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Multiple-Source Time-Reversal Transmissions in
Random Media

Andrea Cozza,Senior Member, IEEEand Florian Monsef,Member, IEEE

Abstract—The ability of time-reversed signals in reproducing
a given time-dependence of the electromagnetic field within
random media is investigated. A general setup consisting of
multiple sources cooperating in providing the best transmission is
considered, where the constructive interference of their individual
contributions is meant to improve the quality of the field
generation with respect to a single-source setup. The medium
response is described by means of tools from random-process
theory, for the case of stationary media complex enough to ensure
a large number of multi-path contributions. It is shown that
even a very weak spatial coherence in the medium is sufficient
to significantly hinder the improvement expected from the use
of multiple-source scenarios. Experimental results obtained in
a reverberation chamber support the validity of the proposed
theory. Direct applications of these results can be found inrecent
proposals about the potential benefits of time-reversed signals
used in wireless communications, imaging techniques, as well as
in pulsed-field generation devices based on energy compression
through dispersive media.

Index Terms—Time-reversal transmissions, spatial correlation,
complex media, multi-path propagation, statistical electromag-
netics.

I. I NTRODUCTION

Time-reversal transmissions were first introduced in acous-
tics [1], [2] and initial applications dealt mainly with open
media with local inhomogeneities leading to relatively weak
propagation aberrations with respect to free-space configura-
tions. In the case of free-space configurations time-reversal
can be interpreted as a direct application of Huygens’ prin-
ciple [3]: as well known from the equivalence theorem [4],
sampling over a closed surface the field distribution generated
by a radiating source allows defining equivalent currents that
can recreate on their own a wavefront identical to the one
originally generated by the source, be it outward or inward
propagating, according to the sign of the time variable. In
this respect, time reversal is predated by earlier work in non-
linear optics, particularly on phase-conjugation techniques [5],
reminiscent of the ideas behind retrodirective (also knownas
Van Atta) arrays [6].

For the large family of quasi free-space (or weakly echoic)
configurations, time-reversed wavefronts will therefore be a
close (time-reversed) replica of the propagative part of the
original wavefront, as long as the spatial sampling criterium
[7] is fulfilled, by using a sufficient number of field transduc-
ers/sources [1], [8]. Conversely, in the case of more complex
media, e.g., multiple-scattering media [9]–[14], dominated
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by discrete scattering phenomena (e.g., collections of small
scatterers [15], [16], multi-path environments [17]) or spatially
distributed ones (e.g., turbulent media [16], inhomogeneous
soils [18]), where field propagation can be modeled by means
of random-process tools [16], [19], time-reversed wavefronts
are affected by incoherent fluctuations [9], [11], [20], [21].

Although the appearance of these fluctuations could put off
users of time-reversed signals in complex media, this nuisance
is counterbalanced by a major advantage, since it is no longer
necessary to satisfy the spatial sampling criterium. As a matter
of fact, single-source configurations have been demonstrated to
be capable of recreating high-fidelity versions of a wavefront,
when operated by time-reversed signals in a complex medium
[20], [22]–[26]. In this case the use of more than one emitteris
no longer justified on the basis of the equivalence theorem, but
rather on the need to mitigate the level of these fluctuations,
by averaging them out thanks to spatial/angle/polarization
diversity. Previous results about this topic are availablein the
literature [27]–[30], but are more concerned with the ability to
obtain space-time focusing within random media, rather than
assessing the quality of signals thus received.

It is the aim of this paper to understand how multiple-source
implementations of time-reversed transmissions in complex
media allow to control the relative intensity of the fluctua-
tions, depending on the number of emitters and the statistical
properties of the propagation medium, in particular spatial and
frequency coherence (or correlation). To this end, a general
theoretical approach is developed in section III, based on the
concept of energy contrast introduced in section II.

The proposed theory confirms that while multiple sources
can improve the quality of the transmission, residual spatial
coherence in the medium can significantly reduce the overall
effectiveness in mitigating the level of fluctuations. A quantita-
tive analysis of the effects of these predictions is discussed in
section IV; experimental results validating them are presented
in section V. The results shown are intended to serve as
quantitative predictive tools in the design of applications
based on the transmission of time-reversed signals, such as
in wireless communications, non-destructive testing, remote-
sensing and imaging techniques.

In this respect, two families of setups for the application
of time-reversal transmissions (TRTs) can be defined, both
involving the need to generate a faithful reproduction of a
template signalp(t) at the receiver-end: (a) a scalar component
of the electromagnetic field is the quantity of interest or (b)
the output signal observed at the electric port of a receiver.
Clearly, these two setups can be regarded as belonging to
the same class of problem, by considering that the first case
implies the use of an ideal receiver generating an output
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signal b(t) = h · E(r, t), whereh is the vector effective
length of the receiving transducer found at the positionr. This
kind of response translates the use of an ideal non-dispersive
elementary dipole, oriented along the electric-field component
of interesth/‖h‖.

II. TRT : COHERENT AND INCOHERENT CONTRIBUTIONS

We consider a set ofNA sources, not necessarily identical,
found at the positions{rm}. Depending on the application,
an observer or a receiver is present at the positionro; no
assumption is made on the reciprocal orientations of the
sources and the observer. Input signals{am(t)} applied to
the transmitting antennas and the overall output signalb(t)
are chosen to be represented as power waves, in accordance
with standard scattering-parameter formalism [31]. Assuming
the medium to be linear, the individual contributions{bm(t)}
provided by the excitation of themth source is given by
bm(t) = am(t) ⋆ hm(t), with ⋆ the time-convolution integral
operator andhm(t) the impulse response between themth
source and the receiver output.

The goal of transmission systems is typically to ensure the
ability to generate at the receiver output a signal as close as
possible to a reference signalp(t), hereafter referred to as
the template signal, which is typically taken to be a short
pulse in time-reversal literature, but it is not necessarily so; no
assumption will be made about this point in this paper since
in practical settings, particularly for wireless communications,
waveforms are typically more complex and not pulse-like.

When dealing with complex media, if the template signal
p(t) were directly applied to an emitter, as soon as its time
supportTp is shorter than the relaxation time of the medium,
any received signal would risk being significantly distorted.
Time-reversal transmissions act as a generalization of matched
filter, by requiring the use of excitation signals

am(t) = p(t) ⋆ hm(−t). (1)

This is the standard definition of time-reversed excitation
signals, as originally formulated in acoustics [1]. Unlike
for matched-filter theory, the reason for this result is not
the maximization of the output signal-to-noise ratio for an
additive white gaussian noise channel, but rather to produce
the strongest focusing of energy around the receiver [27], [29].

It is well-known that applications of time-reversed signals
are limited by the assumption of a stationary medium, in order
to ensure the best performance with respect to the quality of
reproduction of the template signal; please refer to the papers
cited in the introduction for more details. Hence, this property
will be assumed throughout this paper.

In order to assess the quality of the output signals generated
by this kind of procedure, the mathematical analysis presented
in this paper is developed within the framework introduced in
[23], where each individual contributionbm(t) to the output
signal is expressed as

bm(t) = αmp(t) + fm(t), (2)

i.e., as composed of a coherent partαmp(t), with αm ≥ 0,
proportional to the template signal and a residual partfm(t),
orthogonal top(t).

The overall signalb(t) resulting from the superposition of
theNA contributions can therefore be written as

b(t) = p(t)α+ f(t) = p(t)

NA
∑

m=1

αm +

NA
∑

m=1

fm(t). (3)

From (1),bm(t) = hm(t)⋆hm(−t)⋆p(t), so that forHm(ν)
the Fourier transform of the impulse response of the medium,
with ν the frequency variable, it is convenient to introduce
the equivalent transfer functionsWm(ν) = |Hm(ν)|2, relating
the Fourier spectrumP (ν) of the template signal to the actual
output signals received when using (1);P (ν) will be assumed
to have a compact support, centered at the frequencyνc and
covering a bandwidthBT . The coherent coefficients{αm} can
therefore be computed by projectingb(t) over p(t), i.e.,

αm = E−1

p

∫

BT

Wm(ν)|P (ν)|2dν, (4)

with Ep the energy of the template signalp(t).

III. T HEORY OF PEAK AND ENERGY CONTRASTS

Arguably, the most important figures of merit in TRTs
are those measuring its ability to generate a received signal
dominated by the coherent partαp(t), at the expenses of
the residual partf(t). This feature is commonly assessed by
measuring the ratio between the peak value of the received
signal and the average intensity of the fluctuations [20], [32].
While this kind of definition makes sense as long asp(t) is
expected to be a narrow pulse, it is not general enough in
electrical engineering, since one could be interested in trans-
mitting more complex signals, e.g., when dealing with wireless
communications; it is therefore necessary to apply a different
definition, as the one introduced in section III-A, which can
be extended to any kind of signals. More importantly, it is
simply related to another figure of merit, the energy contrast.
This last quantity is shown in section III-B to only depend
on the statistical behavior of the medium’s Green’s function,
independently from the specific choice of the template signal
p(t) and more importantly from its bandwidth.

A. Peak contrast

For the sake of simplicity, it will be assumed thatp(t)
reaches its peak intensity att = 0. We can then introduce
the following definition of the peak contrast,

Λp =
α2p2(0)

max
t

〈

f2(t)
〉 , (5)

as a direct measure of the relative contribution of the coherent
and incoherent parts; the latter is measured by the average
power of the fluctuations, defined by means of an ensemble-
average operator, represented by the brackets. As proven by
our derivation, the shape of the template has a non-negligible
impact on the performance of time reversal and its role should
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therefore be explicitly accounted for. For this reason we
introduce the shape factorsχp andκ2, defined as

χp =
|p(0)|2

Ep
(6a)

κ2

2 =
1

BT





∫

BT

|P (ν)|2dν
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∫

BT

|P (ν)|4dν

, (6b)

where Cauchy-Schwarz inequality indicates thatκ2 ≤ 1;
χp measures whether the energy of the template signal is
distributed in a narrow span of time as a pulse, or rather
as a longer signal. It has dimensions of a bandwidth and its
definition implies thatχp ≤ BT , where the extreme value
is reached only for a sinc pulse, corresponding to a constant
power spectral density overBT .

In a similar manner, we introduceχf , defined as

χf =
max

t

〈

f2(t)
〉

〈Ef 〉
(7)

in order to relate the overall energy of the residual fluctuations
to their peak average intensity. The use of ensemble averages
in (7) is due to the random nature of the residual fluctuations
f(t), inherited from the description of the medium Green’s
functions as random processes. The major difference between
(6) and (7) is that the latter is mostly dependent on the medium
and not on the template signal.

From (5), (6) and (7)

〈Λp〉 = 〈Λ〉
χp

χf
, (8)

where

Λ =
Ec
Ef

=
α2Ep

∫

BT

|F (ν)|2dν
, (9)

is the energy contrast, defined as the ratio of the energy
Ec of the coherent portion of the received signal and the
energy Ef of the fluctuating residual part;F (ν) in (9) is
the Fourier transform of the overall fluctuating partf(t).
The energy contrast, as it will be proven in section III-B,
is practically independent from the choice of the template
signal, but strongly related to the statistical propertiesof the
medium and the number of sources used. As a result, (8)
allows separating the respective contributions of the medium
and the sources from the choice of the template signal, with
respect to the quality of the received signals. In particular, the
impact of the number of sources used in the transmission only
appears inΛ, hence it is sufficient to study this quantity, as
done in the next section.

B. Energy contrast

In order to compute the ensemble average of the energy
contrastΛ, the following approximation of (9) will be applied:

〈Λ〉 ≃
〈Ec〉

〈Ef 〉
=

〈

α2
〉

Ep
∫

BT

〈

|F (ν)|2
〉

dν

, (10)

justified by applying the delta method [33] to the definition of
Λ, with respect to the energies of the coherent and fluctuating
parts. It is expected to hold with good precision as long as the
number of degrees of freedom underlying the field distribution
is much larger than one, as shown in [23]. This condition is not
conservative, since it is required when time reversal is applied
to complex media, as discussed in [20], [32]. The experimental
results presented in V-B prove that this approximation is very
robust, as they are derived frequency by frequency, without
requiring the definition of a bandwidth, as initially statedin
the introduction.

From (3)

〈

α2
〉

=

〈(

NA
∑

i=1

αi

)2〉

=

NA
∑

i=1

〈

α2

i

〉

+
∑

i6=j

〈αiαj〉 , (11)

while
∫

BT

〈

|F (ν)|2
〉

dν =

NA
∑

i=1

∫

BT

〈

|Fi(ν)|
2
〉

dν

+
∑

i6=j

∫

BT

〈

Fi(ν)F
∗
j (ν)

〉

dν.

(12)

As it will be shown later, the residual correlation existing
between mixed terms in (12) should not be neglected, lest
we overestimate the actual performance of the transmission
system.

In order to compute these four sets of terms, it is necessary
to consider the mutual moments〈Wi(ν1)Wj(ν2)〉. As argued
in the appendix, the functions involved in these moments,
though defined for discrete indexes (i.e., the source identi-
fiers) can be interpreted as continuous parametric fields, i.e.,
Wi(ν) = W (ri, ν;hi), parameterized by the vector effective
height of each respective source. While this would mean
dealing with a set ofNA different fields, it is possible to
simplify our derivation by noticing that a common feature of
complex media is that they generate depolarized fields, i.e., on
average they do not present dominant polarization components
[16], [34], independently from the way the medium was first
excited; non-line-of-sight propagation channels comply with
this kind of description, which is one of the reasons for the
use of reverberation chambers as channel emulators [35]. This
property leads to a strong simplification in the statisticalrep-
resentation of Green’s function. Under this assumption, ifthe
sources are arbitrarily oriented versions of the same antenna,
all the parametric fields share the same statistical moments.
This property, discussed in the appendix, is instrumental in
our derivation, since it allows dropping the effective heights
as parameters, i.e.,

〈Wi(ν1)Wj(ν2)〉 = 〈W (ri, ν1)W (rj , ν2)〉 . (13)
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As a result the moments〈Wi(ν1)Wj(ν2)〉 can now be related
to the space-frequency coherence function of what will be
referred to as the TRT fieldW (r, ν). There should be no
confusion at this point that even though (13) is no more
dependent on the effective heights{hm}, there is no such
a thing as a single TRT field, but a set of fields, depending on
the characteristics of each source. The TRT fieldW (r, ν) con-
sidered hereafter should therefore be regarded as an auxiliary
function that makes sense only when considering its statistical
moments, as those in (13).

We need to recall that

〈W (ri, ν1)W (rj , ν2)〉 = 〈W (ri, ν1)〉 〈W (rj , ν2)〉+

µ(ri, rj , ν1, ν2)
√

σ2

W (ri, ν1)σ2

W (rj , ν2),
(14)

whereσ2

W (r, ν) =
〈

|W (r, ν)|2
〉

− | 〈W (r, ν)〉 |2 is the vari-
ance of the TRT field andµ(ri, rj , ν1, ν2) is its spectral degree
of coherence [36].

In practical scenarios involving complex media where the
field can be represented as a large collection of plane waves,
e.g., those involving multiple-scattering propagation and in-
teractions with rough surfaces, some further properties can
be invoked. First, statistical moments of the Green’s dyadic
functions can be approximated as being independent from the
point of observation, in the same way as wide-sense station-
arity is assumed for random time-series, but with respect to
space rather than time. As a resultσ2

W (r, ν) ≃ σ2

W (ro, ν), ∀ r

so that in the following the argumentr will be dropped.
Furthermore, by introducingνd = ν1 − ν2, νc = (ν1 +

ν2)/2, rc = (ri+ rj)/2 and∆rij = ‖ri− rj‖, the degree of
coherence can be factorized as

µ(ri, rj , ν1, ν2) ≃ µν(rc, νd)µr(νc,∆rij), (15)

as argued in [36, section 5.3] for quasi-homogeneous random
fields. The two resulting functions in (15),µν(rc, νd) and
µr(νc,∆rij), separately account for the degree of frequency
and spatial coherence, respectively. While this property can be
expected to hold over relatively wide regions of the medium
when observed at a single frequency at the time, frequency
invariance is a reasonable approximation only when required
over a limited bandwidthBW . We will assume in the rest of
this paper thatBW ≫ BT .

The rationale for approximation (15) is provided by the
observation that for complex media the degree of coherence
falls to negligible levels if one of two conditions is met: a)as
soon as|ν2 − ν1| > Bc, with Bc the coherence bandwidth of
the medium, as defined later on, or; b) when∆rij > Dc,
the coherence distance (or length) of the medium. When
|ν2 − ν1| ≃ 0, the degree of coherence is dominated by the
spatial coherence, while the opposite holds when∆rij ≃ 0.

Finally, by assuming that the template signalp(t) operates
over a frequency rangeBT ≫ Bc, the frequency degree of
coherence will dominate (15), independently of the observer
position, by virtue of the stationarity property; this condition
is known to be necessary to ensure effective TRTs in complex
media [32]. Hence,µν(rc, νd) = µν(νd) in the following.
The existence of three separate frequency scales is therefore

assumed throughout this work, subject to the condition

BW ≫ BT ≫ Bc. (16)

The term〈αiαj〉 in (11) can now be computed by using
(4), (14) and (15)

E2

p 〈αiαj〉 =

∫∫

BT

|P (ν1)|
2|P (ν2)|

2×

{

σ2

W (νc)µν(νd)µr(νc,∆rij) + 〈W (ν1)〉 〈W (ν2)〉

}

dν1dν2.

(17)

Switching toνc and νd, the first part of the integral can be
written as
∫∫

BT

|P (ν1)|
2|P (ν2)|

2σ2

W (νc)µν(νd)µr(νc,∆rij)dν1dν2 =

∫

σ2

W (νc)µr(νc,∆rij)×
∫

|P (νc − νd/2)|
2|P (νc + νd/2)|

2µν(νd)dνddνc

(18)

where the second integral is significantly different from zero
only for νd < Bc ≪ BT , resulting into
∫∫

BT

|P (ν1)|
2|P (ν2)|

2σ2

W (νc)µν(νd)µr(νc,∆rij)dν1dν2 ≃

σ2

W (νc)Bc

∫

µr(νc,∆rij)|P (νc)|
4dνc,

(19)

having extractedσ2

W (νc) from the integral because of (16),
while

Bc =

∫

µν(νd)dνd (20)

is the coherence bandwidth of the medium. By introducing the
variability ς2W (ν) of the TRT field

ς2W (ν) = σ2

W (ν)/ 〈W (ν)〉2 (21)

we obtain

〈αiαj〉 ≃ 〈W (νc)〉
2

[

1+

E−2

p Bcς
2

W (νc)

∫

BT

µr(νc,∆rij)|P (νc)|
4dνc

]

.

(22)

This expression can be further simplified by noticing that

E−2

p Bc

∫

BT

µr(νc,∆rij)|P (νc)|
4dνc ≤

Bc

BTκ
2

2

. (23)

We can therefore conclude that

〈αiαj〉 ≃ 〈W (νc)〉
2
, (24)

as long asκ2
2 ≫ Bc/BT . The computation of

〈

α2
i

〉

goes along
the same lines, with the difference that now∆rij = 0. It
results into

〈

α2
i

〉

= 〈W (νc)〉
2, so that the average coherent

energy is
〈Ec〉 = N2

A 〈W (νc)〉
2
, (25)
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a result that corresponds to the case of individual coherent
contributions{αi} always constructively interfering, implying
a unitary positive correlation. In other words, the spatial
invariance of the moments of the TRT field translates into
individual coherent contributions that asymptotically behave
as deterministic rather than random quantities; this result can
be ascribed to the property of self-averaging well known in
time-reversal applications [32].

From (2) and (4), the term involving mutual moments in
(12) is made up of four contributions
∫

BT

〈F (ri, ν)F
∗(rj , ν)〉 dν =

∫

BT

〈W (ri, ν)W (rj , ν)〉 |P (ν)|2dν +

∫

BT

〈αiαj〉 |P (ν)|2dν

−

∫

BT

〈W (ri, ν)αj〉 |P (ν)|2dν −

∫

BT

〈W (rj , ν)αi〉 |P (ν)|2dν.

(26)

Recalling (14) and (15)
∫

BT

〈W (ri, ν)W (rj , ν)〉 |P (ν)|2dν =

σ2

W (νc)

∫

BT

µr(∆rij , ν)|P (ν)|2dν + 〈W (νc)〉
2
Ep,

(27)

a result also appearing in the integrand functions in the last
two terms in (26)

〈αiW (rj , ν)〉 = E−1

p

∫

BT

〈W (rj , ν)W (ri, ν
′)〉 |P (ν′)|2dν′

≃ E−1

p σ2

W (ν)µr(∆rij , ν)Bc|P (ν)|2 + 〈W (ν)〉2 ,
(28)

having applied the same line of reasoning as in the derivation
of (24). Hence,
∫

BT

〈αiW (rj , ν)〉 |P (ν)|2dν =

= E−1

p σ2

W (νc)Bc

∫

BT

µr(∆rij , νc)|P (νc)|
4dνc + 〈W (νc)〉

2
Ep

≃ Ep 〈W (νc)〉
2
,

(29)

as long asκ2
2 ≫ Bc/BT ; this result also holds when the

indexesi and j are switched. Stitching together these results
yields
∫

BT

〈F (ri, ν)F
∗(rj , ν)〉 dν ≃ σ2

W (νc)

∫

BT

µr(∆rij , ν)|P (ν)|2dν.

(30)
Applying essentially the same procedure, the remaining term
needed is

∫

BT

〈

|F (ri, ν)|
2
〉

dν ≃ σ2

W (νc)Ep. (31)

Finally, (10) becomes

〈Λ〉 ≃
ς−2

W (νc)NA

1 + E−1

p N−1

A

∑

i6=j

∫

BT

µr(∆rij , ν)|P (ν)|2dν

. (32)

It can be noticed that

µij = E−1

p

∫

BT

µr(∆rij , ν)|P (ν)|2dν (33)

in (32) represents the degree of spatial coherence between
the single-source contributions averaged overBT , weighted
by |P (ν)|2, while the average energy contrast expected for a
single-source configuration is

〈Λo〉 = 〈Λ〉
∣

∣

∣

NA=1

= ς−2

W (νc), (34)

allowing to restate (32) as

〈Λ〉 ≃ 〈Λo〉D(NA, µ̄r), (35)

with
D(NA, µ̄r) =

NA

1 + (NA − 1)µ̄r
(36)

the improvement provided by exploiting spatial/polarization
diversity fromNA sources, in an arrangement presenting an
average spatial coherenceµ̄r

µ̄r =

∑

i6=j

µij

NA(NA − 1)
. (37)

IV. PERFORMANCE ANALYSIS

The derivation of (35) highlights how the average energy
contrast obtained by means of TRT depends on two inde-
pendent contributions: the average single-source contribution,
〈Λo〉, and a multiplicative factorD(NA, µ̄r), hereafter referred
to as the diversity factor. In this section the relative roles of
these two terms are discussed.

A. Single-source configurations

The individual contributions〈Λo〉 appear only to depend on
the statistical variabilityς2W (ν) of the TRT field and therefore
on the statistical properties of the Green’s function of the
medium, and not on the characteristics of the template signal
(bandwidth, shape factorχp). The fact that the bandwidth of
the template has no impact on〈Λo〉 implies that the energy
efficiency of TRT is firmly constrained by the type of medium
we have to deal with.

These limitations in the energy performance (energy con-
trast) do not apply to the peak contrast, which on the contrary
yields more easily to design needs. As a matter of fact, the
shape factorχp introduced in (6) allows to increase the average
peak contrast, since Wiener-Khinchin theorem implies that(8)
goes like

〈Λp〉 ∼ 〈Λo〉
Tf

Tp
∼ 〈Λo〉

BT

Bc
, (38)

where Tp and Tf are the effective time-domain supports
(e.g., the half-power durations) of the template (coherentpart)
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Fig. 1: The diversity factorD(NA, µ̄r) as a function of the
number of sourcesNA and the average spatial degree of
coherencēµr (in percent units over each line).

and residual fluctuation signals (incoherent part related to
the relaxation time of the medium), respectively. In other
words, the closer the template to a short pulse, the better
the performance of TRTs. The interest of our approach is
that it makes clear that while a higher peak contrast can be
generated by acting onBT (hence reducingTp), the overall
energy efficiency of TRTs is not under control in complex
media; these two quantities act as complementary metrics of
the performance of TRTs.

B. Multiple-source configurations

The functionD(NA, µ̄r) can have a multiplicative effect on
the energy contrast of a single-source configuration, since(36)
implies thatD(NA, µ̄r) ≥ 1. In the ideal case of̄µr = 0, we
expectD(NA, µ̄r) = NA, resulting in a potentially dramatic
improvement of the energy contrast. Since (25) proves that
the coherent parts of each individual contribution are hardly
distinguishable, the improvement of the energy contrast should
not be interpreted as solely due to an increase in the overall
coherent transmission. The reasons for the improvement in
the overall energy contrast is rather to be found in the perfect
decorrelation between the residual fluctuations contributed by
each source. Under these circumstances, the average energy
of the incoherent fluctuations will sum up as a linear function
of NA, to be compared with theN2

A increase expected for the
coherent part.

In the more realistic case of̄µr > 0, the trend ofD(NA, µ̄r)
as a function ofNA and µ̄r is show in Fig. 1. It can be ob-
served that as the number of sources increases, the incremental
improvement in the overall energy contrast decreases withNA.
Moreover, asNA → ∞, there exists a maximum attainable
improvement given by

lim
NA→∞

D(NA, µ̄r) =
1

µ̄r
. (39)

Even a relatively weak average spatial coherence leads to
an upper limit to the improvement: e.g.,µ̄r = 0.1, usually
regarded as a negligible level of coherence, directly leadsto
a maximum improvement of a factor 10 which, though not
negligible, implies that it is not possible to do better than
the performance that would be obtained with 10 independent

1 2 3 4 5 6 7 8 9 10 11 12
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/ 〈

Λ
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Fig. 2: Incremental contribution to the average overall energy
contrast〈Λ〉 from a source added toNA pre-existing sources,
as a function of the average spatial degree of coherenceµ̄r

(in percent units over each line).

sources in an idealized setup. Hence,D(NA, µ̄r) can be
interpreted as an equivalent number of uncorrelated sources
taking part to the transmission.

By far worse is the fact that (39) requires an infinite number
of real sources excited at the same time, thus implying a huge
redundancy level. The limited contribution of each individual
source is better observed by computing the incremental im-
provement due to a single source added toNA already existing,
normalized to that of a single source, i.e.,

∆〈Λ〉

〈Λo〉
= D(NA + 1, µ̄r)−D(NA, µ̄r), (40)

hence
∆〈Λ〉

〈Λo〉
=

1− µ̄r

1− µ̄r +NAµ̄r(2− µ̄r) +N2

Aµ̄
2

r

. (41)

Since (41) goes likeO(N−2

A ), it appears that the realized
improvement in the performance of TRT after adding a new
source decreases relatively fast asNA increases, even for
rather low values of̄µr, as shown in Fig. 2.

It is important to stress the fact that spatial coherence has
no link with the more common concept of antenna coupling.
Spatial coherence rather implies that the random TRT between
one source and the receiver/observer and those of other sources
are not entirely uncorrelated random processes. Moreover,
spatial coherence is a property that is independent of the
structure of the sources and rather depends on the complexity
of the medium.

In the design of TRT schemes, it is therefore important to
acknowledge this loss of effectiveness of the sources. As a
result, there exists a maximum number of sourcesN∗

A such
that each relative contribution to the overall contrast is higher
than a given values < 1. Fig. 3 show howN∗

A evolves with
µ̄r ands. Notice how for a requirement of a loss of less than
10 % in the incremental improvement, i.e.,s ≥ 90 %, it is
worthwhile to switch from 1 to 2 sources only if̄µr ≤ 5 %,
a very low level of residual correlation/coherence.

In the case ofµ̄r ≪ 1 the results in Fig. 3 are well
approximated by

N∗
A ≃ 1 +

s−1/2 − 1

µ̄r
. (42)
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V. EXPERIMENTAL VALIDATION

In order to assess the validity of (35) we chose a reverber-
ation chamber as test case. The rationale for such a choice
is threefold: 1) reverberation chambers are routinely usedto
emulate the effects of wave propagation in complex media of
practical interest, such as indoor and outdoor environments,
e.g., for hand-held mobile set testing [35], [37], [38]. In this
respect, they provide a natural setting for testing our theory;
2) reverberation chambers often come with mechanical field
stirrers, intended to modify the boundary conditions for waves
propagating through them. A stirrer comes in handy here,
as a simple way of generating a large number of random
configurations, i.e., an ensemble of media sharing the same
statistical properties; 3) it was found in [39] that the vari-
ability of the field within a reverberation chamber is far from
being a constant value, and can be expected to take rapidly
changing values in the lower-frequency range. This property
is here interesting as it allows testing our predictions against
different values ofς2W , i.e., varying random-field statistics,
depending on the central frequency of operation; by the same
token, spatial coherence is also expected to be a function of
frequency [40], so that our predictions can be tested against a
whole range of values of̄µr.

The effectiveness of TRTs is better appreciated in the time
domain. In order to simplify the experimental validations,we
rather carried out the measurements in the frequency domain;
time-domain signals were then post-processed by means of
discrete Fourier transforms. Transfer functions were measured
with a vector network analyzer, as discussed in section V-A.

Mechanical stirring can only affect that portion of the field
(and therefore of the transfer functions) that interacts with it,
i.e., submitted to multiple scattering interactions. As a result,
line-of-sight propagation between the sources and the receiver
position appear as a deterministic contribution shared by each
realization of{Hm(ν)} [35]. In order to ensure realizations
as independent as possible, line-of-sight contributions were
subtracted from the original transfer functions, defining anew

TRM antennas
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field probe
A

MUX VNA O/E

A

(a)

(b)
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.4

4
 m
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.9
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.8
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0.8 m

0.8 m

Fig. 4: The experimental setup used for the validation of
the proposed theory. A total of 12 transmitting antennas (see
Fig. 5(a)) were mounted over the 4 walls of a reverberation
chamber, equipped with a field stirrer (paddle): (a) top view;
(b) front view from the AA cut.

set of results as{Hm(ν)−〈Hm(ν)〉}. It is important to stress
that this procedure is in no way related to the assumptions
invoked throughout our derivation, but is merely a matter
of ensuring a set of independent realizations. At the same
time this procedure also removes eventual couplings appearing
through the excitation circuit.

A. Experimental setup

A schematic description of the chamber is given in Fig. 4.
A total of 12 sources were included into the chamber; the
sources were identical and consisted of printed bow-tie anten-
nas perpendicularly mounted over the walls of the chamber,
as shown in Fig. 5(a). Their input ports were connected to
a multiplexer through coaxial cables. These antennas where
chosen in order to cover the frequency range from 0.5 to 2.0
GHz.

The receiver was an electro-optical probe (Enprobe’s EFS-
105) positioned at the center of the chamber, resting on a 1
m high styrofoam column. The probe, shown in Fig. 5(b), has
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(b)(a)

Fig. 5: Experimental setup: (a) one of the 12 bow-tie trans-
mitting antennas, mounted over the walls of the reverberation
chamber, kept 3 cm away from them by a piece of styrofoam;
(b) Enprobe’s EFS105 optical probe, measuring head 6.6 mm
wide, connected to a optical-fiber cable.
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Fig. 6: Estimate ofς2W , averaged over the results obtained with
12 sources, smoothed over a5 % bandwidth.
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Fig. 7: Plots of the 50 realizations ofW1(ν) = |H1(ν)|
2 (gray)

and of their ensemble average〈W1(ν)〉 (black curve). Fast
fluctuations on a short range in the{W1(ν)} are a consequence
of the narrow coherence bandwidth of the medium, as opposed
to the smoother evolution of〈W1(ν)〉, a direct indication
of the existence of two separate scales of frequency-related
phenomena.

the particularity of presenting a negligible scattering cross-
section, while behaving as an ideal Hertzian dipole. Its ability
to measure phase-shift angles makes it ideally suited for time-
domain post-processing. This configuration corresponds tothe
case where the sources are employed in the generation of a
field at the probe position. The probe was operated as a re-
ceiver by connecting it to a vector network analyzer (Rohde &
Schwarz ZVB8) through an optic-to-electric converter, while
the sources were independently excited one-by-one by means
of a multiplexer, as shown in Fig. 4. In this way 12 transfer
functions were collected for each realization, corresponding
to a single stirrer position. The stirrer consisted of four tilted
paddles mounted around a vertical axis; 50 angular positions
were considered, in order to generate a corresponding number
of sets of transfer functions between the sources and the
observation point.

Preliminary results from this setup are given in Fig. 6,
where an estimate of the variability of the TRT is shown.
This quantity spans values going from 1.1 to 1.7; the lower
value is close to what is expected for an ideal diffuse-field
configuration, related to Rayleigh fading in wireless commu-
nications [17], [41], while the higher value is a measure that
field propagation is less complex than expected, with a reduced
number of degrees of freedom [39]. Moreover,ς2W 6= 1 implies
that the underlying field cannot be described as a Gaussian
process, and therefore neither as a Rayleigh propagation.
This fact is important in proving that the agreement between
results discussed in the next section and the proposed theory
is not limited to simplified configurations (e.g., Rayleigh
propagation), but also in intermediary cases closer to practical
settings.

Complementary information is provided by the power den-
sity results shown in Fig. 7 as a black line, estimated from the
50 realizations of the first of the 12 sources. The received
fields appear as essentially behaving as random processes,
weakly dependent on the frequency of observation (frequency
stationarity). These results are of interest since they imply that
condition (16) is satisfied: as a matter of fact, the average
power density (black curve) evolves rather smoothly along
the frequency axis, while the fast random fluctuations of
each realization provide a direct assessment of the frequency
coherence of the medium, which is of the order of 100 kHz.
Furthermore, Fig. 7 does not give away any clue about the
fact that the statistics of the medium is fundamentally different
at the two ends of the frequency axis, as opposed to Fig. 6.
The importance of the information derived from the variability,
already exposed in section III-B, will be confirmed in the next
section.

B. Output field statistics

Throughout this section we will consider a gaussian tem-
plate signalp(t), with a -20 dB bandwidthBT modulating
a harmonic carrier at the frequencyνc; the values ofBT

were chosen in order to be much larger than the coherence
bandwidthBc, as required in the derivation of our theory. The
received signals were computed by means of inverse discrete
Fourier transforms of the spectraBm(ν) = |Hm(ν)|2P (ν);
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Fig. 8: A single realization of signals received for an increasing
number of active sources, forνc = 0.7 GHz and: (a)BT /νc =
5 %; (b) BT /νc = 20 %. The peak values attained by the
signals are practically independent of the number of sources
involved.

overall signals were then computed by summing over a chosen
subset of individual contributions. For the sake of simplicity,
the following convention will be used: for a configuration with
NA active sources, the resulting signals correspond to the sum
of the firstNA sources, without considering all the available
combinations. In order to allow a direct comparison of signal
amplitude in different configurations, the output signals are
always normalized toNA, while p(t) has unit energy.

Examples of these signals are given in Fig. 8, forνc =
0.7 GHz and two relative bandwidthsBT /νc, namely 5 %
and 20 %, when exciting an increasing number of sources.
While increasingBT leads to a clear improvement in the
peak contrast, as already well documented in the available
literature about TRT, a further important information is that
the resulting fields are practically independent of the number
of sources involved. This observation confirms the results
obtained in (25), stating that the peak-value of the coherent
part is proportional toNA, i.e., the individual contributions
are practically identical. Still, Fig. 8 also shows that the
ratio between the peak coherent value and the background
fluctuations does not improve as fast whenNA increases;
in other words, while the peak received signal increases,
its quality is not improving as fast as would be expected
for ideally incoherent fluctuations. This behavior is better
understood by switching from the intuitive peak contrast to
the energy contrast, as argued in section III.

In this respect, we needed to compute the empirical prob-
ability density functions (epdf) obtained for the single-source
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Fig. 9: Empirical probability density functions forΛo for three
values of the central frequencyνc : (a) 0.7 GHz; (b) 1.3 GHz
and (c) 2.0 GHz, for a 5 % relative bandwidth. Twelve results
are shown on each graph, corresponding to the results obtained
from the use of each transmitting antenna.

Λo, shown in Fig.9, derived for the 12 sources and the data
collected for the 50 realizations. These results confirm that the
epdfs are practically independent of the source, supporting the
arguments presented in the appendix.

The main interest in the use of the energy contrast is that its
average value〈Λo(ν)〉 does not depend on the specific choice
of p(t), but only on the medium; evidence for this claim is
provided in Fig. 10, where〈Λo(ν)〉 is computed either apply-
ing its definition (9), based on output signals, or from (34),
based on estimates of medium statistics; a good agreement is
found within a few percent points over the entire frequency
range and for three different relative bandwidths, while minor
disagreements are likely due to the approximation applied
in (10). In particular, going fromBT /νc = 5 % to 20 %,
e.g., a fourfold increase, does not lead to any improvement
in 〈Λo(ν)〉, as predicted from the proposed theory. Of notable
interest is the fact that the agreement is extended to the lower
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Fig. 10: Comparisons between several estimates of〈Λo〉,
computed from : the arithmetic average over the 50-realization
dataset (solid line); the reciprocal of the variability, i.e.,
ς−2

W (ν) (gray dots), as predicted by (34); its smoothed version
computed by averaging with|P (ν)| as a weighting function
(dashed line). The three graphs relate to three different relative
bandwidths: (a) 5 %; (b) 10 %; (c) 20 %.

frequency range, where the field statistics are not compatible
with those of a gaussian distribution law, sinceς2W 6= 1.

Equation (36) states that in order to predict the improvement
brought in by the use of multiple-source excitations, the only
needed quantity to be computed is̄µr, according to (37),
starting from the residual correlations between the{Wm(ν)}
equivalent transfer functions; results are shown in Fig. 11.
As expected for a complex medium, the residual spatial
correlation is rather low and could be dismissed as negligible.

The predictions given by (36) about the improvement
D(NA, µ̄r) are compared in Fig. 12 against the measured
ratio 〈Λ〉 / 〈Λo〉, for three values ofνc and three relative
bandwidths. As predicted, the realized improvement is smaller
what would be expected from the deterministic behavior
of the individual contributions to the coherent part, i.e.,

0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (GHz)

 

 

A
ve

ra
ge

 c
oh

er
en

ce

µ̄LS

mean µ̄r

Fig. 11: Estimate of the mean-value ofµ̄r(ν), computed over
the 50 realizations, obtained from the{Wm(ν)} for a 5 %
relative bandwidth (solid line), compared to the least-square
estimateµ̄LS(ν) derived by fitting the diversity factor to the
measured data.

D(NA, µ̄r) = NA. The reduction in〈Λ〉 / 〈Λo〉 is accurately
predicted by (36), based on thēµr estimates in Fig. 11.
The divergence between the theoretical predictions and the
experimental results can be explained in terms of residual
uncertainties in the estimation of̄µr: assuming a10 %
uncertainty provides mutually compatible results.

A more general comparison is possible by computing the
least-squares fit of〈Λ〉 / 〈Λo〉, yielding an optimal̄µLS, com-
pared in Fig. 11 and Fig. 12 with the estimate ofµ̄r. A
good agreement is observed over the entire frequency range,
supporting the proposed theory as capable of predicting the
performance of TRTs in complex media.

VI. CONCLUSIONS

In this paper we have introduced a theory describing the
ability of multiple-source TRT in generating coherent signals
in complex media. This theory shows how inevitable spatial
correlation puts an upper bound on the improvement brought
by the introduction of additional transmitting sources, even for
values of coherence that are often regarded as negligible.

The introduction of the energy contrast, as opposed to the
more intuitive peak contrast, allows appreciating limitations
of the energy efficiency that have been seldom discussed; this
topic deserves further research for its practical importance in
the optimal design of transmission systems.

Overall, experimental results strongly support the theoretical
model presented in section III, and in particular the possibility
of factorizing the peak contrast into three separate contribu-
tions: a) the ratio between the template bandwidthBT and the
coherence bandwidth of the medium; b) the variability of the
TRT field supported by the medium; c) the diversity factor
D(NA, µ̄r), depending on the residual spatial coherence and
the number of sources.

These two last points make clear that albeit allowing re-
markable performances, time reversal is profoundly affected
by physical limitations that cannot be easily compensated by
means of signal-processing techniques.
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APPENDIX

The derivation presented in section III-B rests on the idea
that while each transmitting antenna generates a different
time-reversal field distribution, their statistical moments are
independent of the orientation of the sources, as long as
they are rotated replicas of the same type of source. In this
respect, it is necessary to prove that the first- and second-
order moments of the TRT fields only depend on{‖hm‖}
and are rather dominated by the medium statistics. The main
assumption is that the medium generates depolarized fields.

The transfer functions{Hm(ν)} can be related to the vector
effective heights of the transmitters and receiver,{hm} and
ho, respectively. For the sake of simplicity it will be assumed
that the transmitters and the receiver are electrically small,
whence

Hm(ν) = C(ν)ho(ν) ·Gee(ro, rm, ν) · hm(ν), (43)
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where Gee is the electric-electric Green’s dyadic function
of the medium, whileC(ν) is a function depending on the
reference impedance used in the definition of the scattering
parameters; in the following we will setC(ν) = 1, with no
loss of generality. From (43), we can interpret each transfer
function as a continuous parametric field

Hm(ν) = H(rm, ν;hm), (44)

not only defined for the actual position of themth source, but
for a generalrm.

With no loss of generality, in our derivation it will be
assumed that the reference system relating to the observer in
ro is defined such thatho = hoûk, i.e., the observer is aligned
to thekth axisûk. The frequency variable is here dropped for
the sake of space. From (43)

Wm =

∣

∣

∣

∣

∣

∣

3
∑

i,j=1

hi
oh

j
mGij

ee(ro, rm)

∣

∣

∣

∣

∣

∣

2

, (45)

where{Gij
ee} are the scalar components of the dyadic Green’s

function. Forho = hoûk (45) reduces to

Wm = |ho|
2

∣

∣

∣

∣

∣

3
∑

i=1

hi
mGki

ee(ro, rm)

∣

∣

∣

∣

∣

2

, (46)

which, using the conventionXi = Gki
ee(ro, rm), leads to

Wm = |ho|
2
∑

i,j

hi
mhj∗

mXiX
∗
j , (47)

where ∗ stands for the complex conjugate. The ensemble
average〈Wm(ν)〉 is therefore

〈Wm〉 = |ho|
2
∑

i,j

hi
mhj∗

m

〈

XiX
∗
j

〉

. (48)

Following the depolarized-field assumption,
〈

Gij
ee(ro, rm)Gpq∗

ee (ro, rm)
〉

= δijδpqσ
2

G, with σ2

G the
variance of each scalar component of the dyadic Green’s
function; in practical terms, a rotational symmetry or isotropy
is introduced in the statistics of the components of the dyadic
Green’s function. Hence

〈Wm〉 = |ho|
2‖hm‖2σ2

G, (49)

which does not depend on the orientation of themth source.
Field statistics for complex media can be assumed, at least at
the first order, as following a complex-valued circular normal
distribution, i.e., with zero-mean real and imaginary parts
normal distributed and iid, with variancesσ2

0 , thusσ2

G = 2σ2
0 ,

quantities directly related to the spectral densityσ2

W (r). As
argued in section III-B, spatial dependence is here assumedto
be negligible at least in the region of space where the sources
are found, so that the argumentr will be dropped.

In the same way the second-order moment
〈

|Wm|2
〉

can be
computed as
〈

|Wm|2
〉

= |ho|
4
∑

i,j,p,q

hi
mhj∗

mhp
mhq∗

m

〈

XiX
∗
jXpX

∗
q

〉

. (50)

The assumption of a depolarized field implies that of the four
sums above only the terms involving{i = j = p = q}, {i =
j ∧ p = q} and{i = q ∧ j = p} contribute non-zero moments

〈

|Wm|2
〉

|ho|
−4 =

∑

i

|hi
m|4

〈

|Xi|
4
〉

+

2
∑

i6=j

|hi
m|2|hj

m|2
〈

|Xi|
2|Xj |

2
〉

,
(51)

which can be shown to yield
〈

|Wm|2
〉

= 8σ4

0 |ho|
4‖hm‖4 (52)

and hence
SW = 4σ4

0 |ho|
4‖hm‖4 (53)

The last moment to consider is〈Wm(ν)Wn(ν)〉, which will
bring into play the spatial degree of coherence of the medium
Green’s function. First, it can be shown that

〈WmWn〉 |ho|
−2 =

∑

i

|hi
m|2|hi

n|
2
〈

|Xi(rm)|2|Xi(rn)|
2
〉

+

∑

i6=j

|hi
m|2|hi

n|
2
〈

|Xi(rm)|2
〉 〈

|Xj(rn)|
2
〉

+

∑

i6=j

hi
mhi∗

n hj
mhj∗

n 〈Xi(rm)X∗
i (rn)〉

〈

X∗
j (rm)Xj(rn)

〉

.

(54)

This expression can be simplified by recalling that
〈

|Xi(r)|
2
〉

= 2σ2

0 ∀ r (55a)

〈Xi(rm)X∗
i (rn)〉 = 2σ2

0ρ
′
i(rm, rn) (55b)

〈

|Xi(rm)|2|Xi(rn)|
2
〉

= 4σ4

0 [1 + ρ′′i (rm, rn)] (55c)

whereρ′i(rm, rn) and ρ′′i (rm, rn) are the spatial degree of
coherence of theith scalar component of the electric field
and its squared modulus, respectively. In order to further
simplify our derivation, it is convenient to assume a diffuse-
field propagation [16]; in this case, by choosing a reference
system pertaining to the source part of Green’s dyadic function
such that theith axis is either parallel or perpendicular to
the directionrm − rn, thenρ′′i (rm, rn) = [ρ′i(rm, rn)]

2, as
demonstrated in [40].

This results, after some algebraic manipulations, into

〈WmWn〉

4|ho|
4σ4

0

= ‖hm‖2‖hn‖
2 +

[

3
∑

i=1

hi
mhi∗

n ρ′i(rm, rn)

]2

.

(56)
This last expression is actually dependent on the angles
betweenhm and hn; depending on the direction cosines
of hm and hn, the functionsρ′i(rm, rn) will be linearly
combined according to different weights. Two special cases
can be invoked in order to understand when the final result is
not affected by the orientation of the sources.

First, consider the case of identical sources, aligned along a
straight line. In this case the direction cosines will be thesame
independently of the couple(m,n), hence〈Wm(ν)Wn(ν)〉
will only depend on the medium coherence functions. This
configuration is often employed in practice, particularly when
dealing with linear arrays of sources.
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The second case is that of a more complex geometry,
where sources are not necessarily parallel to each other and
distributed either along a two- or three-dimensional grid,or
randomly. In either case, depending on(m,n), the direc-
tion cosines will span any possible value, since even for
identical sources their projections over the local reference
system defined around the directionrm − rn will change. By
modeling the angles as uniformly distributed over all possible
directions, the average value ofhi

mhi∗
n observed for any(m,n)

is expected to be
〈

hi
mhi∗

n

〉

= ‖rm‖‖rn‖/3, hence (56) will be,
according to the law of large numbers, asymptotically equal
to

〈WmWn〉

4|ho|
4σ4

0

= ‖hm‖2‖hn‖
2



1 +

(

1

3

3
∑

i=1

ρ′i(rm, rn)

)2


 ,

(57)
which only depends on the degree of coherence of the medium.

Recalling the definition of the spatial coherence functions
in (15) and making use of (49), (53) and (56) yields

µr(∆rmn) =

[

3
∑

i=1

hi
mhi∗

n ρ′i(rm, rn)

]2

=

[

sin(ko∆rmn)

ko∆rmn

]2

(58)
where the last result holds for the case of a diffusive
medium [16], as demonstrated in [40], withko = ν/co the
wavenumber andco the average speed of light through the
medium. Equation (58) also proves thatµmn ≥ 0, ∀ m,n,
so that theµ̄r cannot be smaller than the smallest individual
coherences{µij}, i.e., they cannot compensate themselves
reducing the overall average coherence of the transmission
system.
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Fig. 12: Equivalent number of independent sources, or diversity factor, as estimated from measurements, for three values of
the central frequencyνc (top to bottom: 0.7, 1.3 and 2.0 GHz) and three relative bandwidths (left to right: 5, 10 and 20 %).
Each graph presents experimental results as circles, to be compared with the theoretical prediction from (36), shown asa thick
solid line, based on the average coherenceµ̄r estimated in Fig. 11. Dotted lines correspond to the use of anoptimal average
coherence, derived by least-square fitting, while dashed lines are the results that would be expected if the propagationmedium
presented no spatial coherence. The effects of experimental uncertainties are shown at two levels: 1) a 10 % uncertaintyover
the estimate of̄µr, affecting the model prediction, as shown by the shaded area; 2) a 10 % uncertainty over the estimate of
〈Λ〉, as vertical bars.


