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a b s t r a c t

Controller performances are strongly limited by the switching frequency of the converter and the computa-
tional capacity of the target board. Therefore, in such a context the design of controllers that provide good
performances under possible large sampling period length is necessary. To tackle these limitations, a digital
design is described for speed control of permanent magnet synchronous machines. It is based on the
interconnection and the damping assignment passivity-based control (IDA-PBC) techniques extensions to the
sampled-data context.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, PMSM is used in many fields. This gain in popularity
is due to its attractive features such as high power/mass ratio,
rapid dynamic response due to high torque-to-inertia ratio while
compactness and easy modeling and control (Bose, 2002; Giri,
2013). In addition, the presence of the magnet in the rotor reduces
the Joule losses due to the absence of winding excitation in the
rotor and this makes PMSM highly efficient.

Several position and velocity controllers for PMSM have been
reported in the control literature, such as field oriented control
(FOC) or direct torque control (DTC) (Buja & Kazmierkowski, 2004;
Giri, 2013; Wang, Zhu, & Guo, 2007), to quote the most popular. These
controllers are designed using a cascade of two controllers: an outer
loop for the speed control and an inner loop for the currents control.
The different strategies make use of PI or IP controllers, adaptive PI
controller (Li & Liu, 2009), slidingmode controller (Baik, Kim, & Young,
2002; Laghrouche, Plestan, & Glumineau, 2004), predictive controller
(Mariethoz, Domahidi, & Morari, 2009), backstepping controller (Zhou
& Wang, 2002), Lyapunov-based controller (Hernandez-Guzman
& Silva-Ortigoza, 2011) or passivity-based controller (Akrad, Diallo, &
Ortega, 2007; Ortega & Garcia-Canseco, 2004; Petrovic, Ortega, &
Stankovic, 2001). The recently developed energy-shaping technique

(Ortega & Garcia-Canseco, 2004; Ortega, van der Schaft, Castanos, &
Astolfi, 2008) or interconnection and damping assignment passivity-
based control (IDA-PBC) achieves the global stabilization of PMSMs
(Akrad et al., 2007). In fact, integral actions are added in order to
improve robustness. A technique that preserves the Hamiltonian form
and closed-loop stability with integral action on the passive outputs is
applied in Donaire and Junco (2009) and Donaire, Perez, and Teo
(2012) to PMSM speed control.

Nevertheless, the design is generally made in continuous time
while implementation through computers results in degradations
due to input discretization induced by the converter and controller
sampling (Monaco, Normand-Cyrot, & Tiefensee, 2008). The reduced
performances visible in oscillations or instability are mainly due to
(i) the maximum allowed switching frequency of the converters for
high power systems in order to limit the switching losses (in practical
applications such as electrical vehicles, the switching losses limita-
tion is mandatory to maintain the autonomy of the vehicle) and
(ii) the maximum allowed sampling frequency of the processor in
order to reduce the cost of the system.

Digital controllers for asynchronous machines providing good
performances under large switching and large sampling periods are
investigated in Delemontey, Iung, Jacquot, de Fornel, and Bavard
(1995) and Gautier, Thomas, Poullain, Monaco, and Normand-Cyrot
(2000) for high power traction drive. Also digital controllers for
synchronous machine are developed in Georgiou, Chelouah, Monaco,
and Normand-Cyrot (1992), Madani, Bonnassieux, Monaco, and
Normand-Cyrot (1997), and Chelouah, Monaco, and Normand-Cyrot
(1997).
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In this paper, the work initiated in Chelouah et al. (1997) and
Georgiou et al. (1992) is pursued in the context of an IDA-PBC
strategy. A sampled-data solution is proposed to control the currents
of a permanent synchronous motor with a regular field oriented
control strategy. This paper presents a digital passivity based control
procedure recently developed in Monaco, Normand-Cyrot, and
Tiefensee (2011), Tiefensee, Hilairet, Normand-Cyrot, and Béthoux
(2010), and Tiefensee, Monaco, and Normand-Cyrot (2009). A digital
controller preserving passivity is proposed. In practice, such an
approach extends the usual zero order holding (ZOH) device used
for implementing control with well-known degradations.

The paper is organized as follows. In Section 2, the continuous-
time IDA-PBC method is recalled and applied to the currents
control of a PMSM. In Section 3, the digital strategy is recalled
and a digital passivity based controller is described for both
strategies. Simulations and experimental results are presented in
Section 4 where the performance gain according to the sampling
frequency is discussed. The computational cost of the proposed
digital controller is also compared with the usual implementation
through emulation (ZOH device).

2. The continuous-time IDA-PBC approach

In the continuous time domain, the fundamental idea behind
IDA-PBC is to transform the internal structure into a desired stable
one with a desired equilibrium. Interconnection and damping
assignment passivity-based control is thus a control technique
that shapes both the closed loop structure by assigning a desired
port-controlled Hamiltonian (PCH) one and improves stabilization
through damping injection.

2.1. Some recalls about the IDA-PBC strategy

The procedure starts with the system's description in the port
controlled Hamiltonian structure:

_xðtÞ ¼ ½J ðxðtÞÞ�RðxðtÞÞ�∇HðxðtÞÞþgðxðtÞÞuðtÞþζðtÞ
yðtÞ ¼ gT∇HðxðtÞÞ ð1Þ

where xðtÞARn is the state vector, uðtÞARm is the control vector,
yðtÞARm is the output vector with mon, ζðtÞ is a perturbation,
HðxÞ : Rn⟶R is the total stored energy, ∇HðxÞ is the gradient of
the energy function, J ðxðtÞÞ ¼ �J ðxðtÞÞT , RðxðtÞÞ ¼RT ðxðtÞÞZ0 are
the interconnection and damping matrices respectively. PCH
models have been selected as natural candidates to describe many
physical systems.

Proposition 1 (Ortega and Garcia-Canseco, 2004). Consider the
nonlinear system

_xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðtÞ ð2Þ
Assume the existence of matrices g? ðxðtÞÞ, J dðxðtÞÞ ¼ �J T

dðxðtÞÞ,
RdðxðtÞÞ ¼RT

dðxðtÞÞZ0 and a function HdðxÞ : Rn⟶R that verifies
the partial differential equation (PDE)

g? ðxÞf ðxÞ ¼ g? ðxÞ½J dðxðtÞÞ�RdðxðtÞÞ�∇HdðxðtÞÞ ð3Þ
where g? ðxðtÞÞ is a full-rank left annihilator of gðxðtÞÞ, that is,
g? ðxðtÞgðxðtÞÞ ¼ 0, and HdðxðtÞÞ is such that

xn ¼ argminðHdðxðtÞÞÞ ð4Þ
with xnARn being the (locally) equilibrium point to be stabilized.
Then, the closed-loop system (2) with the control u defined as

uðtÞ ¼ ½gT ðxðtÞÞgðxðtÞÞ��1gT ðxðtÞÞ
�f½J dðxðtÞÞ�RdðxðtÞÞ�∇HdðxðtÞÞ� f ðxðtÞÞg ð5Þ

takes the PCH form

_xðtÞ ¼ ½J dðxðtÞÞ�RdðxðtÞÞ�∇HdðxðtÞÞ ð6Þ
with xn being a (locally) stable equilibrium. It will be asymptotically
stable if, in addition, xn is an isolated minimum of HdðxðtÞÞ and the
largest invariant set under the closed-loop dynamics (6) contained in

fxARnj½∇HdðxðtÞÞ�TRdðxðtÞÞ∇HdðxðtÞÞ ¼ 0g ð7Þ
equals xn. An estimate of its domain of attraction is given by the
largest bounded level set fxARnjHdðxðtÞÞrcg.

Proof. Setting up the right hand side of (2) equal to the right hand
side of (6), we get the matching equation

f ðxðtÞÞþgðxðtÞÞuðtÞ ¼ ½J dðxðtÞÞ�RdðxðtÞÞ�∇HdðxðtÞÞ ð8Þ
Multiplying on the left by g? ðxðtÞÞ, we obtain the PDE (3). The
expression of the control is obtained by multiplying on the left by
the pseudo-inverse of gðxðtÞÞ. Stability of xn is established noting
that, along the trajectories of (6), we have

_HdðxðtÞÞ ¼ �½∇HdðxðtÞÞ�TRdðxðtÞÞ∇HdðxðtÞÞr0 ð9Þ
Hence, HdðxðtÞÞ qualifies as a Lyapunov function. Asymptotic stability
follows immediately invoking La Salle0s invariance principle and the
condition (7). Finally, to ensure the solutions remain bounded, we give
the estimate of the domain of attraction as the largest bounded level
set of HdðxðtÞÞ. □

2.2. Permanent magnet synchronous motor control via IDA-PBC

The model of the synchronous machine is defined in the (dq)
coordinates as follows:

Ld
didðtÞ
dt

¼ �RsidðtÞþPΩðtÞLqiqðtÞþvdðtÞ

Lq
diqðtÞ
dt

¼ �RsiqðtÞ�PΩðtÞðLdidðtÞþϕÞþvqðtÞ

J
dΩðtÞ
dt

¼ PðLd�LqÞidðtÞiqðtÞþPϕiqðtÞ� fΩðtÞ�τlðtÞ ð10Þ

In these equations, P is the number of pole pairs, vdðtÞ; vqðtÞ;
idðtÞ; iqðtÞ are the voltages and the currents in the (dq) coordinate,
Ld and Lq are the stator inductances which are equal for surface
permanent-magnet machines, Rs is the stator winding resistance,
τlðtÞ is an unknown load torque, f is the friction coefficient, ϕ and J
are the flux produced by the permanent magnets and the moment
of inertia respectively and ΩðtÞ is the mechanical speed. The PCH
model of the PMSM takes the form (2) with

xðtÞ ¼
LdidðtÞ
LqiqðtÞ
JΩðtÞ

2
64

3
75; uðtÞ ¼

vdðtÞ
vqðtÞ

" #

gðxðtÞÞ ¼ g¼
1 0
0 1
0 0

2
64

3
75; ζðtÞ ¼

0
0

�τlðtÞ

2
64

3
75

J ðxðtÞÞ ¼
0 0 PLqiqðtÞ
0 0 �PðLdidðtÞþϕÞ

�PLqiqðtÞ PðLdidðtÞþϕÞ 0

2
64

3
75

RðxðtÞÞ ¼R¼
Rs 0 0
0 Rs 0
0 0 f

2
64

3
75

The desired equilibrium state for synchronous machines is
usually selected based on the so-called “maximum torque
per ampere” principle as xn ¼ ½0; LqðτlðtÞþ fΩnðtÞÞ=PϕÞ; JΩnðtÞ�T .
The design procedure leads to the continuous-time nonlinear
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controller (5) for buried permanent magnet motor (Akrad et al.,
2007):

uðtÞ ¼
ðRs�r1ÞidðtÞ�PLdi

n

qðtÞΩðtÞþPðLd�LqÞiqðtÞΩnðtÞ
ðRs�r2ÞiqðtÞþr2i

n

qðtÞþPϕΩnðtÞ

2
4

3
5 ð11Þ

and reduces to

uðtÞ ¼
ðRs�r1ÞidðtÞ�PLinqðtÞΩðtÞ

ðRs�r2ÞiqðtÞþr2i
n

qðtÞþPϕΩnðtÞ

2
4

3
5 ð12Þ

for surface-mounted permanent magnet motor ðLd ¼ LqÞ. r1 and r2
are strictly positive gains. Therefore, the closed loop plant can be
written as

_~x ðtÞ ¼ ½J dðxðtÞÞ�Rd�∇Hdð ~xðtÞÞ ð13Þ

where ~xðtÞ ¼ xðtÞ�xn and

J dðxðtÞÞ�Rd ¼
�r1 PLdΩðtÞ � Ld�Lq

� �
iqðtÞ

�PLdΩðtÞ �r2 �Pϕ
Ld�Lq
� �

iqðtÞ Pϕ f

2
64

3
75

The system storage function Hd is

Hdð ~xÞ ¼
1
2
~xTQ ~x with Q ¼

1
Ld

0 0

0 1
Lq

0

0 0 P
J

2
6664

3
7775 ð14Þ

where the minimum is reached at the point of equilibrium xn.
Finally, a load torque estimator based on a digital linear controller

gives an estimation of the load as shown in Fig. 1 to compute the
desired q-axis current inqðtÞ (Khanchoul & Hilairet, 2011).

Remark 1. In practice, tuning the gains r1 and r2 of nonlinear
controller is not as easy as for linear systems. Here, if the measured
speed is nearly equal to the desired speed, the controller compen-
sates the back-emf of the machine and the transfer functions of
the closed-loop currents d and q can be represented by first order
functions, i.e. HðpÞ ¼ 1=ð1þTpÞ with T ¼ Ld=r1 or Lq=r2. Thus the
response time tr at 95% for a first order system is equal to 3T .
Therefore, the d- and q-axis closed-loop response times trd and trq

are respectively equal to trd ¼ 3Ld=r1 or trq ¼ 3Lq=r2 and tune
easily.

3. Sampled-data IDA-PBC design

To set the IDA-PBC problem in a purely discrete-time context is not
an easy task. In Stramigioli, Secchi, der Schaft, and Fantuzzi (2005), the
preservation of passivity of the interconnection of a continuous-time
system with a discrete-time Port Control Hamiltonian system is
studied. In Monaco, Normand-Cyrot, and Tiefensee (2009), it is shown
that the Hamiltonian conservation can be verified under sampling
with respect to a suitably defined output mapping. In the present
context, because there exists a continuous-time IDA-PBC controller, we
can apply the strategy proposed in Tiefensee, Monaco, and Normand-
Cyrot (2010) and design a sampled-data controller matching the
energy behavior of the closed loop system, which has been properly
shaped by the continuous-time controller. The so-designed sampled-
data controller is described by its series expansion around the
continuous-time one. In practice, the first terms of the series are
only computed and implemented to maintain the desired Hamilto-
nian structure and desired energy damping.

3.1. The equivalent sampled-data model

Assuming the control (11) or (12) constant over time intervals
of length TeA �0; Tn� (a sufficiently small time interval), and
denoting by uk its value over ½kTe; ðkþ1ÞTe½ and by xk the value
of x(t) at time t ¼ kTe for kZ0, the sampled equivalent model is
defined by the Te-parameterized map

xk-xkþ1 ¼ FTe ðxk;ukÞ ð15Þ
where ef ð�Þ≔1þ∑iZ1L

i
f =i! is the Lie series operator associated

with a given vector field f, Id the identity operator and Lf ð�Þ ¼
∑n

i ¼ 1f ið�Þ∂=∂xi denotes the Lie derivative operator associated with
a given vector field f on Rn. More precisely one computes (see
Monaco & Normand-Cyrot, 1997 for details)

FTe ðxk;ukÞ ¼ eTeðf þugÞ ¼ 1þTeðLf þuLgÞ

þT2
e

2!
ðL2f þuðLf LgþLgLf Þþu2L2g Þþ⋯þTp

e

p!
Lpf þugþ⋯

Fig. 1. IDA-PBC structure with a R–S–T digital speed controller.
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The state evolutions of FTe ð�;ukÞ coincide with that of (1) at the
sampling instants: xðt ¼ kTeÞ ¼ xk for kZ1 whenever x0 ¼ xðt ¼ 0Þ.
To get a closed form solution requires the integrability of (1) which
does not hold in general. The sampled dynamics (15) is thus
described by its asymptotic series expansion in powers of Te.
Truncations in Te yield to approximate sampled models of order p
in Te (error in OðTpþ1

e Þ).
As shown in Tiefensee, Monaco, et al. (2010) the specific

PCH state-space structure in (1) is lost under sampling as soon
as terms of order Z2 in the equivalent sampled-data dynamics
(15) are taken into account. However, it is possible to design digital
controllers which match, at the sampling instants, the energetic
behavior of the continuous-time target Hamiltonian function Hd.

3.2. Energy matching under digital control

In this paragraph, the closed-loop continuous-time state is
denoted by xc and continuous-time control by uc. The sampled-
data state under a piecewise controller uk is denoted, at the
time-instants t ¼ kTe, by xk, its value at the instant t ¼ ðkþ1ÞTe is
denoted by xkþ1. The main objective is to ensure the stabilization
at the equilibrium point xn with a good transient response under
large sampling periods. For this, we look for a digital controller
matching at the sampling instants the energetic behavior of the
continuous-time target Hamiltonian function Hd. The design works
out assuming the piecewise constant control uk of the form:

uk ¼ uk0þ ∑
iZ1

Ti
e

ðiþ1Þ!uki ð16Þ

and solving the following equality:

Hdðxkþ1Þ�HdðxkÞ ¼
Z ðkþ1ÞTe

kTe

_HdðxcðτÞÞ dτ ð17Þ

The left hand side of (17) represents the energetic evolution of the
sampled-data system and can be computed as follows (Monaco &
Normand-Cyrot, 1997):

Hdðxkþ1Þ�HdðxkÞ ¼ 1
2 ðFTe ðxk;ukÞÞTQFTe ðxk;ukÞ�ðxkÞTQ ðxkÞ: ð18Þ

The right hand side of (17) represents the energetic evolution of xc
and can be exactly computed as follows:Z ðkþ1ÞTe

kTe

_HdðxcðτÞÞ dτ¼Hdðxcjt ¼ ðkþ1ÞTe
Þ�Hdðxcjt ¼ kTe

Þ

The following result can be enounced.

Proposition 2 (Tiefensee, Monaco, et al., 2010). Given (1) and
assuming the existence of a continuous-time IDA-PBC as in Proposi-
tion 1 with Hd being C1�function describing the Hamiltonian target,
then:

� There exists a piecewise constant controller of the form (16)
ensuring matching at the sampling instants t ¼ kTe, kZ0, of the
desired Hamiltonian behavior Hd.� Asymptotic stabilization at the target equilibrium xn is achieved.

� The successive terms in the expansion (16) can be computed
iteratively.

The sampled-data controller uk is described by its series
expansion in Te around the continuous-time one uk0 ¼ ucjt ¼ kTe

as
uk ¼ uk0þ∑iZ1ðTe=ðiþ1Þ!Þuki, and each so-called “corrective” term
uki is computed by comparing and equating homogeneous terms in
powers of Te in the equality (17). The computation of an exact
solution being in general a difficult task due to the nonlinearities
describing the continuous-time dynamics, an interesting solution

can be proposed at the first order of approximation, i.e.

uk ¼ uk0þ
Te

2!
uk1 ð19Þ

with

uk0 ¼ uc ð20Þ

uk1 ¼ _uc ð21Þ
so guaranteeing Hamiltonian matching up to the second order
(error in OðT3

e Þ) and the Hamiltonian state space structure up to an
error in OðT2

e Þ.
Specifying this solution to the PMSM, one computes

uk ¼ ½Eq: ð11Þ or ð12Þ�þTe

2!

vd1
vq1

" #
ð22Þ

with

vd1 ¼
Rs�r1
Ld

ð�r1idþPΩðLqiq�Ldi
n

qÞ

þPðLd�LqÞiqΩnÞ�P2

J
Ldiqi

n

qððLd�LqÞidþΦÞ

þ P
Lq
LdΩ

n�PΩn

� �
ð�r2ðiq� inqÞ

�PΦðΩ�ΩnÞ�PLdidΩÞ ð23Þ

vq1 ¼
Rs�r2
Lq

ð�r2ðiq� inqÞ�PϕðΩ�ΩnÞ�PLdidΩÞ ð24Þ

for buried PMSM and in the case of a non-salient rotor (Ld ¼ Lq ¼ L),
the previous equations become

vd1 ¼
Rs�r1

L
ð�r1idþPLiqΩ�PLinqΩÞ�P2

J
Linqϕiq ð25Þ

vq1 ¼
Rs�r2

L
ð�r2ðiq� inqÞ�PLidΩ�PϕðΩ�ΩnÞÞ ð26Þ

4. Simulation, experimentation and discussions

4.1. Simulation tests

To give an estimation of the load torque of the PMSM (Interior
PMSM type, data is given in Table 2 and Fig. 2 shows the design of
the machine), a RST controller (out of scope of this paper) ensures
this function with a sampling time Tm and a closed-loop response
time fixed at 1 ms (compared to 0.17 s for the inner current loop).
As shown in Fig. 1, the IDA-PBC controls the (dq) currents with a
sampling time Te. In order to highlight the performances of the
new digital controller, a comparison between the latter, emulated
controller based on the continuous-time design and the contin-
uous controller is detailed for different sampled periods.

Firstly, three control laws are compared for two configurations:
(a) closed-loop dynamic of the current loop equal to 2 ms and a
sample time Te equal to 1 ms, (b) closed-loop dynamic equal to
0.2 ms and a sample time Te equal to 0.1 ms.

Fig. 3a and b shows the step response of current iq controlled at
zero speed by the continuous IDA-PBC, the emulated IDA-PBC
(implementation of the continuous IDA-PBC with a zero-order
holder, Eq. (11)), and the sampled IDA-PBC (Eq. (22)). iqc, iqe and iqk
represent the currents controlled by the continuous IDA-PBC,
the emulated IDA-PBC and the sampled IDA-PBC respectively.
The simulation shows that the current iqe does not reproduce the
trajectory of the current iqc with the adopted tuning. Moreover, the
latter is under-damping compared with iqk in configuration b (see
Fig. 3b). Fig. 3c shows that the sampled-data controller reproduces
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exactly the continuous IDA-PBC current with an increment of the
expansion order.

Secondly, the current controller design supposes that the
converters are loss-less (no perturbation) and all the parameters
are well-known. So in practice, a low integrator action with an
anti-windup system needs to be added to the passivity controller
in order to ensure zero error at steady state and to counteract the
perturbations and parameters variation (Donaire & Junco, 2009).
The implemented controller is now

u¼ ½Eq: ð22Þ�þ
vid
viq

" #
with

_vid

_viq

" #
¼ �KI

~id
~iq

" #

and KI ¼
Kid 0
0 Kiq

" #
ð27Þ

where gains of the integrator Kid and Kiq are set to 500 and 200
respectively. The response time of the two current loops is set to

1 ms. According to the experimental test bench, the load torque
characteristic has been evaluated as shown in Fig. 4.

Figs. 4, 5 and 6 show the load torque τl applied to the motor, the
mechanical speed, the quadrature current iq and the direct current
id which are control by the emulated and sample-data IDA-PBC
respectively for a sampling time Te equal to 200 μs. The simulation
shows that the controllers have the same behavior.

It is interesting to note that currents iqe and iqk are in advance
compared to the desired currents while the measured speed does
not reached the desired value. It means that the right part of
Eq. (11) introduces a “feed-forward” term in the controller.

However, when the sampling period Te of the current-loop is
increased, the ratio “closed-loop response time vs sampling time”
is reduced and the stability properties of the emulated controller

Fig. 2. Design of the interior PMSM.

Fig. 3. q-Axis current response for different tunings of the current closed-loop. (a) Te ¼ 1 ms, r1 ¼ 0:65, r2 ¼ 0:65, N¼1, (b) Te ¼ 100 μs, r1 ¼ 19:5, r2 ¼ 19:5, N¼1,
(c) Te ¼ 100 μs, r1 ¼ 19:5, r2 ¼ 19:5, N¼1to 4.

Fig. 4. Load torque characteristic.

M. Khanchoul et al. / Control Engineering Practice 26 (2014) 20–2724



are lost. In our configuration, it follows that the stability has been
preserved for ratio greater than 4.

As previously shown in Fig. 3, the sampled-data controller can
retrieve the stability of the current-loop with additional terms in
the controller equations. Fig. 7 shows the performance of these
latter controllers for a sampling time Te equal to 500 μs, i.e. a ratio
“closed-loop response time vs sampling time” equal to 2. While
the emulated controller fails, the sampled-data controller keeps
good performances. It confirms the effectiveness of this new
controller in a sampled-data context.

Fig. 5. Simulation of the emulated IDA-PBC with a sampled period equal to 200 μs. (a) Ωnð�Þ, Ωð� :Þ, (b) inqð�Þ, iqð� :Þ, (c) indð�Þ, idð� :Þ.

Fig. 6. Simulation of the sampled-data IDA-PBC with a sampled period equal to 200 μs. (a) Ωnð�Þ, Ωð� :Þ, (b) inqð�Þ, iqð� :Þ, (c) indð�Þ, idð� :Þ.

Fig. 7. Simulation of the sampled-data IDA-PBC with a sampled period equal to 500 μs. (a) Ωnð�Þ, Ωð� :Þ, (b) inqð�Þ, iqð� :Þ, (c) indð�Þ, idð� :Þ.

Fig. 8. Test bench.
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4.2. Experimental test

The PMSM is driven by a three-phase voltage source PWM
inverter using an intelligent power module from ARCEL with IGBT
modules at a switching frequency of 10 kHz and a dead-time of
1:85 μs. The machine is mechanically coupled to an IPMSM (both
machines have the same characteristics) and loaded by a rheostat
(see Fig. 8). The currents flowing in the stator windings are
measured with two Hall effect current sensors and a 3600 point
pulse incremental encoder is used as a position sensor.

The experimental laboratory test bed control equipment is
based on a DS1104 controller board from dSPACE GmbH. The
development software operates under a Matlab/Simulink environ-
ment: real-time interface (RTI) which is the implementation soft-
ware and ControlDesk which is the experimentation software in
order to control and monitor in real-time the whole drive.

Fig. 9 shows the experimental results of the sampled-data
controller for a sampling time Te equal to 500 μs. This test shows
the advantages of this control in terms of stability at low sampling
frequency. Moreover, robustness tests have been applied and show
that the sampled-data controller still ensures good performances
with detuning parameters.

4.3. Discussion

While sampled-data controller still ensures a good current control
for ratio “closed-loop response time vs sampling time” lower than 4,
with acceptable ripple, the emulated strategy degrades the control
objectives. Moreover, while the sampling frequency is reduced, the
shape of the current which is controlled by the sampled-data IDA-PBC
remains more and more smooth (see Figs. 6c and 7c). The simulation
shows that current ripples begin to appear when the sampling period
is greater than 250 μs with the emulated IDA-PBC.

Finally, the computational cost of this new controller is com-
pared to the regular emulated IDA-PBC, as shown in Table 1. We
can notice that the ratio “number of operations/sampling period”

of the two controllers is lower for the sampled-data controller for
the same system performances. Moreover, the use of higher
sampling period with the new controller reduces the number of
push/pop operations of the stack to save or restore the registers
(computer science).

5. Conclusion

A direct sampled-data controller based on the IDA-PBC technique
is developed for the current control of a PMSM. Such a controller is
compared with the regular implementation, the so-called emulated
strategy, which consists to implement the continuous-time controller
through a zero order holder device. Simulation and experimental
results show that the performances of the emulated control decrease
while the sampling period increases. On the contrary, the sampled-
data IDA-PBC ensures a good current control with the high sampling
time.

Fig. 9. Experimentation of the sampled-data IDA-PBC with a sampled period equal to 500 μs. (a) Ωnð�Þ, Ωð� :Þ, (b) inqð�Þ, iqð� :Þ, (c) indð�Þ, idð� :Þ.

Table 1
Algorithm complexity.

Emulated controller Sample-data controller

Number of
additions and subtraction

Number of
multiplications

Number of
additions and subtraction

Number of
multiplications

Non-salient machine 3 5 12 18
Salient machine 4 6 18 29

Table 2
Machine parameters.

Rated output power Pn¼6 kW
Rated torque Cn¼5.5 N m
Rated speed N¼6000 rpm
Rated voltage Vn¼350 V
Rated current In¼22.5 A
Stator resistance Rs ¼ 0:165 Ω
Stator inductance d-axis Ld¼0.95 mH
Stator inductance q-axis Lq¼1 mH
Rated flux Φ¼ 0:03 Wb
Number of pole pairs P¼5
Inertia load J ¼ 6� 10�4 kg m2

Viscous coefficient f¼0.0005 N m/s
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