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Robustness under saturated feedback:

Strong iISS for a class of nonlinear systems∗

Rémi Azouit, Antoine Chaillet1 and Luca Greco

Abstract— This note proposes sufficient conditions un-
der which a nonlinear system can be made Strongly iISS
in the presence of actuator saturation. This property,
recently proposed as a compromise between the strength
of ISS and the generality of iISS, ensures boundedness
of all solutions provided that the disturbance magnitude
is below a certain threshold. We also show that, under
a growth rate condition, the bounded feedback law
proposed by Lin and Sontag for the stabilization of the
disturbance-free system based on the knowledge of a
control Lyapunov function, ensures Strong iISS in the
presence of perturbations. We illustrate our findings on
the angular velocity control of a spacecraft with limited-
power thrusters.

I. INTRODUCTION

Stabilization of dynamical systems in the presence

of actuators saturation has been the object of a wide

literature, specifically during the last two decades. It

is well known that a necessary condition to stabilize a

linear time-invariant (LTI) plant by saturated feedback

is that the internal dynamics has no pole with positive

real part [22]. A lot of effort has been made in order

to propose bounded stabilizing feedback for particular

classes of systems whose internal dynamics exhibits

no exponential instability. For LTI systems having no

eigenvalues with positive real part, it has been shown

in [20] that stabilization by bounded output feedback

can be achieved if the system is both detectable and

stabilizable (which are also necessary requirements).

For neutrally stable systems (meaning LTI systems

whose internal dynamics exhibits no unbounded so-

lutions), it has been shown that stabilization can be

achieved using a saturated linear static feedback [7].

Nonetheless, it is known that some classes of sys-

tems, although having no poles with positive real parts,

cannot be stabilized by saturated linear static state-

feedback; this class includes chains of three or more

integrators [6], [24]. Nested saturations [25] and neural
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networks architectures [23] have been proposed to

stabilize such systems.

Stabilization by bounded control has also proved

useful for nonlinear dynamics, especially in the con-

text of systems in feedforward form [15], [26] or by

relying on the so-called “universal constructions” [12].

Beyond stabilization, it is often desirable to en-

sure some robustness properties in order to cope,

for instance, with parameter uncertainty, measurement

noise or exogenous disturbances. To this aim, explicit

estimates of Lp input/output gains have been obtained

for neutrally stable systems based on a saturated linear

static feedback [13]. Another natural candidate for

the evaluation of robustness to exogenous inputs is

the framework of input-to-state stability (ISS, [16],

[19]) and its weaker variant integral ISS (iISS, [18]).

In [1], a saturated linear state-feedback is proposed

that ensures ISS with respect to sufficiently small

disturbances despite parameter uncertainty for systems

of dimension smaller than or equal to three, as well

as feedforward systems. Other approaches to guaran-

tee ISS and iISS with bounded control rely on the

aforementioned “universal constructions” [10].

ISS ensures in particular a bounded response to any

bounded disturbance. Intuitively, one may expect that

bounded controls fail in general at guaranteeing the

solutions’ boundedness if the applied disturbance is

too large. At first sight, for these systems, nothing

more than ISS with respect to small inputs can be

established, thus providing no information on the

system’s behavior for larger inputs. In this note, we

provide sufficient conditions under which a more inter-

esting property, namely Strong iISS, can be achieved

by saturated feedback. This property, introduced in

[4], not only guarantees ISS with respect to small

inputs but also iISS. In particular, it ensures a bounded

response to any disturbance whose amplitude is below

a given threshold, but also the existence of solutions

at all times even for disturbances above that threshold

as well as the convergence of the state to the origin

in response to any vanishing disturbance.

We start by formulating the problem and motivating

it through an example (Section II). Our main results

are presented in Section III: we provide a sufficient

condition under which Strong iISS is achieved by sat-

urated feedback and highlight their link with existing

“universal constructions” that would guarantee global



asymptotic stability of the disturbance-free system

[12]. We illustrate our findings through the stabiliza-

tion of the Euler equations of a rotating spacecraft

(Section IV). All proofs are provided in Section V.

Conclusive remarks are given in Section VI.

Notation. For a nondecreasing continuous function

γ : R≥0 → R≥0, γ(∞) ∈ R≥0 ∪ {∞} denotes the

quantity lims→+∞ γ(s). A function α : R≥0 → R≥0

is of class PD if it is continuous and positive definite.

It is of class K if, in addition, it is increasing. It is

of class K∞ if it is of class K and α(∞) = ∞. β :
R≥0×R≥0 → R≥0 belongs to class KL if, given any

fixed t ≥ 0, β(·, t) ∈ K and, given any fixed s ≥ 0,

β(s, ·) is continuous, nonincreasing and tends to zero

as its argument tends to infinity. Given x ∈ R
n, |x|

denotes its Euclidean norm. Given a positive integer p,

Up denotes the set of all measurable locally essentially

bounded functions d : R≥0 → R
p. For a given d ∈ Up,

‖d‖ := ess supt≥0 |d(t)|. Given a constant R > 0,

we let Up
<R denote the set {d ∈ Up : ‖d‖ < R}. sat :

R
n → R

n is the vector saturation function defined

as sat(x) = (σ(x1), . . . , σ(xn))
T , where σ(s) :=

min{1; |s|}sign(s) for each s ∈ R. A function V :
R

n → R≥0 is called a storage function if it is

continuously differentiable and satisfies V (0) = 0 and

V (x) > 0 for all x 6= 0. A storage function is said

to be proper if, in addition, lim|x|→∞ V (x) = ∞.

Given a storage function V and a vector field f ,

LfV (x) := ∂V (x)
∂x

f(x).

II. PROBLEM STATEMENT

Consider a nonlinear system of the form ẋ =
f(x, u, d), where x ∈ R

n is the state, u ∈ R
m is the

control input, d ∈ R
p the exogenous disturbance and

f : Rn ×R
m ×R

p → R
n denotes a locally Lipschitz

function satisfying f(0, 0, 0) = 0. If the system is

stabilized through a static state feedback of the form

u = k(x), the system takes the form

ẋ = f̃(x, d) , (1)

where f̃(x, d) := f(x, k(x), d). Given x0 ∈ R
n and

an input signal d ∈ Um, the solution of (1) starting

at x0 at time t = 0 is referred to as x(·, x0, d) (or

simply x(·) when the context is clear) on the time

domain where it is defined.

Consider the case where the state feedback is nom-

inally designed to ensure input-to-state stability (ISS,

[16], [19]) of the closed-loop system (1). Such a

control law may be designed using existing techniques

from the literature, such as [17], [9], [27], [11], [14].

Then, a natural question is: what can be said about the

robustness of the system (1) in the presence of actuator

saturation? Intuitively, we can expect that the applied

control input u = sat(k(x)) will fail at guaranteeing

a bounded state in response to any bounded distur-

bance, thus compromising ISS. Nonetheless a weaker

robustness property, namely iISS [18], can reasonably

be expected.

Definition 1: [iISS] The system (1) is said to be

integral input-to-state stable if there exist a class KL
function β and class K∞ functions µ1, µ2 such that,

for all x0 ∈ R
n and all d ∈ Up, its solution satisfies,

for all t ≥ 0,

|x(t;x0, d)| ≤ β(|x0| , t) + µ1

(
∫ t

0

µ2(|d(s)|)ds
)

.

Unfortunately, even if iISS systems prove robust with

respect to classes of inputs with finite energy (in

particular,
∫∞
0

µ2(|d(s)|)ds < ∞ implies x(t) → 0 as

t → ∞), they can run unbounded in the presence of

arbitrary small constant and even vanishing inputs [4].

Generically, we may expect a bounded state property

at most for disturbances whose amplitude is below a

given threshold. That is, we could consider systems

which are ISS with respect to small inputs.

Definition 2: [ISS wrt small inputs] The system (1)

is said to be input-to-state stable with respect to small

inputs if there exist a constant R > 0 (referred to as

an input threshold), a class KL function β and a class

K∞ function µ such that, for all x0 ∈ R
n and all

d ∈ Up, its solution satisfies, for all t ≥ 0,

‖d‖ < R ⇒ |x(t;x0, d)| ≤ β(|x0| , t) + µ(‖d‖) .
In the case when R = +∞, we recover the classical

definition of ISS [16], [19]. However, given a finite

R, no guarantee on the behavior of the system can

be given when the disturbance magnitude overpasses

the threshold R. The very solution of the system may

fail to exist if ‖d‖ ≥ R. Hence, a good candidate

to evaluate the robustness to exogenous disturbances

of systems with saturated feedback seems to be the

Strong iISS, recently introduced in [4].

Definition 3: [Strong iISS] The system (1) is said to

be Strongly iISS if it is both ISS with respect to small

inputs and iISS. In other words, there exist R > 0,

β ∈ KL and µ1, µ2, µ ∈ K∞ such that, for all d ∈ Up,

all x0 ∈ R
n and all t ≥ 0, its solution satisfies the

following two properties:

|x(t)| ≤ β(|x0| , t) + µ1

(
∫ t

0

µ2(|d(s)|)ds
)

(2)

‖d‖ < R ⇒ |x(t)| ≤ β(|x0| , t) + µ(‖d‖) . (3)

The constant R is then called an input threshold.

Nonetheless, the link between Strong iISS and sys-

tems with saturated control is not straightforward. For

instance, elementary considerations convince that not

every nominal ISS-stabilizing feedback ensures Strong

iISS once saturated. Indeed, saturated feedback may

be insufficient to compensate for unbounded sources



of instability, thus compromising even the internal

stability of the plant. An illustrative example of this is

the LTI system ẋ = x+u+d: while the state feedback

u = −2x clearly guarantees ISS, its saturated version

u = −sat(2x) generates unbounded trajectories even

in the absence of exogenous disturbances (d = 0).

Further hypotheses are thus needed.

Since iISS, and consequently Strong iISS, imply

global asymptotic stability in the absence of distur-

bance (this property will be called 0-GAS in the

rest of the article), only systems that can be globally

stabilized by saturated feedback can be expected to

yield Strong iISS in the presence of actuator satura-

tion. In other words, Strong iISS stabilization through

saturated feedback faces all the challenges of global

asymptotic stabilization by bounded control. In partic-

ular, for LTI systems, necessary requirements include

stabilizability and the absence of eigenvalues with

positive real part.

Based on these observations, a more reasonable

hypothesis would be that any ISS-stabilizing nominal

feedback that ensures 0-GAS when saturated, also

ensures Strong iISS. The following example shows

that this conjecture is not true in general.

Example 1: Consider the scalar system

ẋ = x2u+ x3d. (4)

The nominal feedback law u = k(x) = −x5 makes

the closed-loop system ISS. Indeed, the total derivative

of the storage function V (x) = x2/2 reads

V̇ (x) = −x8 + x4d ≤ −x8 + x4|d| ≤ −x8

2
+

d2

2
,

which guarantees ISS by its classical Lyapunov

characterization [21]. In the presence of actuator

saturation, the closed-loop system becomes ẋ =
−x2sat(x5) + x3d. Clearly, this system remains 0-

GAS. Nonetheless it can be seen that, given any

constant input d∗ > 0, any solution starting from

x0 ≥ max{1; 2/d∗} grows unbounded (and even

presents finite escape times). This can be formally

proven by noticing that, for such initial conditions,

the solutions of (4) satisfy ẋ(t) ≥ x(t)3d∗/2 for all

t ≥ 0. The system ẏ = y3d∗/2 being not forward

complete, the comparison lemma shows that (4) is not

forward complete either with the considered saturated

feedback. Since d∗ can be picked arbitrarily small,

this fact contradicts the bounded-input bounded-state

property for sufficiently small inputs. We conclude

that the system in not Strong iISS in the presence of

actuator saturation.

The above example highlights the necessity to con-

duct a more careful study on how the Strong iISS

property may be ensured by saturated feedback.

III. MAIN RESULTS

In this note, we focus on input-affine systems:

ẋ = f(x) + g(x)u+ h(x)d (5)

where x ∈ R
n is the state, u ∈ R

m is the control

input, and d ∈ R
p is the perturbation. The functions

f : Rn → R
n, g : Rn → R

n×m and h : Rn → R
n×p

are assumed locally Lipschitz and zero at zero. In the

presence of actuator saturation, the system reads

ẋ = f(x) + g(x)sat(u) + h(x)d. (6)

We stress that, if each control entries ui saturates at a

value ūi 6= 1, considering ũ := (u1/ū1, . . . , un/ūn)
T

as the new control allows to fit the framework (6).

A. Sufficient conditions for Strong iISS

We start by stating an analysis result, which pro-

vides sufficient conditions under which a saturated

control guarantees Strong iISS to (6). This result will

serve as a basis to design such feedback control laws

in the next subsections. This first result relies on the

following two assumptions, involving a proper storage

function V : Rn → R≥0 and a locally Lispschitz state

feedback k : Rn → R
m.

Assumption 1: There exists a class K function γ
such that, for all x 6= 0,

LfV (x) + LgV (x)k(x) < 0 (7)

LhV 6= 0 ⇒
∣

∣

∣

∣

LfV + LgV k(x)

LhV

∣

∣

∣

∣

≥ γ(|x|). (8)

Assumption 1 contains two ingredients. First, (7) guar-

antees the 0-GAS of (5) in closed loop with u = k(x).
Second, as we will see in the proof of Theorem 1

below, the combination of (7) and (8) ensure ISS with

respect to small inputs.

Assumption 2: It holds that

lim sup
x→∞

|LhV (x)|
1 + V (x)

< +∞. (9)

Assumption 2 essentially guarantees that the per-

turbation does not yield finite escape times that a

saturated feedback would not be able to tackle. This

can be seen by observing that, by the continuity of the

function x 7→ |LhV (x)|
1+V (x) , (9) ensures that

|LhV (x)|
1 + V (x)

≤ K, ∀x ∈ R
n, (10)

for some positive constant K. Consequently, all the

terms induced by the perturbation term in the total

derivative of V is at most linear in V (x). This,

combined with Assumption 1, constitutes a sufficient

condition for forward completeness [2].

Based on these assumptions, we can state the fol-

lowing result.



Lemma 1: Assume that there exists a proper stor-

age function V : R
n → R≥0, a function γ ∈ K,

and a locally Lipschitz state feedback k : Rn → R≥0

satisfying Assumptions 1 and 2. Then the control law

u = k(x) makes the saturated-actuator system (6)

Strong iISS with input threshold R = γ(∞).

The proof is rather straightforward, but is provided

in Section V-A for the sake of completeness.

It is worth stressing that Lemma 1 would not hold

if either Assumption 1 or 2 was removed. Assumption

2 alone does not provide any information on the

system in the absence of exogenous perturbations.

Moreover, it can easily be seen that the system (4) of

Example 1 satisfies Assumption 1, but fails at fulfilling

Assumption 2. It results as a non Strongly iISS system,

as the system is not forward complete in the presence

of arbitrary small, and even vanishing, perturbations.

B. Strong iISS stabilization by “universal” construc-

tions

Although Lemma 1 gives some hints on when a

saturated feedback yields Strong iISS, it does not pro-

vide any constructive way to design the corresponding

control law. In this section, we rely on the so-called

“universal” construction of Arstein’s theorem to con-

struct a bounded static state feedback ensuring Strong

iISS for the closed-loop system.

This “universal” construction relies on the knowl-

edge of a control Lyapunov function (CLF), whose

definition is recalled below [12].

Definition 4: [CLF] A smooth proper storage func-

tion V : Rn → R≥0 is called a control Lyapunov func-

tion with controls in the unit ball for the (disturbance-

free) system ẋ = f(x) + g(x)u if it satisfies:

inf
|u|<1

{LfV (x) + LgV (x)u} < 0, ∀x 6= 0.

In other words, a CLF with controls in the unit ball

is a smooth storage function whose total derivative can

be pointwisely assigned to a negative value for each

non-zero state by a control value whose amplitude is

lower than 1.

We may also require that this pointwise assign-

ment be achievable by arbitrarily small control values,

provided that the state is sufficiently close to the

origin: this property is referred to as the small control

property (SCP).

Definition 5: [SCP] A CLF V : R
n → R≥0 is

said to satisfy the small control property for the

(disturbance-free) system ẋ = f(x) + g(x)u if, given

any ε > 0, there exists δ > 0 such that, if |x| < ε
and x 6= 0, then there exists |u| < δ such that

LfV (x) + LgV (x)u < 0.

We stress that, unlike other robust CLF proposed in

the literature [5], [27], [11], [10], the above definitions

are given for disturbance-free systems: the goal here

is to provide a growth restriction on the function h so

that the bounded control law proposed in [12] ensures

Strong iISS for (6).

More precisely, the main contribution of the work

[12] is to propose an explicit continuous state feed-

back law, smooth out of the origin and of amplitude

smaller than 1, that globally asymptotically stabilizes

the system ẋ = f(x)+g(x)u. This state-feedback law

reads k(x) = κ(LfV (x), |LgV (x)|2)LgV (x)T , where

κ is defined, for each (a, b) ∈ R× R≥0, as

κ(a, b) :=

{

− a+
√
a2+b2

b(1+
√
1+b)

if b > 0

0 if b = 0.
(11)

The following result, proved in Section V-B, states

that this control law may be used as such to make the

system (6) Strongly iISS provided a growth restriction

on the function h.

Theorem 1: Let V be a CLF with controls in the

unit ball, satisfying the SCP for the disturbance-free

system ẋ = f(x) + g(x)u. Assume that there exists

α ∈ K such that, for all x 6= 0,

|LfV (x)|+ |LgV (x)|2
√

1 + |LgV (x)|2
> α(|x|) |LhV (x)| .

(12)

Assume also that

LfV (x) > 0 ⇒ lim inf
|x|→∞

|LgV (x)| > 0 (13)

and

lim sup
|x|→∞

|LgV (x)|
|LfV (x)| 6= 1. (14)

Then, under Assumption 2, the feedback law pro-

posed in [12], namely

u = k(x) = κ(LfV (x), |LgV (x)|2)LgV (x)T , (15)

where κ is defined in (11), is continuous on R
n,

smooth on R
n \ {0}, has norm smaller than 1 and

makes the saturated-actuation system (6) Strongly

iISS.

Condition (12) expresses a growth rate limitation

on the term h(x) through which the perturbation acts

on the system. Condition (13) is fairly intuitive: in

the presence of a non-vanishing perturbation term, the

control field needs to be non-vanishing as well in order

to compensate these disturbances and ensure the state

boundedness (hence Strong iISS). Condition (14) is

far less intuitive, and is actually of a purely technical

nature: it results from the particular choice of the

control law proposed in [12], and is needed to ensure

that the dissipation rate of V along the solutions

of the disturbance-free system is not only positive,

but can also be lower bounded by a K function (in



other words, it does not become arbitrarily small for

large values of the state). We may expect that slight

modifications of the control law (11) may be used

to address systems that do not fulfill the requirement

(14), but this goes beyond the scope of the paper.

Remark 1: When the assumptions of Theorem 1

hold with a K∞ function α, it can be seen along the

proof that the system (6) in closed loop with the same

static feedback k(x) results ISS. This observation

complements the results in the literature that rely on

the notion of ISS-CLF [11], [10], [27].

C. iISS stabilization by “universal” constructions

The assumptions of Theorem 1 can be considerably

relaxed if only iISS is needed. We state this fact in

the following corollary.

Corollary 1: Let V be a CLF with controls in the

unit ball satisfying the SCP for the disturbance-free

system ẋ = f(x)+ g(x)u and let Assumption 2 hold.

Then the static state feedback law (15) proposed in

[12] makes the system (6) iISS.

The proof of this result is provided in Section V-

C. Similarly to Theorem 1, it provides a growth rate

limitation on the term h(x) in such a way that the con-

trol law originally proposed in [12] for disturbance-

free systems, also yields a robustness property to

exogenous disturbances. We stress, however, that the

robustness property ensured by Corollary 1 (namely,

iISS) is much weaker than that guaranteed by Theorem

1 (namely, Strong iISS) as it implies neither solu-

tions’ boundedness in response to sufficiently small

disturbances nor state convergence in response to a

vanishing perturbation.

IV. EXAMPLE: SPACECRAFT VELOCITY CONTROL

We now provide an illustration of the results in

this paper by considering the control of a rotating

spacecraft, through limited-thrust actuators. Letting

x := (x1, x2, x3)
T denote its the angular velocity and

u := (u1, u2, u3)
T the control torques, the dynamics

under concern is ruled by the following equations [8,

Exercise 4.4]:

J1ẋ1 = (J2 − J3)x2x3 + u1 + d1 (16a)

J2ẋ2 = (J3 − J1)x3x1 + u2 + d2 (16b)

J3ẋ3 = (J1 − J2)x1x2 + u3 + d3, (16c)

where d := (d1, d2, d3)
T represents exogenous per-

turbations (e.g. actuation errors). We consider as a

nominal control law proportional state feedback

u = k(x) := (−k1x1,−k2x2,−k3x3)
T ,

where k1, k2, k3 denote positive gains. It can easily

be shown that this nominal control law makes the

system (16) ISS. We claim that, in the presence of

limited thrust (namely |ui| ≤ ū for each i ∈ {1, 2, 3}),

the system results Strongly iISS with input threshold

R = ū/
√
3. Indeed, in the presence of such saturating

thrusters, the dynamics reads

J1ẋ1 = (J2 − J3)x2x3 − ūsat(k̃1x1) + d1 (17a)

J2ẋ2 = (J3 − J1)x3x1 − ūsat(k̃2x2) + d2 (17b)

J3ẋ3 = (J1 − J2)x1x2 − ūsat(k̃3x3) + d3, (17c)

where k̃i := ki/ū for each i ∈ {1, 2, 3}. We use

the Lyapunov function V (x) = 1
2x

TPx, where P :=
diag(J1, J2, J3). Using the notation of (6), straightfor-

ward computations lead to LfV (x) = 0, LgV (x) =
−(ūx1, ūx2, ūx3) and LhV (x) = (x1, x2, x3). Con-

sequently, noticing that |LhV (x)| 6= 0 for all x 6= 0,

it holds that

LfV + LgV sat(k(x)/ū)

|LhV | =

−x1sat(k̃1x1) + x2sat(k̃2x2) + x3sat(k̃3x3)

|x| ū,

which is clearly a negative definite function,

thus establishing (7). Moreover, letting |x|∞ :=
max{|x1| , |x2| , |x3|} and k := min{k̃1, k̃2, k̃3}, it

holds that

x1sat(k̃1x1) + x2sat(k̃2x2) + x3sat(k̃3x3)

|x|

≥ |x|∞ sat(k |x|∞)

|x| .

Observing that |x| ≤ |x|∞
√
3, we obtain that

LfV + LgV sat(k(x)/ū)

|LhV | ≤ − ū√
3

sat(k |x| /
√
3),

which makes (8) fulfilled with γ(s) =
sat(ks/

√
3)ū/

√
3. Thus, Assumption 1 is satisfied.

Assumption 2 being trivially satisfied in this case

(since |LhV | = |x|), we conclude from Lemma 1

that, as claimed, the system is Strongly iISS with

input threshold γ(∞) = ū/
√
3.

We note finally that the above function V is clearly

a CLF with controls in the unit ball for (16) and that

it satisfies the SCP. It can also be seen that (12), (13)

and (14) hold for this system. Theorem 1 can thus be

invoked to design a bounded continuous feedback law

of the form u = κ(0, |LgV |2)LgV
T , where κ is given

in (11). The resulting control law is however slightly

more involved than the feedback u = sat(k(x)/ū)
applied above.



V. PROOFS

A. Proof of Lemma 1

The total derivative of V along the solutions of (6)

in closed loop with u = k(x) reads

V̇ = LfV (x) + LgV (x)sat(k(x)) + LhV (x)d

≤ LfV (x) + LgV (x)sat(k(x)) + |LhV (x)| |d| .
In view of (8) in Assumption 1 it holds that, for all

x 6= 0,

LhV (x) 6= 0
|d| ≤ γ(|x|)

}

⇒ V̇ < 0.

Moreover, from (7), it holds that, for all x 6= 0,

LhV (x) = 0 ⇒ V̇ < 0.

Therefore, noticing that V̇ = 0 for x = 0, there exists

a PD function ρ such that, for all x ∈ R
n and all

d ∈ R
p,

|d| ≤ γ(|x|) ⇒ V̇ < −ρ(|x|). (18)

We now rely on the following result.

Proposition 1: Assume that there exist a proper

storage function V : Rn → R≥0, a class K function

γ and a PD function ν such that, for all x ∈ R
n and

all d ∈ R
p,

|d| ≤ γ(|x|) ⇒ ∂V

∂x
(x)f(x, d) ≤ −ν(|x|).

Then (1) is ISS with respect to inputs d ∈ Up

<γ(∞).

The proof of this proposition follows from typical

manipulations on ISS Lyapunov functions and is there-

fore omitted. We stress that, in the case when γ ∈ K∞,

we recover a classical ISS characterization [21].

Invoking Proposition 1 we conclude from (18) that,

under the control law u = k(x), the system (6) is ISS

with respect to all d ∈ Up

<γ(∞). Consequently, there is

only left to prove that this system is iISS. To this aim,

let W (x) := ln(1 + V (x)). Noticing that Assumption

1 ensures the existence of a PD function ρ̃ such that

LfV (x)+LgV (x)sat(k(x)) ≤ −ρ̃(|x|) for all x ∈ R
n,

we get that

Ẇ =
LfV (x) + LgV (x)sat(k(x)) + LhV (x)d

1 + V (x)

≤ − ρ̃(|x|)
1 + V (x)

+
|LhV (x)|
1 + V (x)

|d|.

In view of (10), which is ensured by Assumption 2,

we obtain that

Ẇ ≤ − ρ̃(|x|)
1 + V (x)

+K|d|.

Noting that x 7→ ρ̃(|x|)
1+V (x) is a continuous positive

definite function we can thus deduce by [3] that the

system is iISS. We conclude that the system is indeed

Strongly iISS with input threshold γ(∞).

B. Proof of Theorem 1

For notation simplicity, let a(x) := LfV (x) and

b(x) := |LgV (x)|2. The smoothness and magnitude

properties of the feedback law k(x) are established in

[12]. Moreover, since |k(x)| ≤ 1, it holds that

LfV + LgV sat(k(x)) = LfV + LgV k(x)

= a(x) + b(x)κ(a(x), b(x)).

In view of Lemma 1, since Assumption 2 is supposed

to be fulfilled, only Assumption 1 needs to be checked.

Since the feedback law proposed in [12] ensures

a(x) + b(x)κ(a(x), b(x)) < 0 for all x 6= 0, all we

need to show is (8), that is

|a(x) + b(x)κ(a(x), b(x))| > α̃(|x|) |LhV (x)| ,
(19)

for some K function α̃. Pick any x 6= 0. We consider

4 cases.

Case 1: b(x) = 0. Then (12) implies that |a(x)| >
α(|x|) |LhV (x)|. Consequently

|a(x) + b(x)κ(a(x), b(x))| = |a(x)| > α(|x|) |LhV (x)| .
(20)

Case 2: b(x) 6= 0 and a(x) ≤ 0. Then, omitting the x-

dependency in the notation, it holds that

|a+ bκ(a, b)| =
∣

∣

∣

∣

∣

a
√
1 + b−

√
a2 + b2

1 +
√
1 + b

∣

∣

∣

∣

∣

=

√
1 + b

1 +
√
1 + b

∣

∣

∣

∣

∣

a−
√

a2 + b2

1 + b

∣

∣

∣

∣

∣

>
1

2

∣

∣

∣

∣

∣

a−
√

a2 + b2

1 + b

∣

∣

∣

∣

∣

, (21)

where the last bound comes from the fact that the

function b 7→
√
1 + b/(1 +

√
1 + b) is greater than

1/2 over R>0. Recalling that a < 0 we have

1

2

∣

∣

∣

∣

∣

a−
√

a2 + b2

1 + b

∣

∣

∣

∣

∣

=
1

2

(

|a|+
√

a2 + b2

1 + b

)

>
1

2

(

|a|+ b√
1 + b

)

.

We thus obtain from (12) that

|a+ bκ(a, b)| > α(|x|)
2

|LhV (x)| . (22)

Case 3: b(x) ≥ 1 and a(x) > 0 . First notice that (21)

is still valid under these assumptions. Consequently,

we have that

|a+ bκ(a, b)| > 1

2

∣

∣

∣

∣

∣

a−
√

a2 + b2

1 + b

∣

∣

∣

∣

∣

=
1

2

√

a2 + b2

1 + b

∣

∣

∣

∣

∣

√

a2 + a2b

a2 + b2
− 1

∣

∣

∣

∣

∣

>
b

2
√
1 + b

∣

∣

∣

∣

∣

√

1 + b

1 + b2/a2
− 1

∣

∣

∣

∣

∣

. (23)



Now, the fact that V is a CLF with u constrained in the

unit ball guarantees that a(x) <
√

b(x) for all x 6= 0
(see Definition 4). Since a(x) > 0 and b(x) ≥ 1, we

get that

3b√
1 + b

= 2
√
b

√

b

1 + b
+

b√
1 + b

> 2a

√

b

1 + b
+

b√
1 + b

> a+
b√
1 + b

,

where the last bound comes from the fact that
√

b/(1 + b) > 1/2 whenever b ≥ 1. It follows from

(12) that

3b(x)
√

1 + b(x)
> α(|x|) |LhV (x)| .

We therefore get from (23) that

|a+ bκ(a, b)| > α(|x|) |LhV (x)|
6

∣

∣

∣

∣

∣

∣

√

√

√

√

1 + b(x)

1 + b(x)2

a(x)2

− 1

∣

∣

∣

∣

∣

∣

.

(24)

We claim that there exists α′ ∈ K such that
∣

∣

∣

∣

∣

√

1 + b(x)

1 + b(x)2/a(x)2
− 1

∣

∣

∣

∣

∣

≥ α′(|x|). (25)

To see this first notice that, since a(x) <
√

b(x), the

above function is never zero on R
n \ {0}. Moreover,

condition (14) together with the fact that 0 < a(x) <
√

b(x) ensures that lim sup|x|→∞ b(x)/a(x)2 > 1.

Consequently:

lim inf
|x|→∞

∣

∣

∣

∣

∣

√

1 + b(x)

1 + b(x)2/a(x)2
− 1

∣

∣

∣

∣

∣

> 0.

We conclude that there indeed exists a function α′ ∈ K
satisfying (25). Recalling that the product of two K
functions is itself a K function, we conclude that the

function α′′(·) := 1
6α(·)α′(·) is of class K and we get

from (24) and (25) that

|a(x) + b(x)κ(a(x), b(x))| > α′′(|x|) |LhV (x)| .
(26)

Case 4: b(x) 6= 0, b(x) ≤ 1 and a(x) > 0. Recalling

that a(x) <
√

b(x), we have that

a+
b√
1 + b

<
√
b+

b√
1 + b

=

√
b+ b2 + b√

1 + b

≤
√
2b+ b√
1 + b

≤ (
√
2 + 1)

√
b√

1 + b
<

3
√
b√

1 + b
.

The lower bound (23) being still valid, it follows from

(12) that

|a+ bκ(a, b)| > α(|x|) |LhV (x)|
6

√
b

∣

∣

∣

∣

∣

√

1 + b

1 + b2

a2

− 1

∣

∣

∣

∣

∣

.

(27)

Moreover, the assumption (13) implies the existence

of a class K function µ such that
√
b = |LgV (x)| ≥

µ(|x|). Following a similar reasoning as in Case 3, we

obtain that:

|a(x) + b(x)κ(a(x), b(x))| > µ′(|x|) |LhV (x)| ,
(28)

where µ′ denotes some K function.

Combining (20), (22), (26) and (28), we conclude

that (19) holds. The conclusion then follows from the

application of Lemma 1.

C. Proof of Corollary 1

Since V is a CLF with controls in the unit ball

satisfying the SCP for the disturbance-free system ẋ =
f(x) + g(x)u, it was shown in [12] that the control

law (15) satisfies LfV (x) + LgV (x)k(x) < 0 for all

x 6= 0. Equivalently, there exists a continuous positive

definite function ρ : R≥0 → R≥0 such that LfV (x)+
LgV (x)k(x) ≤ −ρ(|x|) for all x ∈ R

n. Consequently,

the derivative of W := ln(1 + V ) along the solutions

of (6) satisfies

Ẇ =
V̇

1 + V (x)

=
1

1 + V (x)
(LfV (x) + LgV (x)k(x) + LhV (x)d)

≤ − ρ(|x|)
1 + V (x)

+
|LhV (x)|
1 + V (x)

|d| .

As already stressed, Assumption 2 implies the ex-

istence of a constant K > 0 such that (10) holds.

Consequently:

Ẇ ≤ − ρ(|x|)
1 + V (x)

+K |d| .

The conclusion then follows by the classical Lyapunov

characterization of iISS [3] after noticing that x 7→
ρ(|x|)/(1 + V (x)) is a positive definite function.

VI. CONCLUSION

After having presented a sufficient condition for

Strong iISS, we have shown that Lin and Sontag’s

bounded control law for disturbance-free systems also

ensures Strong iISS provided that a condition on the

growth rate of the input term is satisfied. We have also

shown that iISS can be obtained under relaxed condi-

tions. Finally, we have illustrated the applicability of

our results on a spacecraft control example.
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