k+1 in (15) leads to:

tr(P̂k+1) =

(
1 + ψ − ψδ2

1 + ψg

)(
µ− ψγ

1 + ψg

)
(16)

with µ = tr(Pk+1) and γ = c′>P 2
k+1c

′.
The minimal trace ellipsoid is obtained by solving the

following optimization problem:

ψ∗ = argψ≥0 min tr(P̂k+1). (17)

The optimal value of ψ is the solution of:

dP̂k+1(ψ)

dψ
= 0. (18)

As ψ has to verify a condition of positivity (ψ ≥ 0) while
satisfying (18), ψ is the unique positive real root (Descartes’s
Rule of Signs [18]) of the following third degree polynomial:

dP̂k+1(ψ)

dψ
= 0⇐⇒ ψ3 + β1ψ

2 + β2ψ + β3 = 0 (19)

with

β1 =
3

g
> 0

β2 =
g
[
µ
(
1− δ2

)
− γ
]

+ 2
[
gµ− γ

(
1− δ2

)]
g2 (gµ− γ)

β3 =
µ
(
1− δ2

)
− γ

g2 (gµ− γ)

(20)

where β3 and β2 have the same sign.

2) Determinant criterion [6]: Applying the fact that
det(θK) = θn det(K), with θ = 1 + ψ − ψδ2

1+ψg ∈ R and
K ∈ Rn×n and the fact that det(I + uv>) = 1 + v>u, with
u = Pk+1c

′ and v = − ψ
1+ψg c

′, then the determinant of P̂k+1

in (15) can be computed as follows:

det(P̂k+1) =

(
1 + ψ − ψδ2

1 + ψg

)n
det(Pk+1)

1 + ψg
(21)

The minimal volume ellipsoid is obtained by solving the
following optimization problem:

ψ∗ = argψ≥0 minh(ψ) (22)

with h (ψ) =

(
1 + ψ − ψδ2

1 + ψg

)n
/(1 + ψg).

A sufficient condition for ψ is that:

dh (ψ)

dψ
= 0, with ψ ≥ 0, (23)

which leads to the following solution (see [6] for more details):

ψ∗ =


−
(
2n− g − 1 + δ2

)
+
√

∆

2 (n− 1) g
, if ∆ ≥ 0

0, otherwise
(24)

with ∆ =
(
g − 1− δ2

)2
+ 4δ2

(
δ2 − 1

)
and n equal to the

dimension of x. It can be noticed that ψ∗ = 0 means that the
ellipsoid does not change (Êk+1 = Ēk+1).

IV. ZONOTOPIC STATE ESTIMATION

This section considers a zonotopic state estimation for the
system (1). In this approach, it is assumed that the initial state
x0 belongs to the zonotope Z0, the perturbations are bounded
by the box W ⊆ B2 and the measurement noise is bounded
by the unitary interval V ⊆ B. Suppose that the guaranteed
state estimation set at time k is a known zonotope:

Ẑk = p̂k ⊕ ĤkBr ⊂ Rn (25)

i.e. X̂k in (2) is equal to Ẑk.
As shown in the previous sections, a similar two-step

procedure (prediction and correction) is applied in order to
compute the set containing the state.

A. Prediction step

The predicted state set X̄k+1 = Z̄k+1 in (2) is determined
as [16]:

Z̄k+1 = AẐk ⊕ FW = Ap̂k ⊕
[
Ĥk F

]
Br+n. (26)

Note that the union of two zonotopes is equal to the Minkovsky
sum of these two zonotopes.



B. Correction step

The guaranteed state estimation (X̂k+1 = Ẑk+1 in (3)) at
time instant k+1 is the outer approximation of Z̄k+1∩Xyk+1

.
It is parametrized by the vector λ (see [16] for more details),
leading to the following family of zonotopes:

Ẑk+1(λ) = p̂k+1(λ)⊕ Ĥk+1(λ)Br+n+1 (27)

with{
p̂k+1(λ) = Ap̂k + λ

(
yk+1 − c>Ap̂k

)
Ĥk+1(λ) =

[(
I − λc>

)
AĤk

(
I − λc>

)
F σλ

] (28)

The vector λ ∈ Rn is then determined in order to minimize
the size of the zonotope Ẑk+1(λ).

In the literature, there are several methods for minimizing
a zonotope based on its segments minimization [15], on its
volume minimization [15] or on its P-radius minimization
[16]. The first method offers a reduced complexity, while the
second method leads to the most accurate result. The P-radius
minimization method allows managing the trade-off between
computational complexity and accuracy of the estimation. It
is based on the minimization of the P-radius of the zonotope
Ẑk+1(λ). The idea is to compute a matrix P = P> � 0 and
a vector λ ∈ Rn such that, at each iteration the P-radius of
the zonotopic state estimation set is not increased.

Consider the P -radius of the state estimation set at time
instant k:

Lk = max
x∈Ẑk(λ)

‖x− p̂k‖2P = max
x∈Ẑk(λ)

(x−p̂k)>P (x−p̂k) (29)

Note that the ellipsoid related to the P-radius of the zonotopic
state estimation Ẑk is represented by:

E(p̂k, LkP
−1) = {x ∈ Rn : ‖x− p̂k‖2P ≤ Lk}. (30)

The non-increasing condition of the P-radius can be expressed
as follows [16]:

Lk+1 ≤ βLk + max
ω∈Bn

‖Fω‖22 + σ2 (31)

with β ∈ (0, 1).
Expression (31) is equivalent to:

max
z∈Br+n+1

‖Ĥk+1ẑ‖2P ≤ max
z∈Br

β‖Ĥkz‖2P + max
ω∈Bn

‖Fω‖22 + σ2

(32)
with ẑ = [z>ω>η]> ∈ Br+n+1, z ∈ Br, ω ∈ Bn, η ∈ B
and β ∈ (0, 1). A sufficient condition for the inequality (32)
is given in [16]. This consists in finding the smallest value of
β ∈ (0, 1) (for instance via the bisection algorithm) such that
the following optimization is feasible:

max
τ,P,β,Y

τ

subject to

(1−β)P
σ2+const � τI
βP 0 0 A>P −A>cY >
∗ F>F 0 F>P − F>cY >
∗ ∗ σ2 Y >σ
∗ ∗ ∗ P

 � 0
(33)

with const = max
ω∈Bn

‖Fω‖22. The decision variables are τ > 0,

P ∈ Rn×n, β ∈ (0, 1) and Y = Pλ ∈ Rn.
The optimization problem (33) is computed off-line which

leads to a small computation complexity compared to the
zonotope volume minimization [16] for a similar accuracy.
However this P -radius based problem is still enough complex
compared to the ellipsoidal minimization. This motivates the
improved approach proposed in the next section.

V. PROPOSED APPROACH

This section proposes an improved method which takes
advantage of the good estimation accuracy obtained via the
zonotopic minimization and the low complexity proven by the
ellipsoidal minimization.

In fact, when the P-radius is decreasing slowly during the
last iterations of the zonotopic estimation, (i.e. the solution is
close enough to an optimum), we propose to outer approximate
the zonotopic estimation set by an ellipsoid and to continue
the procedure via the ellipsoidal set-membership estimation.
This leads to gain in rapidity of the estimation, while keeping
an acceptable level of accuracy. The design of this outer
ellipsoidal approximation of the zonotopic state set is further
detailed. Computing the zonotopic state estimation set via the
minimization of the P -radius (i.e. solving the optimization
problem (33)) allows computing the P -radius of the zonotope
and its associated ellipsoid. The ellipsoid related to the P -
radius is usually an inner approximation of the zonotope,
with the same center and direction as the zonotope (e.g. the
blue dashed ellipsoid in Fig. (1)). In order to obtain an outer
ellipsoid that will outer approximate the zonotope, the ellipsoid
related to the P -radius will be scaled by a scalar α (leading
to the red ellipsoid in Fig. (1)). The parameter α ∈ (0, 1)
has to be found in order to minimize the size of the ellipsoid
Êk = {xk ∈ Rn : (xk − p̂k)>α(LkP

−1)−1(xk − p̂k) ≤ 1},
where p̂k is the center of the zonotope (computed using
expression (28)) to be outer bounded and Lk its P-radius.
This can be formulated as a optimization problem that has
to be verified for all the vertices of the zonotope Ẑk:

maxα

subject to{
0 < α < 1
(xk − p̂k)>αPL−1k (xk − p̂k) ≤ 1, ∀xk ∈ VẐk

(34)

To compute α, equation (34) has to be verified for all the
vertices VẐk

of the zonotope Ẑk which requires a large
computation time. It is suitable to find a method reducing
the number of vertices to be checked. Thus, let us denote by
x̄Ẑk

the furthest vertex from the center of the zonotope. Then,
the following proposition avoids the vertex enumeration when
solving the optimization problem (34):

Proposition 1: Consider a matrix P = P> � 0 ∈ Rn×n,
a scalar α ∈ (0, 1), the state vector xk ∈ Rn belonging to
the zonotope Ẑk = p̂k ⊕ ĤkBm, with the associated P-radius
Lk > 0 and the furthest vertex x̄Zk

∈ Rn with respect to its
center. If (x̄Ẑk

− p̂k)>αPL−1k (x̄Ẑk
− p̂k) ≤ 1, then (xk −

p̂k)>αPL−1k (xk − p̂k) ≤ 1, ∀x ∈ VẐk
.



Proof:
Expression (29) can be formulated as follows:

(x̄Ẑk
− p̂k)>P (x̄Ẑk

− p̂k) = Lk, (35)

with x̄Ẑk
the furthest vertex from the center of Ẑk. This means

that:

(xk−p̂k)>P (xk−p̂k) ≤ (x̄Ẑk
−p̂k)>P (x̄Ẑk

−p̂k), ∀xk ∈ VẐk
.

(36)
Assume that ∃α ∈ (0, 1) such that:

(x̄Ẑk
− p̂k)>αPL−1k (x̄Ẑk

− p̂k) ≤ 1. (37)

This inequality can be rewritten as:

(x̄Ẑk
− p̂k)>P (x̄Ẑk

− p̂k) ≤ Lk
α
. (38)

From (36) and (38) it is inferred that:

(xk − p̂k)>P (xk − p̂k) ≤ Lk
α
, ∀xk ∈ VẐk

(39)

which is equivalent to:

(xk − p̂k)>αPL−1k (xk − p̂k) ≤ 1, ∀x ∈ VẐk
. (40)

�
This proposition avoids solving the optimization problem (34)
for all the vertices of the zonotope (only the furthest vertex will
be now considered in (34)) and gives a reduced computation
time.

The following algorithm formulates the proposed method.

Algorithm 1:

Inputs:
N : length of the simulation horizon;
ε: desired level of accuracy of the P-radius;
x0: initial state vector;
Ẑ0: initial state set;
l: length of the horizon of slow variation of the P-radius.

Outputs:
test = 1;
for k = 1 : N

if (|Lk − Lk−l| ≥ ε and test = 1) or (k ≤ l) then
Compute the zonotope estimation Ẑk and its P-radius
Lk;
test = 1;

else if |Lk − Lk−l| ≤ ε and test = 1 then
Compute the scaled ellipsoid Êk;
test = 0;

else
Compute the ellipsoid estimation Êk via the trace
minimization estimation;
test = 0;

end
Collect the measurement yk+1;

end

Fig. 1. Ellispoidal outer-bounding approximation of a zonotope

It means that if the P-radius does not change after l
iterations, a transition to the ellipsoidal estimation is made
and the algorithm continues with the ellipsoidal estimation to
end of the simulation. In addition, the scalar ε is fixing the
speed of transition to the ellipsoidal estimation method (i.e.
it is inversely proportional to the speed of this transition). At
the moment of transition, the ellipsoidal outer approximation
is chosen as an outer bound of the zonotopic estimation
with the same center and direction (given by the P matrix)
as the ellipsoid related to the P-radius of the zonotopic
estimation. An illustrative example showing the performance
of the proposed approach is presented in the next section.

VI. ILLUSTRATIVE EXAMPLE

Consider the following linear discrete-time invariant system:
xk+1 =

[
1 1
0 0.8

]
xk +

[
−0.24
0.04

]
ωk

yk =
[
−2 1

]
xk + 0.4vk

(41)

with ‖vk‖∞ ≤ 1, ‖ωk‖∞ ≤ 1. The initial state belongs to the
box 3B2. The order of the zonotope is limited to m ≤ 20 in
order to have a fast simulation.

Figures 2 and 3 illustrate the bounds of x1 and x2 after 120
iterations obtained with the three estimation methods: the P-
radius based zonotopic estimation, the trace-based ellipsoidal
estimation and the proposed method.

Fig. 2. Bounds of x1 using the three methods

The magenta dashdot lines are obtained by the ellipsoidal
estimation using the trace minimization criterion. The blue
dashed lines are obtained by the zonotopic estimation based
on the P-radius minimization and the black solid lines are



Fig. 3. Bounds of x2 using the three methods

obtained using the proposed method. The red stars represent
the real state of the system, which is inside the estimated sets.

The computation time after N = 120 iterations is 0.27s for
P-radius-based zonotopic estimation, 0.08s for the trace-based
ellipsoidal estimation and 0.15s for the proposed method,
which is a good trade-off. This results are obtained using an
Intel Core Duo E8500 3.16GHz. The tuning parameters used
in Algorithm 1 are: ε = 10−5 and l = 5.

Figure 4 compares the volume of the state estimation sets
obtained by the considered approaches. The minimal volume
is obtained by the P-radius-based method, while with the
proposed method the volume is the same until just before the
transition and it does not degrade too much after the transition.
The proposed method permits to gain 45% in computation
time compared to the P-radius-based zonotopic estimation
with a degradation of the volume of 36% compared to the P-
radius-based zonotopic estimation, which remains reasonable.
This confirms the objective of the proposed algorithm offering
good accuracy compared to the ellipsoidal estimation, while
reducing the complexity compared to the zonotopic estimation.

VII. CONCLUSION

The aim of this paper is twofold: comparing zonotopic and
ellipsoidal set-membership estimation techniques, and propos-
ing a new approach allowing a trade-off between zonotopic
and ellipsoidal estimation approaches.

An improved approach for guaranteed set-membership state
estimation based on zonotopes and ellipsoids for linear sys-
tems with bounded perturbations and measurement noise has
been proposed. It starts with the P -radius-based zonotopic
state estimation and continues with the ellipsoidal state es-
timation. A new criterion based on the P-radius is proposed in
order to make the transition from the zonotopic estimation
to the ellipsoidal estimation. This method offers a good
accuracy compared to the ellipsoidal estimation with reduced
complexity compared to the zonotopic estimation. An example
has been provided to motivate and clarify the choice of
this method. Current work consists in applying the proposed
method to fault detection and fault tolerant control purposes.

Fig. 4. Comparison of the volume of state estimation sets

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[2] F. C. Schweppe, “Recursive state estimation: Unknown but bounded
errors and system inputs,” IEEE Trans. Automat. Contr., vol. 13(1), pp.
22–28, 1968.

[3] E. Fogel, “System identification via membership set constraints with
energy constrained noise,” IEEE Trans. Automat. Contr., vol. AC-24, p.
752, 1979.

[4] D. P. Bertsekas and I. B. Rhodes, “Recursive state estimation for a set-
membership description of uncertainty,” IEEE Trans. Automat. Contr.,
vol. 16(2), pp. 117–128, 1971.

[5] H. S. Wistenhausen, “Sets of possible states of linear systems given
perturbed observations,” IEEE Trans. Automat. Contr., vol. 13(5), pp.
556–558, 1968.

[6] E. Fogel and Y. F. Huang, “On the value of information in system
identification-bounded noise case,” Automatica, vol. 18, pp. 229–238,
1982.

[7] F. L. Chernousko and D. Y. Rokityanskii, “Ellipsoidal bounds on
reachable sets of dynamical systems with matrices subjected to uncertain
perturbations,” Journal of Optimization Theory and Applications, vol.
104, pp. 1–19, 2000.

[8] E. Walter and H. Piet-Lahanier, “Exact recursive polyhedral description
of the feasible parameter set for bounded-error models,” IEEE Trans.
Automat. Contr., vol. 34(8), pp. 911–915, 1989.

[9] L. Chisci, A. Garulli, and G. Zappa, “Recursive state bounding by
parallelotopes,” Automatica, vol. 32, pp. 1049–1055, 1996.
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