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Efficient residuals pre-processing for diagnosing multi-class faults in a doubly fed

induction generator, under missing data scenarios

Roozbeh Razavi-Far1,∗, Enrico Zio1,2, Vasile Palade3

Abstract

This paper focuses on the development of a pre-processing module to generate the latent residuals for sensor fault diagnosis in a

doubly fed induction generator of a wind turbine. The pre-processing module bridges a gap between the residual generation and

decision modules. The inputs of the pre-processing module are batches of residuals generated by a combined set of observers that are

robust to operating point changes. The outputs of the pre-processing module are the latent residuals which are progressively fed into

the decision module, a dynamic weighting ensemble of fault classifiers that incrementally learns the residuals-faults relationships

and dynamically classifies the faults including multiple new classes.

The pre-processing module consists of the Wold cross-validation algorithm along with the non-linear iterative partial least

squares (NIPALS) that projects the residual to the new feature space, extracts the latent information among the residuals

and estimates the optimal number of principal components to form the latent residuals. Simulation results confirm the

effectiveness of this approach, even in the incomplete scenarios, i.e., the missing data in the batches of generated residuals

due to sensor failures.

Keywords: Fault diagnosis, NIPALS, Wold cross-validation, Latent residuals, New class faults, Wind turbine.

1. Introduction

The doubly fed induction generator (DFIG) is one of the most

widely used classes of induction machines in the megawatt-

class wind turbines (Hansen & Michalke, 2007). The DFIGs

have shown a good performance in normal operation, but they

are quite sensitive to particular classes of faults. The rate of

failures in the sensors and the generator of wind turbines are re-

ported to be approximately 14.1% and 5.5% of the total number

of failures, that cause 5.4% and 8.9% of the system downtime

(Ribrant & Bertling, 2007).

The sensor fault detection and isolation in the DFIGs has an

important role to guarantee the safe and reliable operation of

wind turbines. Since monitoring the generator entails process-

ing the current and voltage sensor measurements, the first step is

devoted to sensor fault diagnosis, which has been addressed in

recent works (Boulkroune et al., 2010; Galvez-Carrillo & Kin-

naert, 2010).
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Fault diagnosis can be performed in two major steps. Firstly,

several signals, so-called residuals, reflecting faults in the pro-

cess behavior, are generated. In the second step, the residuals

are evaluated for decision making, to determine the time and

the location of potential faults (Razavi-Far et al., 2009a,b).

Multiple observers schemes were developed in (Boulkroune

et al., 2010; Galvez-Carrillo & Kinnaert, 2010) to generate

residuals associated to stator voltage and current sensors, as

well as rotor sensors, respectively. These multiple observers

were integrated in (Razavi-Far & Kinnaert, 2012, 2013) to re-

veal the mutual effects of the faults in each type of sensors on

the residuals associated to another sensor type. This coupling

prevented to develop a decision system by basic combination of

the previously developed decision systems for each class of sen-

sors. Thus, an effective classification technique has been used

to design a suitable decision system in (Razavi-Far & Kinnaert,

2012, 2013).

The problem of fault classification can be tackled resorting

to computational intelligence techniques. However, these ap-

proaches are usually based on time-series data of various sig-

nals in static environments (Razavi-Far et al., 2009b). On the

contrary, in dynamic environments, an incremental learning

strategy is needed to update the decision system for fault clas-

sification. This has been done by resorting to ensemble of fault

classifiers (Baraldi et al., 2011b). In (Baraldi et al., 2011a),

a bagged ensemble of Fuzzy C-Means (FCM) classifiers was

used for fault classification and its confidence for decision mak-

ing has been studied in (Baraldi et al., 2010).

The incrementally trained ensemble of classifiers in (Baraldi

et al., 2011b) can learn the new relations between the upcoming
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signals, while keeping the previously trained classifiers to pre-

serve the existing knowledge. Albeit this has been successfully

applied for decision making and fault classification in chang-

ing operating conditions (Baraldi et al., 2011b), the situation

becomes more complicated when the datasets collected in sub-

sequent installments have patterns of new classes of faults that

were not included in previous datasets. Consequently, the base

classifiers of the ensemble are doomed to misclassify patterns

from faulty classes on which they were not trained.

The problem of new class fault diagnosis was firstly tackled

by resorting to dynamic weighting ensembles (Razavi-Far et al.,

2012a), where a dynamic weighting ensembles algorithm was

adopted for fault diagnosis in the feedwater system of a boil-

ing water reactor (BWR). The algorithm is particularly devel-

oped for incremental learning of multiple new concept classes

of faults. The detection of unseen classes in subsequent data

was based on thresholding the normalized weighted average

of the outputs (NWAO) of the base classifiers in the ensemble

(Razavi-Far et al., 2012a,b).

Here a multiple observer scheme is used for residual genera-

tion, while for residual evaluation a dynamic weighting ensem-

ble of classifiers is used. In the first step, a bank of observers

generates a set of residuals that are robust to operating point

changes. A so-called signal-based approach is used for residual

generation of the stator current and voltage sensors, while two-

stage filters exploiting the DFIG model and the balanced signal

model are used for residual generation of the rotor currents, the

same as in (Razavi-Far & Kinnaert, 2012, 2013).

In the second step, the pre-processed residuals are progres-

sively fed into the dynamic weighting ensembles for fault clas-

sification. The algorithm incrementally learns the relation be-

tween projected residuals and faults, and dynamically classifies

the faults including multiple new classes.

In (Razavi-Far & Kinnaert, 2012, 2013), prior to fault clas-

sification, the generated residuals (ri=r1,r2,. . .,r9) were resam-

pled (i.e., down-sampled) in the processing module and then

forwarded to the fault classifier, i.e., the ‘second step’. Each

residual contains two vectors that form 18 features for the dy-

namic weighting ensemble of fault classifiers. The dynamic

weighting ensemble of fault classifiers mapped these 18 fea-

tures to 10 possible classes. These classes include the normal

state ‘ f f or fault-free’ and 9 classes of faults ( fi= f1, f2,. . ., f9).

The first three faults are sensor faults in the stator voltage at

phase (a, b, c). Other faults correspond to sensor faults in stator

and rotor currents at phase (a, b, c), respectively. In the preced-

ing works (Razavi-Far & Kinnaert, 2012, 2013), it was shown

that the decision module of the diagnostic system can isolate

all classes with respect to the unavailability of patterns from all

faulty classes during the training (i.e., new faults became avail-

able dynamically in the course of time). The major focus was

on detection and isolation of additive step-like faults, but addi-

tive drift-like faults were taken into account as well.

The generated residuals by multiple observers contain re-

dundant or irrelevant residual vectors (i.e., features) that

can degrade the fault classification performance. The pre-

processing module in (Razavi-Far & Kinnaert, 2012, 2013)

only resamples (i.e., down-samples) the residual vectors,

which is a pattern-wise process.

To improve the fault classification performance, a pre-

processing of the features is necessary. Feature selection is

a task of pre-processing the data to select a subset of fea-

tures. Feature extraction generates new features (e.g., latent

residuals) from functions of the original features (i.e., gen-

erated residuals by multiple observers). This can improve

the fault classification performance by improving the model

interpretability, reducing overtraining, enhancing the gen-

eralization capability and shortening the training times.

The feature selection methods can be divided into three

main categories: wrappers, filters and embedded methods

(Guyon & Elisseeff, 2003). There exist different methods

for feature extraction, such as those presented in (Vong &

Wong, 2011; Vong et al., 2013; Bruzzese, 2014).

Moreover, the fault classifiers of the diagnostic system,

like any other type of classifiers, fail to classify the incom-

plete patterns (i.e., containing some missing features). Thus,

it is necessary to discard or impute the patterns with miss-

ing data/features before sending to the dynamic weighting

ensemble. In the first case, the fault classification mod-

ule cannot classify the fault for the missing patterns and

the final decision is in question. In the latter case, the

missing data are imputed in advance and, thus, the miss-

ing patterns can also be classified. There exists different

number of missing data imputation techniques (Gheyas &

Smith, 2010; Rassler et al., 2013). Although, these methods

can impute the missing data, the outcome is the completed

dataset that needs further pre-processing to reduce the size

of features. This can be computationally expensive, and not

feasible for online monitoring and diagnostic applications.

Therefore, here a non-linear iterative partial least squares

(NIPALS) algorithm along with the Wold cross-validation

(Wold, 1978) has been used for pre-processing. This algo-

rithm is fast and suitable for online application, it extracts

the latent variables (i.e., latent residuals) from the residual

datasets, and it handles the missing data.

This paper aims to study the residuals and focus on the

pre-processing module to provide more informative fea-

tures of smaller size for fault classification. An efficient way

to process the generated residuals is developed in order to

extract latent information among residuals and provide in-

formative features for the decision module of the diagnostic

system. This is done by resorting to the principal compo-

nent analysis (PCA), a popular data analysis technique.

The contribution of this work is in developing a non-

linear iterative partial least squares (NIPALS) algorithm

along with a dynamic weighting ensemble, for residual eval-

uation and new class fault diagnosis in dynamic environ-

ments. This algorithm is capable of reducing the number of

the generated residuals, which incrementally become avail-

able, and projecting them onto the new feature space of

smaller size, by extracting the latent information. The pro-

jected latent residuals allow faster incremental update of

the ensemble of fault classifiers and improve the classifica-

tion accuracy of some of the faults, while incomplete batches

of residuals become available. The proposed classification
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scheme is validated on the problem of early diagnosis of new

class faults in the sensors of a DFIG.

The rest of this paper is organized as follows. Section 2

describes briefly the system and presents the fault diagnostic

scheme with a focus on the pre-processing module. Section 3

presents the NIPALS algorithm for the dimensional reduction

of incomplete data. Next, the Wold cross-validation algorithm

is used along with the NIPALS algorithm to estimate the num-

ber of principal components and extract the latent residuals. In

Section 4, an application to the sensors of DFIG-based wind

turbines is presented. First, the generated batch of residuals by

multiple-observers are processed by the Wold cross-validation

along with the NIPALS algorithm to form the latent residuals.

Then, the decision module of the diagnostic system incremen-

tally learns the latent residuals and classifies multiple faults

including new classes. Here, incomplete batches of residual

data are used to validate the diagnostic system in the presence

of missing data. Finally, conclusions are drawn in Section 5.

The pseudo-codes of the NIPALS algorithms and the Wold

cross-validation algorithm are presented in Appendix A.

2. System description and problem statement

The system description and the fault diagnosis scheme are

first presented, as they are prerequisites for the problem state-

ment.

2.1. The DFIG-based wind turbine

The considered system, shown in Figure 1, is a DFIG-based

wind turbine. The generator and the wind turbine rotor are cou-

pled together via a gearbox. The stator of the DFIG machine

is directly connected to the grid, while the rotor side is con-

nected to a back-to-back converter via slip rings (Razavi-Far &

Kinnaert, 2013). The back-to-back converter is composed of a

rectifier connected to the rotor windings, that is called the ro-

tor side converter (RSC), and an inverter connected to the power

grid, namely, the grid side converter (GSC). A DC link has been

devised between RSC and GSC to store energy and reduce the

DC ripple. To reduce the harmonics injected by the GSC, a line

filter has been placed between the GSC and the grid. The DFIG

dynamics and notations are not described here for the sake of

conciseness (the reader can refer to (Razavi-Far & Kinnaert,

2012, 2013) for a more detailed explanation).

2.2. Fault diagnosis scheme

The primary aim of this work is to detect and isolate sin-

gle additive sensor faults in a controlled DFIG, as described in

(Razavi-Far & Kinnaert, 2013). The faults are small additive

faults in the stator voltage and current sensors as well as rotor

current sensors, specifically step and drift-like faults.

Fault diagnosis is performed in two major steps. The pro-

posed scheme is displayed in Figure 2. This scheme has two

main components: the residual generation and fault classifica-

tion modules. Firstly, residual signals reflecting faults in the

system are generated from sampled sensor measurements and

Figure 1: Model of the DFIG-based wind turbine (Galvez-Carrillo & Kinnaert,

2010). Additional notations: V Wind speed, β pitch angle, Ωr,g rotor and gener-

ator speed, P,Q active and reactive powers, lower indices e, s, r, l, f , dc respec-

tively grid, stator, rotor, line filter, direct current, upper indices m, ∗ stand for

measurements and references (Razavi-Far & Kinnaert, 2013).

command inputs. These residuals have zero mean in the fault-

free mode, and some of them are subject to a change in the

mean upon occurrence of a sensor fault. Then, the residuals

are evaluated by the decision module, in order to determine the

time and the location of faults.

2.2.1. Residual generation

The residual generator module contains multiple observers

and complementary filters in three integrated sub-modules to

detect all possible classes of faults in rotor and stator sensors.

Signal-based observers are used for residual generation of sta-

tor current and voltage sensors, while two-stage filters utiliz-

ing the DFIG model and the balanced signal model are used

for residual generation of rotor currents. The residual genera-

tion module (i.e., both approaches) is completely described in

(Razavi-Far & Kinnaert, 2012, 2013).

These multiple observers generate a set of residuals

(r1, . . . , r9) that are robust against modeling uncertainties and

change in operating points (Razavi-Far & Kinnaert, 2012,

2013). Each residual is designed to be sensitive to a subset

of faults. Besides, the residuals are designed to have different

responses to different faults.

2.2.2. Fault classification

The fault classification module matches each pattern of the

residual vectors with one of the pre-assigned classes, i.e., the

fault-free or faulty classes.

Unlike conventional pattern recognition methods for fault

classification based on time-series data of various signals in

static environments, it is assumed that the residuals succes-

sively become available in different batches and the signature
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Figure 2: Block diagram of the diagnostic system: the pre-processing bridges the gap between the residual generation and fault classification modules.

trends of the residuals vary in different time intervals. The new

signature trends can be related to new classes of faults that have

not been seen previously during the training of the fault clas-

sifier. Therefore, the fault classifier needs to be incrementally

updated over a period of time. This incremental learning can

be performed by resorting to an ensemble of fault classifiers

(Baraldi et al., 2011b).

Ensemble learning is a two-step algorithm: first, multiple di-

verse classifiers are trained; second, the outcomes of the indi-

vidual classifiers are combined strategically to achieve higher

classification performance from its individual-base classifiers.

Albeit an ensemble of fault classifiers outperforms a single fault

classifier (Baraldi et al., 2011a), and is more robust and confi-

dent (Baraldi et al., 2010), and can learn and diagnose in an

incremental fashion (Baraldi et al., 2011b), it is doomed to mis-

classify patterns of new classes of faults (i.e., classes unseen

during the training session) in subsequent datasets.

In (Razavi-Far & Kinnaert, 2013), a dynamic weighting

ensemble algorithm, called Learn++.NC (Muhlbaier et al.,

2009), is used to dynamically learn and diagnose the new

classes of faults. This algorithm, which is used here for

fault classification, creates and trains a new member of the

ensemble
{

E1, E2, E3, etc
}

(i.e., a pre-assigned number of

MultiLayer Perceptron MLP-based classifiers) with each

new batch of data
{

S 1, S 2, S 3, etc
}

. Each MLP is a three

layer network in which the number of neurons in the in-

put layer is equal to the number of features used for the di-

agnosis (i.e., the number of principal components or latent

residuals that can vary for each dataset), and the number of

neurons in the output layer is equal to the number of classes,

here 10.

Each MLP network is trained on a different subset of the

available training data
{

S 1, S 2, S 3, etc
}

. A training data

subset is drawn according to an iteratively updated distri-

bution in order to train each individual base classifier.

The algorithm evaluates the ensemble on the current

dataset and calculates the errors. The algorithm calls a

subroutine, named the dynamically weighted consult and

vote (DW − CAV), to create a weighted average of classifier

errors on current and recent datasets, and assigns voting

weights to each classifier based on age-adjusted weighted

errors. This smart voting mechanism allows base classifiers

to consult with each other (i.e., cross-reference their deci-

sions with the class labels used during their training ses-

sions) and dynamically adjust their voting weight for each

pattern (Muhlbaier et al., 2009). The final decision is, then,

obtained as the weighted majority voting of all classifiers.

The detailed explanation of the algorithm and its pseudo-

codes are formally presented in (Razavi-Far & Kinnaert,

2013).

2.3. Problem Description

The pre-processing module, which is placed between the

residual generation and decision modules, prepares the feature

space for the fault classifiers by resampling and combining the

residual components (Razavi-Far & Kinnaert, 2012, 2013). It

resamples down-sampled residuals (ri=r1,r2,. . .,r9) and, then,

combined residual vectors (i.e., each residual contains two vec-

tors) to form a feature space of size 18.

The pre-processed residuals were progressively fed to the dy-

namic weighting ensemble of fault classifiers to match each

pattern from the feature space of size 18 with a pre-assigned

class out of 10 (i.e., the fault-free f f and 9 classes of faults

f1, f2,. . ., f9). The decision module in (Razavi-Far & Kinnaert,

2012, 2013), then, was able to dynamically learn and isolate

all classes including unseen classes of faults in the subsequent

residual datasets.

This work focuses on the pre-processing module to provide

informative features of smaller size for fault classification. The

pre-processing module is mainly the Wold cross-validation al-
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gorithm along with the NIPALS algorithm. Figure 2 presents

the fault diagnosis scheme with focus on the pre-processing

module.

The batches of residuals are progressively fed to the pre-

processing module. Each residual dataset is projected to the

new feature space and the latent information among the resid-

uals is extracted. The Wold cross-validation also estimates

the optimal number of principal components latent residuals to

form the new feature space. This reduces the dimension of the

feature space by extracting latent information and canceling the

noise among residual data, which allows faster incremental up-

date of the ensemble of fault classifiers and improves the classi-

fication accuracy of some faults. This module can also process

the incomplete batches of residuals (e.g., missing data in the

generated residuals due to sensor failures).

Additionally, the WOLD cross-validation NIPALS algorithm

creates and preserves a PCA model for each batch of residuals

which projects the raw residuals
{

S 1
raw, S 2

raw, S 3
raw

}

onto the la-

tent residuals
{

S 1, S 2, S 3
}

.

During the test, these models {PCA1, PCA2, PCA3} will be

used as pre-processing modules of the corresponding ensemble

(E1, E2, E3). Thus, any subsequent test pattern is firstly pre-

dicted by means of different preserved PCA models that project

the test pattern onto different feature spaces (i.e., PCA models

extract different numbers of principal components from an un-

processed test scenario Sc, to form S c1, S c2, S c3), and, then,

feed them to the corresponding member of the ensemble.

3. Principal Component Analysis

Principal component analysis (PCA) is a popular method of

data analysis. PCA is a simple, non-parametric method to ex-

tract relevant information from datasets. It can be used there-

fore to reduce the data dimension and reveal the latent knowl-

edge and simplified underlying dynamics.

To perform the principal component analysis, the data is cen-

tered and scaled. The data is mean-centered, i.e., xi j = xi j − x̄i.

By centering, the coordinate system is shifted to a new refer-

ence point which is the origin of the coordinate system in a

n-dimensional space. Next, the data is simply scaled through

dividing each column by its standard deviation. Thus variance

and standard deviation of each column turn out to be 1, provid-

ing an equal opportunity of contribution to the model for each

variable.

PCA is an orthogonal linear transformation of the data to a

new coordinate system such that the maximum variance by any

projection of the data lies on the first coordinate (the first prin-

cipal component), the second greatest variance on the second

coordinate, and so on.

The data matrix X(m×n) can be explained by the summation

of a structure and a residual as follows:

X = T P′ + E (1)

The structure is the matrix product of T P′, where T and P

denote the scores and the loadings, respectively, and E stands

for residuals. The scores explain how the different rows of X

(patterns) are related to each other. The loadings are the weights

of the variables in X on the scores T . The matrix residuals,

E(m × n), is the part of X which is not explained by the PCA

model T P′.

The principal components of X are, then, the eigenvectors of

X′X or the rows of P, where X is a centered m × n data matrix.

The size of E is explained in terms of squared variance.

There exist different PCA algorithms, such as the singu-

lar value decomposition (SVD) and non-linear iterative partial

least-squares (NIPALS) (Wold, 1966; Wold et al., 1987). The

NIPALS algorithm is a sequential technique to compute the

principal components.

Here the NIPALS algorithm is used to find principal compo-

nents of the raw residual matrix and to select proper features for

the dynamic weighting ensemble of fault classifiers. The reason

for considering the NIPALS algorithm here is three-fold: it han-

dles missing data, it works well for huge data and it calculates

the components sequentially.

The pre-processing of the residuals can benefit from the

above stated features of the NIPALS algorithm, since the

recorded data from residual vectors form a huge dataset due

to high sampling frequency in wind turbine applications, and

may contain missing values due to sensor failures.

The algorithm extracts each principal component succes-

sively, starting with the first component having the maximum

variance, and then the second component, and so on.

3.1. The NIPALS algorithm

The NIPALS algorithm (Geladi & Kowalski, 1986) aims to

find the principal components. It can be limited to finding the

first l principal components of X′X, starting with the largest

eigenvalue PC1 and further. l must be less than or equal to

the number of principal components n. The pseudo-code of the

standard NIPALS is presented in Algorithm 1 (see appendix A).

Upon convergence at each iteration of the NIPALS algo-

rithm, the score tk and loading pk vectors are stored as the k− th

column in matrix T and P, respectively. Then, the final crucial

step of the NIPALS algorithm deflates the residual data matrix;

it takes away the captured variability by the component PCk

from X.

The last step, so called deflation, guarantees mutual orthogo-

nality of the extracted components since each subsequent com-

ponent can merely see the remained variations after eliminating

all the preceding components. Thus, there exists no variabil-

ity of the same type that could be explained by two principal

components. Upon deflation, this procedure is repeated from

step 1 to capture the next component. The algorithm can decide

whether to keep that component or not.

The algorithm can be terminated once a certain number l of

components are captured; this can be defined by rule of thumb.

However, it is important to estimate a proper number of compo-

nents since the captured components will be used as extracted

features for the fault classification.

Undoubtedly, having a large number of principal components

increases the number of extracted features but also the complex-

ity. On the contrary, capturing few principal components de-
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creases the number of extracted features and may lead to lower

classification performance of the fault classifier.

3.2. How many principal components?

Indeed, it is crucial to know how many principal components

should be retained to capture most of the data variability. Differ-

ent methods have been proposed to find the actual dimensional-

ity of the data (Bartlett, 1950; Cattel, 1996; Jackson, 1991; Jol-

liffe, 1986; Kaiser, 1960; Malinowski, 1977). However, these

methods depend on subjective choices or non-realistic assump-

tions. Regardless of conventional criteria and methods, cross-

validation is an objective method that does not need any as-

sumption.

A cross-validatory PCA estimation is not based on the eigen-

values of the covariance matrix but on the predictive ability of

the different principal components.

Cross-validation is an efficient and popular approach that has

been successfully used in literature to determine the number

of underlying features and to estimate the average prediction

error. The basic principle of cross-validation is to split the data

and leave out a portion, construct a model, and then predict the

left-out patterns by means of the constructed model.

Cross-validation is a standard resampling technique. A

cross-validation procedure has been used along with the SVD

to estimate the number of principal components (Eastment &

Krzanowski, 1982; Krzanowski, 1983, 1987) on which at each

step the evaluation set is formed only by one item of the data

matrix, so called the leave-one-out. In this method, the maxi-

mum amount of information is used for estimation, that is com-

putationally expensive.

In (Wold, 1976, 1978), an efficient technique, so-called Wold

cross-validation, has been proposed along with the NIPALS al-

gorithm to identify the dimensions that best explain the system-

atic variations in data. In (Diana & Tommasi, 2002), differ-

ent variation of cross-validation, single cross-validation (SCV)

(Wold, 1976), double cross-validation (DCV) (Wold, 1978) and

full cross-validation (FCV) (Forina et al., 1993) are studied and

compared. This comparative study shows that cross-validation

is an efficient technique in determining the number of prin-

cipal components, albeit the number of principal components

captured by each method is slightly different (Diana & Tom-

masi, 2002). In (Bro et al., 2008), the efficiency and perfor-

mance of the Wold cross-validation in finding the number of

principal components is studied and compared with other cross-

validation techniques.

Here, the Wold cross-validation is used to determine a proper

number of components for the PCA model that best explain

the variation in the data and if possible not the noise. The

Wold cross-validation aims to determine the number of prin-

cipal components that extract all systematic variance from X,

leaving unstructured residual variance in E, in a way that fitting

any additional components will not improve variability of the

data and, rather, start to fit this noise and unstructured variance

in E.

Since the Wold cross-validation relies on the special prop-

erty of the NIPALS algorithm to cope with missing data (Rubin,

1976; Nelson et al., 1996), the NIPALS algorithm is reformu-

lated to handle the missing values.

3.3. The NIPALS algorithm with missing values

To find the principal components, the NIPALS algorithm

minimizes the following objective function:

F =
∑

i j















xi j −

n
∑

k=1

tik p jk















2

(2)

under the orthonormality (i.e.,
∑

j p jk p jl = δkl, the so called

Kronecker delta) and orthogonality (i.e.,
∑

i tiktil = 0 ∀ k , l)

conditions (Grung & Manne, 1998).

The missing values of xi j along with their model represen-

tations
∑

k tik p jk should be deflated from the objective function

(2). Assume that Y is a full matrix and X is the known portion of

Y . In the matrix X, the element with the same index of missing

positions in Y are substituted with zeros. With this notation, the

symbol of X can still be utilized for the matrix values applied

as input to the computation.

These two matrices (i.e., X and Y) are related together by

means of an incidence matrix Ψ. The matrix Ψ is, with the

same dimension of X and Y , defined as follows:

ψi j =















1 if yi j is known

0 if yi j is missing (i.e., unknown)
(3)

These matrices are linked together as xi j=ψi jyi j and ψ2
i j
=ψi j.

Thus, the objective function in Eq. 2 can be rewritten as fol-

lows:

F =
∑

i j

ψi j















yi j −

n
∑

k=1

tik p jk















2

=
∑

i j















xi j −

n
∑

k=1

tikψi j p jk















2

(4)

Thus, to find principal components, the modified objec-

tive function should be minimized (Grung & Manne, 1998).

This can be done by setting the partial derivatives (∂F/∂ti and

∂F/∂p j ) equal to zero. Consequently, the achieved equa-

tions for the score and the loading along with the normalization

condition can be solved iteratively. Algorithm 2 presents the

pseudo-code of the modified NIPALS with missing values (see

Appendix A). In other words, the standard NIPALS algorithm

without missing values is achieved with all ψi j = 1.

3.4. Cross-validatory estimation of the number of components

The Wold cross-validation algorithm (Wold, 1978) along

with the NIPALS steps is presented in Figure A.10 (see Ap-

pendix A). This algorithm splits the data matrix X into Γ can-

cellation groups. In each iteration, one group is deleted from

X to form the train and test subsets. Consequently, a model is

fitted to the remaining data by means of the NIPALS algorithm

and, then, the fit of the model to the corresponding left-out ele-

ments is evaluated.
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Each cancellation matrix is achieved through deleting a se-

quence of individual elements xi j in a diagonal scheme. For

instance, in the γ − th group, γ = 1, 2, . . . , Γ, the missing

sequence is achieved through deleting the element numbers

{γ, γ + Γ, γ + 2Γ, etc} in a row-wise scheme. This guarantees

that all elements are left out once, upon completing Γ groups.

These deleted individual elements are marked as ‘missing val-

ues’. Thanks to the incidence matrix, as explained in the previ-

ous section, the NIPALS algorithm handles the generated miss-

ing values. The number of groups Γ is an arbitrary choice be-

tween 4 and 7 with the condition that Γ is not a divisor of m or

n.

The Wold cross-validation finds one component at each re-

currence. Next, the algorithm evaluates the first component and

subtracts the valid component from the data. Consequently, the

generated residuals are only used to evaluate the next principal

component.

4. Sensor fault diagnosis of a DFIG-based wind turbine

In this section, the capability of the proposed scheme is tested

with respect to the early diagnosis of sensor faults in a DFIG-

based wind turbine. These faults regard malfunctions in the

sensors of the DFIG. The list of faults is reported in Table 1.

Table 1: Faulty situations.

f f Normal normal or fault-free situation

f1 fu−sa fault in stator voltage phase a

f2 fu−sb fault in stator voltage phase b

f3 fu−sc fault in stator voltage phase c

f4 fi−sa fault in stator current phase a

f5 fi−sb fault in stator current phase b

f6 fi−sc fault in stator current phase c

f7 fi−ra fault in rotor current phase a

f8 fi−rb fault in rotor current phase b

f9 fi−rc fault in rotor current phase c

4.1. Design of the diagnostic system

The simulation environment and conditions for training is ex-

plained in (Razavi-Far & Kinnaert, 2012, 2013) in order to have

a fair comparison.

Here, three steps of simulation consisting of different classes

of faults have been performed. The generated residuals by the

bank of observers are collected in different sets of residual data

and, then, fed to the Wold cross validatin algorithm as input.

The batch of residuals consists of three residual datasets. Each

one includes patterns of simulated scenarios (i.e., normal and

some faults). The first step of the simulations includes patterns

of the normal status and three faults (i.e., f1, f2, f3) in S 1
raw.

The second (third) simulation creates S 2
raw (S 3

raw), made of

different patterns of normal status and six (nine) classes of

faults, i.e., f1,. . ., f6 ( f9), introducing another three (six) new

classes.

These residual datasets S 1
raw, S 2

raw, S 3
raw, become avail-

able progressively in the course of time. Each one consists

of 9 residuals (ri=r1,r2,. . .,r9) and each residual is a two-

dimensional vector which yields a feature space of 18 variables.

Each residual dataset is firstly preceded by the pre-processing

module (i.e., the Wold cross-validation and NIPALS) to project

the residual to the new feature space and extract the principal

components to form the latent residual datasets in S 1, S 2, S 3.

Each latent residual dataset is used to train a member of the

ensemble E1, E2, E3.

The Wold cross-validation along with the NIPALS algorithm

is used to reduce the dimension of the residual datasets S 1
raw,

S 2
raw, S 3

raw to smaller sets of features, i.e., the ‘latent residuals’.

Each set contains most of the information in the large residual

set.

The number of principal components ‘selected features’ is

less than or equal to the number of original variables ‘resid-

ual vectors’. The NIPALS projects the patterns of the raw set

of residuals in a way that the first principal component has the

largest possible variance (i.e., variability in the raw set), and

each subsequent principal component in turn has the highest

variance possible under the orthogonality constraint, i.e., un-

correlated with the preceding principal components.

4.2. Latent residuals characteristics

The latent residuals are principal components extracted by

the Wold cross-validation algorithm. The residuals successively

become available at different snapshots (i.e., S 1
raw, S 2

raw, S 3
raw).

Consequently, the number of extracted components (i.e., fea-

tures) can vary for each incoming dataset.

This may lead to pre-processed datasets (i.e., S 1, S 2, S 3) with

different number of features. Therefore the individual classi-

fiers of each ensemble (E1, E2, E3) are trained with different

datasets (i.e., S 1, S 2, S 3), which contain different numbers of

features.

Thus, it is necessary to preserve the PCA model constructed

for each dataset (i.e., S 1, S 2, S 3) as a pre-processing module

of the corresponding ensemble (E1, E2, E3). Consequently, any

upcoming test pattern (i.e., a test scenario Sc of size m′ × n) is

firstly predicted by means of different PCA models (e.g., PCA1,

PCA2, PCA3) that project the test pattern to different feature

spaces (i.e., Sc1, Sc2, Sc3) and feed to the corresponding en-

semble of fault classifiers.

Each member of the ensemble, i.e., E1 (E2) (E3), which is

trained by the dataset S 1 (S 2) (S 3) of size m′ × l1 (l2) (l3) then

evaluates the corresponding projection of the test scenario Sc1

(Sc2) (Sc3) of size m′ × l1 (l2) (l3) (Figure 2).

The Wold cross-validation projects the residual datasets (i.e.,

S 1
raw, S 2

raw and S 3
raw, each one containing 18 features) to the

new feature spaces of size 7, 7 and 8; stored in S 1, S 2 and S 3,

respectively.

For instance, the Wold cross-validation extracts only 8 prin-

cipal components from the third dataset S 3
raw. These 8 principal

components explain 99.2% of the variability in S 3
raw. Figure 3

displays the cumulative R2 and Q2 (see Eqs. 5 and 6) for the

S 3
raw dataset, after each principal component.

R2
cum is the percent of the variation of all the data explained

by the PCA model, i.e., the goodness of fit. Q2
cum is the percent
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Figure 3: The explained cumulative variance upon extraction of each prin-

cipal component.

of the variation of all the data that can be predicted by the PCA

model, i.e., the goodness of prediction.

R2 and Q2 for each component can be computed as follows:

R2 = 1 −
Var(Ẽk)

Var(X)
(5)

Q2 = 1 −
Var(predictedẼk)

Var(X)
(6)

where Var(predictedẼk) stands for the prediction error sum

of squares PRESS(k).

Consequently the cumulative R2 and Q2 of the l − th compo-

nent are calculated as follows:

R2
cum = 1 −

l
∏

k=1

Var(Ẽk)

Var(X)
(7)

Q2
cum = 1 −

l
∏

k=1

PRESS(k)

Var(X)
(8)

R2 is always larger than Q2. If R2 = Q2, it means that the

principal component is predictive in the PCA model, whereas

small value of Q2 indicates that principal component is likely

fitting the noise.

The first extracted principal component explains 16.67% of

the variability in S 3
raw (see Figure 3). It is important to see how

this component is affected by different residual vectors of S 3
raw.

This issue can be studied by means of contribution plots.

A contribution plot shows the impact of each variable on each

score and also identifies which variables are pushing the statis-

tics out of their control limits (Kourti & MacGregor, 1996).

The contributions in Figure 4 show the explained variation

for the first principal component t1, i.e., how different variables

‘residual vectors’ contribute to the first principal component
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Figure 4: Contribution plot for the first principal component t1.

‘projected residual’. Figure 4 shows that variables 15, 17, 14

and 16 have the highest contribution in the first principal com-

ponent. These values correspond to the rotor current residual

vectors at phase a, b, b and c, respectively. These residuals vec-

tors have the maximum variation and sensitivity to the faults

at the rotor current sensor, which are introduced in the third

dataset S 3
raw.

The projected latent residuals are also discussed in terms

of component scores, i.e., the projected variable values corre-

sponding to a particular pattern, and loadings, i.e., the weight

by which each standardized original variable should be multi-

plied to get the component score (Shaw, 2003).

Figure 5 shows the scores t1 versus t2, which are the most

informative among projected residuals. This Figure shows how

patterns of the first two projected residuals summarize the vari-

ability of the original residual data. The score t1 (first compo-

nent) explains the largest variation of the residual space, fol-

lowed by t2, etc. Hence, the scatter plot of t1 versus t2 displays

how the patterns are situated with respect to each other.

The score plot, Figure 5, presents different groups, similar-

ities, outliers and other patterns in the residual data. Patterns

near each other are similar.

In PCA, an outlier is a pattern that lies outside the confidence

limits of the PCA model. Outliers can be detected on the scores

plot, i.e., the patterns outside of the red circle in Figure 5. These

outliers correspond to the faulty patterns.

The loadings explain the structure of the residual data in

terms of variable correlations. Each variable has a loading on

each principal component. It reveals how much the variable

contributes to that principal component, and how well that prin-

cipal component takes into account the variation of that variable

over the residual data.

The loadings can be explained as the correlation of the vari-

ables ‘residual vectors’ with the scores T (i.e., t1, t2, . . ., tn).

Figure 6 shows the circle of correlations and the plot of the
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Figure 5: Scores t1 versus t2; the solid ellipse represents a 95% confidence

interval of the data.

loadings of the variables with the first two principal compo-

nents.
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Figure 6: Principle components loadings, p1 versus p2.

Variables (15, 17), (14, 16) and (13, 18) are mutually cor-

related (see their positions on the solid circle of correlation).

These variables are of paramount importance for the first two

principal components, since other variables are located around

the origin and have low value with respect to p1 and p2.

Variables (15, 17) and (14, 16) have the highest values on

p1 (Figure 6) and correspondingly the most contribution on the

first principal component (Figure 4). Variables (15, 17) are neg-

ative on the first loading vector p1 (Figure 6) and have negative

contribution on the first principal component (Figure 4). On

the contrary, variables (14, 16) are positive on the first loading

vector p1 (Figure 6) and, correspondingly, have positive contri-

bution on the first principal component (Figure 4).

Variables (13, 18) are highly correlated and placed on the

solid circle (Figure 6), and highly contribute to the first two

principal components. Their contributions on the first two prin-

cipal components are positive, but their contribution on the sec-

ond principal component is higher than the first principal com-

ponent, since their values in the second loading vector p2 is

higher than in p1.

4.3. Dynamic learning of the latent residuals

The latent residuals S 1 (S 2) (S 3) with 7 (7) (8) features

are pattern-wise down-sampled and, then, fed to the dynamic

weighting ensembles (DWE).

In the first step, while S 1 becomes available, the DWE splits

the data into Train − set1 and Test − set1. A summary of the

datasets characteristics is reported in Table 2.

Train − set1 and Test − set1 consist of different patterns of

the normal status and three faults ( f1, f2, f3).

The DWE algorithm, first creates an ensemble E1 of ten clas-

sifiers which are trained on Train− set1 and then evaluated with

Test − set1.

Similarly, in the second (third) step, once S 2 (S 3) becomes

available, the DWE splits the latent residuals into Train − set2

(Train − set3) and Test − set2 (Test − set3).

Train − set2 (Train − set3) and Test − set2 (Test − set3)

are made of different patterns of normal status and six (nine)

classes of faults, introducing new classes. Upon data split, the

DWE creates an ensemble E2 (E3) of ten new classifiers, which

are trained on Train− set2 (Train− set3) and, then, tested with

Test − set2 (Test − set3).

The MLP networks are weakly trained (i.e., error goal of

5%) to guarantee the diversity among the base classifiers,

which leads to achieve a higher performance by the ensem-

ble. Each MLP classifier in the first and second ensembles E1

and E2 has 70 neurons in the hidden layer. The MLP classi-

fiers of the third ensemble E3 contains 80 neurons in the hidden

layer.

Table 3 shows that the performance of the diagnostic

system trained with latent residuals is improved compared

with the performance of the diagnostic system, which was

trained with residuals. The classification performance of the

first step is reported in the first row of Table 3. The DWE at first

step, i.e., E1 classifies the Test − set1 with high accuracy; how-

ever, the classification performance is decreased with respect to

the classification of the Test − set2 and Test − set3. This is due

to the presence of patterns of unseen classes during the training

with Train − set1 in the test data.

The second row of Table 3 corresponds to the second step,

while the second dataset S 2 becomes available.

The DWE at this step adds ten new classifiers to the ensemble

E2. E2 classifies the Test− set1 and Test− set2 with high accu-

racy, but still the performance on the Test − set3 is low, which

is due to unseen patterns of faults ( f7, f8, f9) in the Test − set3.

The DWE evaluates the Test − set2 in a way that for the

patterns of new classes ( f4, f5, f6), the DW − CAV subroutine

decreases the voting weight of the classifiers of the first ensem-

ble E1, which are trained with Train − set1 and did not learn

any patterns of ( f4, f5, f6) during their training, and at the same

time increases the voting weight of the new classifiers which

are trained with Train − set2. Adjusting the voting weights in-

creases the classification performance.
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Table 2: Number of patterns in each dataset, for each class.

Dataset
Number of Patterns

Total f f f1 f2 f3 f4 f5 f6 f7 f8 f9

Train − set1 232 58 58 58 58 - - - - - -

Train − set2 500 59 59 59 59 88 88 88 - - -

Train − set3 1028 59 59 59 59 88 88 88 176 176 176

Test − set1 48 12 12 12 12 - - - - - -

Test − set2 109 13 13 13 13 19 19 19 - - -

Test − set3 223 13 13 13 13 19 19 19 38 38 38

Table 3: Performances of the ensembles to the test datasets by means of latent residuals (with raw residuals).

Test − set1 Test − set2 Test − set3

E1, Train − set1 98.3% (97.9%) 47.3% (46.7%) 25.1% (22.4%)

E2, Train − set1&2 98.3% (97.9%) 98.6% (98.1%) 51.6% (48.8%)

E3, Train − set1&2&3 100% (100%) 100% (100%) 100% (99.5%)

The last row of the Table 3 corresponds to the third step, on

which S 3 becomes available. The classification performances

of the ensemble E3 with respect to all test datasets are high.

This is due to the fact that in the last training session, E3 is

trained on Train− set3, which is made of patterns of all classes.

The bold entries in Table 3 are used for decision making. The

entries inside the parentheses in the Table 3 are classification

performances achieved by the diagnostic system without pre-

processing, i.e., the pre-processing module dose not includes

the Wold cross-validation and NIPALS (Razavi-Far & Kinnaert,

2012, 2013).

The reported results in Table 3 show that the classification

performances are improved by means of the proposed pre-

processing module (i.e., latent residuals). This improvement

can be seen in almost all scenarios in the Table 3, particu-

larly, when the faults in the rotor current sensor are intro-

duced (the last row of the Table). This improvement is more

significant for the Test − set3, which contains patterns of f7,

f8, f9. This is due to high correlation of their corresponding

residuals in the raw residual sets.

The final row of the Table shows a performance of

100% for all test-sets that cannot be achieved without pre-

processing by all means. The reason for the slight improve-

ment in the other cases is two-fold:

(a) It is mostly due to the fact that the patterns of tran-

sients corresponding to changes in operating conditions are

assigned to the fault-free class, whereas their signature

trends are very similar to those of the faulty scenarios. Since

the data are randomly drawn into train and test sets, some

of the classifiers are not trained with the patterns of tran-

sients or have seen only few of them during their training,

whereas there exists a large number of transient patterns

in the corresponding test-set and thus they are doomed to

misclassify these patterns (all the entries below the main di-

agonal in the Table including the main diagonal entries).

(b) There is not any improvement on the patterns of un-

seen class, i.e., patterns of a new class of fault on which they

have not been trained (all the entries above the main diago-

nal in the Table).

Figure 7 presents class-specific performances, with respect

to the combined Test − set1+2+3 at the end of each training ses-

sion TSK , where the current residual data SK is merely used to

train TK fault classifiers (without access to previously learned

datasets). K is the number of residual datasets ‘3’ introduced

to the DWE and TK stands for the number of MLP classifiers

‘10’ added to the ensemble for each residual dataset SK .

The first three boxes in the left side belong to the training

sessions without pre-processing (i.e., raw residuals) and the last

three boxes in the right side belong to the training session with

pre-processing (i.e., with latent residuals).

In both methods, by moving from TS 1 to TS 2 more classes

of faults are correctly classified since TS 2 and TS 3 have seen

more classes during the training.

During the first training session TS 1, the first ten MLP clas-

sifiers are merely trained on Train − set1 and, thus, they are

doomed to misclassify the patterns of class f4 to f9 (see the six

zeros corresponding to the first box, TS 1). The patterns of the

first three faults ( f1, f2, f3) are correctly classified with high

performances: 94.7%, 92.1% and 97.3%, respectively.

The classification performance with respect to the patterns of

fault-free f f is 100%, since the f f patterns in the Train − set1

include normal status in addition to patterns of transient due to

changes in operating conditions.

Here, some patterns of transients are included in Train− set1

and used during the first training session TS 1, thus the classifi-

cation performance of the first ten classifiers with respect to the

f f fraction of the combined Test − set1+2+3 is 100%.

The second box corresponds to the second training session

TS 2 and shows that the number of correctly classified faults are

increased (i.e., the classification performances with respect to

f1 to f6 are high), however the second ten classifiers misclassify

the patterns of f7 to f9.
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Figure 7: Box plots representing the distribution of class-specific performances

(%) with respect to the patterns of the Test − set1+2+3 in different training ses-

sions. The vertical line ‘red dash’ splits the training sessions, left boxes corre-

spond to the method without latent residuals and right boxes correspond to the

proposed method with latent residuals. Solid circles represent the distribution

of class-specific performances in each training session. The red dashes stand

for maximum and minimum performance values and the solid squares denote

the average performance in each training session. The red crosses stand for 1

and 99 percentiles of the performance values.

Besides, the patterns of transients are not seen during the sec-

ond training session, thus the performance of TS 2 with respect

to the f f fraction of the combined Test − set1+2+3 is decreased

to 21%.

The third box TS 3 shows that the classification performances

with respect to all classes of faults are high since the last ten

classifiers are trained on Train − set3, which includes the pat-

terns of all faulty classes. The classification performances with

respect to almost all classes are high, ≻ 95%, however the clas-

sification performances with respect to f f and f8 are 84.2%.

The former is due to the fact that only few transient patterns

are used for training in the last session and, consequently, the

performance of TS 3 with respect to the f f class of the com-

bined Test − set1+2+3 is slightly better.

The same interpretation is valid for the next three boxes in

the Figure 7, that correspond to the training sessions TSK in the

proposed method, which include pre-processing (latent residu-

als).

The pair wise comparison between the first and second train-

ing sessions of each method, boxes (1,4) and (2,5), shows the

same distribution of classification performances. Moreover, it

shows that the performances achieved by the proposed method

is slightly increased during the TS 1 and TS 2.

This improvement is significant for the last training session

TS 3, boxes (3,6), where the performances are improved about

3% on average. This is due to the high correlation between the

residual vectors corresponding to the faults in the rotor current

sensors ( f7, f8, f9).

4.4. Validation of the diagnostic system

The robustness of the diagnostic scheme with respect to wind

speed fluctuations is studied in (Razavi-Far & Kinnaert, 2013).

A realistic wind speed sequence has been used to generate the

voltage, current and generator speed signals that enter the fault

diagnosis system. This wind sequence is characterized by an

average wind speed equal to 9.17 m/s and a turbulence intensity

equal to 6.7%.

The simulation lasts for 20s; the first 11s correspond to nor-

mal mode f f and then a step-like fault appears at t = 11s and

disappears at t = 12s in the measurement of ir−b (correspond-

ing to f8). The fault has a magnitude of 5% of the rated rotor

current (peak value). The second step-like fault is injected for a

time interval between t = 14s and t = 15s in the measurement

of us−a (corresponding to f1). This fault also has a magnitude of

5% of the rated stator voltage (peak value). Lastly, a step-like

fault appears at time t = 18.5s and disappears at t = 19.5s in

the measurement of is−c (corresponding to f6). The last fault

has a magnitude of 5% of the rated stator current (peak value).

This scenario is presented in Figure 8 along with the wind speed

sequence.
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Figure 8: The wind speed sequence (left vertical axis) and the simulated

faulty scenario (right vertical axis).

The test scenario S c containing the raw residuals are firstly

predicted by the preserved PCA models in the pre-processing

module to generate different sets of latent residuals (S c1, S c2,

S c3). Each set of latent residuals S c1 (S c2) (S c3) is fed to the

corresponding member of the ensemble E1 (E2) (E3). The ag-

gregated outcome of the base classifiers in the ensembles cor-

rectly classifies most of the patterns associated to the different

classes during the considered scenario except some chattering

in the output and misclassification due to unexpected fluctua-

tions in residuals that have not been seen during the training

sessions.

The missed alarm rate is equal to zero and false alarm rate is

3.43%. The percentage of the missed and false alarms shows a

satisfactory generalization performance of the dynamic weight-

ing ensemble of fault classifiers with respect to the test patterns

11



Table 4: Missing data pattern in the incomplete scenario.

r1 r2 r3 r4 r5 r6 r7 r8 r9

r1,1 r1,2 r2,1 r2,2 r3,1 r3,2 r4,1 r4,2 r5,1 r5,2 r6,1 r6,2 r7,1 r7,2 r8,1 r8,2 r9,1 r9,2

9250

250

250

250

10000 0 0 250 250 250 250 250 250 250 250 0 0 250 250 0 0 250 250

of the wind sequence. The obtained results by means of the

proposed pre-processing module show a significant reduction

of false alarm rate, of 3.78% compared to the preceding work

(Razavi-Far & Kinnaert, 2013) without pre-processing (i.e., the

false alarm rate was 7.21%).

4.4.1. Incomplete scenario

The decision module relies on the trained ensembles using

residual data, which is extremely dependent on data collection,

storage and analysis. The collected residual data often have

missing data due to disconnections, transient failures in the sen-

sors, etc.

Sensors are subject to different risks and occasional failures

due to wear and tear, severe environmental conditions (e.g.,

covered in water or snow) or exposure to physical damage;

causing a sudden temporary failure until being replaced. Ad-

ditionally, usually sensors rely on batteries, and are inaccessi-

ble during operation runtimes. Under such circumstances, it is

possible to have miss reading from some sensors in different

time intervals. This generally implies significant reduction in

the diagnostic performance, since the base classifiers of the en-

sembles are doomed to classify the missing data, i.e., patterns

with one or more missing features. Concurrently, the diagnostic

system needs to operate continuously and make decisions on-

line without drastic reduction in the classification performance

due to temporary missing sensor readings.

To analyze the performance of the diagnostic system in the

presence of the missing data, an incomplete scenario has been

simulated. To form the incomplete scenario, the previous faulty

scenario (see Figure 8) has been simulated for 20s, but it is

assumed that the sensor reading that measures the ir−b (us−a)

(is−c) is missing in the second half of the corresponding faulty

interval, i.e., from t = 11.5s (14.5s) (19s) to t = 12s (15s)

(19.5s).

Any failure in a sensor reading leads to missing data in the

four corresponding residual vectors due to mutual relations be-

tween the sensor measurements and residual vectors (Razavi-

Far & Kinnaert, 2013). For instance, failure in sensor reading

of the us−a leads to missing data in r2 and r3 (i.e., corresponding

residual vectors r2,1, r2,2, r3,1, r3,2).

Thus, the imposed failures in sensor reading induce a miss-

ingness in the residual data, and form 250 monotone missing

patterns and 500 non-monotone missing patterns in the simu-

lated scenario.

Table 4 illustrates the missing data pattern in the incomplete

scenario. The grey squares represents the missing values. The

incomplete scenario contains 10000 patterns (the left most col-

umn in the last row), and Table 4 presents the missing data pat-

terns into the minimum number of rows possible. Thus, the

10000 rows of the data patterns are collapsed into 4 main rows

(rows 3 to 6 in the Table). The last row of the Table presents

the number of missing data of each residual vector in the sce-

nario. For instance, the residual vector of r2,1 has been missed

in 250 patterns. The number of the complete patterns is 9250

(the third row of the Table). The 4th (5th) (6th) row shows a pat-

tern where the residual vectors of r7,1, r7,2, r9,1, r9,2 (r2,1, r2,2,

r3,1, r3,2) (r4,1, r4,2, r5,1, r5,2) are missing together and this type

of missing data patterns occurs 250 (250) (250) times in the

incomplete scenario, as can be seen from the left most column.

The incomplete set of residuals S c cannot be fed to the dy-

namic weighing ensemble, since the base classifiers of the en-

sembles are not able to handle the missing data in S c. Thus, the

preceding diagnostic scheme in (Razavi-Far & Kinnaert, 2013)

fails to classify the incomplete scenario S c.

One alternative is to discard the incoming patterns that con-

tain missing values (I) which leads to a very rapid deterioration

of the performance, since there will be no classification for con-

tinuous periods of time.

Another remedy is to impute, the missing data by the mean

value of the missing feature (II) which is a popular and fast tech-

nique for online applications. Data imputation techniques

have been extensively used in different applications and of-

fer an imperative avenue for future research in fault diag-

nosis under missing data assumption. However, the iterative

multiple imputation techniques are computationally expen-

sive and further research is needed to prove their efficiency

for online monitoring applications.

Here, the pre-processing module projects the incomplete sce-

nario (i.e., the raw residuals S c with missing data) to complete

sets of latent residuals (S c1, S c2, S c3), due to the inherent ca-

pability of the NIPALS algorithm in handling the missing data

(see Section 3.3). Then, the complete sets of latent residuals

S c1, S c2, S c3 are fed to their corresponding member of the en-

semble E1, E2, E3, respectively, for fault classification purposes

(III). Figure 9 shows the class-specific performances, with re-
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spect to the faulty scenario, achieved by each technique (I, II,

III).
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Figure 9: Class-specific performance comparison on the faulty scenario S c.

The obtained results show a good classification performance

on the fault-free class, since all the patterns of the f f class

are complete (i.e., no missing feature in the f f class patterns).

However, the proposed method (III) outperforms other two

techniques, with more than 5% of improvement.

Method (I) has the lowest performance (50%) for the faulty

classes since the missing data are totally discarded. The pro-

posed method (III) significantly improves the classification per-

formance for the faulty classes in the stator voltage and the ro-

tor current and outperforms the mean imputation method (II)

by about 3% and 7%, respectively. However, the classification

performance with respect to the faults in the stator current is not

improved.

The classification performance achieved by the methods I,

II, III, with respect to all patterns of the test scenario (including

missing patterns), are 84%, 86%, 91%, respectively. Thus, the

proposed method not only can improve the classification accu-

racy when all the patterns are available, but also when readings

from some sensors are missing for continuous periods of time.

The computational time needed by the pre-processing

methods (i.e., down-sampling, discarding, mean imputa-

tion, and the Wold cross-validation NIPALS algorithm) is

small and can be ignored.

The main difference is in the training of the diagnostic

classifier and incremental update of the ensemble. All of the

pre-processing methods except the Wold cross-validation

NIPALS algorithm provide a full set of residual vectors for

the dynamic weighting ensemble of fault classifiers, while

the Wold cross-validation extract the latent residuals (i.e.,

less number of features) and, thus, the computational time

to train the TK MLP base classifiers of the dynamic weight-

ing ensemble is reduced about 7 minutes.

5. Conclusions

This paper has proposed an efficient pre-processing

method to generate the latent residuals for the diagnosis of

new classes of faults in the controlled DFIG sensors. The

proposed scheme has been validated on a three-phase sim-

ulation and the generated residuals by means of multiple

observers are successively collected in different batches by

performing each step of the simulation. These residuals cor-

respond to the stator voltage, current and rotor current sen-

sors. Each set of raw residual data contains patterns of new

classes of faults, i.e., unseen classes in the previous datasets.

The raw residual datasets are firstly processed by the

Wold cross-validation NIPALS algorithm, which estimates

the optimal number of principal components, in order to

extract the latent information among the residuals and re-

duce the feature space. Consequently, the fault classifica-

tion module, which is a Dynamic Weighting Ensemble al-

gorithm, incrementally learns the latent residuals-faults re-

lations, dynamically adjusts the voting weights of the base

classifiers and diagnoses the faults including multiple new

classes.

The novelty of the work stands in improving the fault

classification performance and decision making under miss-

ing data assumption. The Wold cross-validation NIPALS

algorithm is fast and suitable for online application, it ex-

tracts the latent residuals from the raw residual datasets,

and it handles the missing data. The proposed pre-

processing module projects the raw residuals onto the new

feature space of a smaller size, i.e., latent residuals, and it

preserves the constructed PCA models to project any up-

coming test patterns onto the pattern with the same number

of features for the corresponding member of the ensemble.

The attained results on three-phase simulation show that

the pre-processing module improves the fault classifica-

tion performance by extracting informative latent residu-

als. This improvement is substantial for the faults in the

rotor current sensors, where there exists a high correlation

between their corresponding residual vectors.

Moreover, the computational time is reduced, which is a

vital factor in online monitoring systems. This fast online

training and incremental update is due to the use of train-

ing sets of smaller sizes (i.e., set of latent residuals which

includes fewer number of features).

More importantly, the Wold cross-validation NIPALS al-

gorithm can handle the missing data and it allows the diag-

nosis of missing patterns in the incomplete scenarios and,

thus, the decision module significantly outperforms diag-

nostic schemes which discards or substitutes the missing

patterns with the mean values.

Since missing data are inevitable, there is a need for fur-

ther study and implementation of accurate and fast data

imputation techniques for online monitoring and fault diag-

nosis applications. Moreover, iterative multiple imputation

techniques create several values for each missing data. The

uncertainties and confidence intervals of the imputed vari-

ables can control the diversity in the ensemble learning and

13



improve the classification performance, which looks to be a

valuable direction for future research.
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Appendix A. The NIPALS and Wold cross-validation algo-

rithms:

For the completeness of the paper, the pseudo-codes of the

NIPALS algorithm without missing values, the NIPALS al-

gorithm with missing values, and the Wold cross-validation

algorithm are presented in Algorithms 1, 2, and Figure

A.10, respectively.
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Update the convergence parameters

it ← it + 1

λk−1 ← λk
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Inputs: X, k=0, Γ=7

1. Calculate the initial residual sum of squares that is the sum of squared deviations from the origin:

RSS(0) =

m
∑

i=1

n
∑

j=1

(

xi j − x̄
)2
, where x̄ =

m
∑

i=1

n
∑

j=1

xi j

mn

2. Split X randomly into Γ groups of the same size (row-wise)

3. Do for γ = 1, 2, ..., Γ

3.1. Delete the γ−th group of rows Eγ, to form a reduced
[

m̃γ × n
]

matrix X̃γ and compute α̃ j =
∑m̃γ

i=1:xi j∈X̃γ
xi j/m̃γ

3.2. Calculate the prediction errors as the differences between α̃ j and the left-out elements of Eγ, to form the

predictive residual sum of squares: PRESSγ(0) =
∑

i, j:xi j∈Eγ

(

xi j − α̃ j

)2

End do

4. Compute the total PRESS(0) by adding the partial prediction errors: PRESS(0) =
∑Γ
γ=1 PRESSγ(0)

5. Calculate the ratio R(0) = PRESS(0)/RSS(0). The predictions are improved if R(0) < 1

6. Form the initial residual matrix of size m × n:

Ẽ0 =















[

ẽ0
i j

]

if R(0) ≤ 1 where ẽ0
i j
= xi j − α̂ j = xi j −

∑m
i=1

xi j

m

X if R(0) ≻ 1

7. k = k + 1

8. Compute the residual sum of squares, RSS(k) =
∑m

i=1

∑n
j=1

(

ẽk−1
i j

)2

9. Split the residual matrix Ẽk−1 =
[

ẽk−1
i j

]

into Γ groups through a cancellation matrix in a diagonal scheme

10. Do for the left-out group γ = 1, 2, ..., Γ

10.1. Delete the γ− th sequence of the elements {γ, γ + Γ, γ + 2Γ, etc} of the matrix Ẽk−1, to form a cancellation

matrix Eγ that holds only the left-out elements. The Ẽk−1
γ includes all elements except the left-out ones

10.2. Assign proper values ‘zeros’ to the left-out elements of Ẽk−1
γ and form the incidence matrix for NIPALS

10.3. Estimate the next principal component t̃
γ

ik
and p̃

γ

jk
by fitting a model to Ẽk−1

γ with the NIPALS algorithm

10.4. Predict the model of the cancellation matrix using the component: t̃
γ

ik
p̃
γ

jk

10.5. Calculate the prediction errors as the difference between the elements of the cancellation matrix Eγ and

the predicted model t̃
γ

ik
p̃
γ

jk
. The partial predictive residual sum of squares can be calculated as follows:

PRESSγ(k) =
∑∑

i, j:ẽk−1
i j
∈Eγ

(

ẽk−1
i j
− t̃

γ

ik
p̃
γ

jk

)2

End do

11. Compute the total PRESS(k) =
∑Γ
γ=1 PRESSγ(k) and the ratio R(k) = PRESS(k)/RSS(k)

12. Check whether or not the inclusion of the (k − th) component in the model improves the prediction errors:















if R(k) ≤ 1 proceed to step 13

if R(k) ≻ 1 return the appropriate number of components k − 1 and stop

13. Call the NIPALS algorithm to fit a PCA model to the complete matrix Ẽk−1 with one component t̂
γ

ik
and p̂

γ

jk

14. Deflate the component from the model to determine the residual variation Ẽk =
[

ẽk−1
i j
− t̂

γ

ik
p̂
γ

jk

]

m×n

15. Go back to step (7)

Figure A.10: The pseudo-code for the Wold cross-validation algorithm (Wold, 1978).
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