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Sensor fault detection and diagnosis using zonotopic set-membership
estimation

S. Ben Chabane, C. Stoica Maniu, T. Alamo, E.F. Camacho, D. Dumur

Abstract— This paper proposes new sensor fault detection
algorithms for linear discrete-time systems with bounded
perturbations and bounded measurement noise. This fault
detection technique is based on a zonotopic set-membership
estimation method. The first proposed fault detection algorithm
allows to detect the presence of a fault. A second algorithm
leading to guaranteed state estimation in the presence of sensor
faults is developed, sometimes leading to conservative results.
Thereafter, the last proposed algorithm allows to reduce the
conservativeness while offering an estimation of the state closer
to the real state of the faulty system. An illustrative example is
analyzed to show the performance of the proposed algorithms.

Index Terms— Fault detection, set-membership estimation,
zonotopes, bounded perturbation, bounded measurement noise.

I. INTRODUCTION

Fault Tolerant Control is a relatively new research area that
makes possible the development of control laws which allow
to maintain current performance close to desirable objectives
in the presence of faults. This aims at developing model-
based Fault Detection (FD) algorithms. Usually, the models
are represented by adding a fault signal to the faultless
model. This fault signal is equal to zero in the fault-free case
and it takes non-zero values when a faulty situation occurs.
Generally, model-based fault detection algorithms consist
in comparing the behaviour of the process and its model
when both are fed with the same inputs. Fault detection
algorithms check the consistency between measurements and
the faultless model.

In the literature, there are two classes of fault detection
approaches: active and passive. The active approach is based
on generating insensitive residuals with respect to uncer-
tainties but sensitive to faults [1]. The passive approach
determines if there is consistency between the model and the
measurement [2]. Set-membership estimation approaches [3],
[4] are largely used in this class of fault detection methods.
Passive fault detection algorithms are applied to test the
consistency [5] both in the parameter space [6], [7], [8], and
in the state-space [9], [10], [11], [12], [13], [14].

This paper proposes a new passive sensor fault detection
algorithm in state-space, based on the zonotopic estimation
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method described in [15]. This estimation method based
on the off-line minimization of the P-radius of a zonotope
has two steps: the prediction step and the correction step.
However, applying the zonotopic estimation method [15] in
the context of faulty systems does not guarantee the state
estimation when a fault has occurred. In order to overcome
this situation, a new fault detection algorithm based on the
zonotopic state estimation [15] is further proposed. This
algorithm leads to guaranteed estimation despite the presence
of sensor faults. During the presence of the faults, the idea is
to use only the state estimation given by the prediction step
of the estimation procedure [15]. In the absence of faults,
the two steps (prediction and correction) of the zonotopic
set-membership estimation [15] are applied. This procedure
leads to guaranteed but conservative estimation. In order to
overcome this inconvenient, in the context of faulty systems,
a preliminary calibration of the measurements is proposed
by centering the measurements relatively to the prediction
zonotope. After the measurement calibration, the zonotopic
P-radius minimization estimation method [15] is applied.
This allows to decrease the conservativeness of the proposed
estimation technique in a faulty context and decreasing the
distance to the real state, when faults are present.

The remainder of the paper is organized as follows.
Section II presents useful mathematical notations and basic
definitions. Section III formulates the problem of sensor
fault detection in the context of systems with bounded dis-
turbances and bounded measurement noise. The estimation
method used in the fault-free case is briefly presented in
Section IV. Section V details the proposed fault detection
algorithms applied to the faulty system and some comments
on the sensitivity of these algorithms to detect sensors
faults. Section VI proposes an illustrative example which
allows to compare the results obtained by the different fault
detection algorithms. Finally, some concluding remarks and
perspectives are drawn in Section VII.

II. MATHEMATICAL NOTATIONS, DEFINITIONS AND
PROPERTIES

The Minkovsky sum of two sets A and B is defined by
A⊕ B = {a+ b : a ∈ A, b ∈ B}.

The unitary interval is defined by B = [−1, 1]. A unitary
box in Rm, denoted by Bm, is a box composed by m unitary
intervals.

A strip is defined as S(y, c, σ) = {x ∈ Rn : |c>x− y| ≤
σ}.

An m-zonotope in Rn is defined by Z = {x ∈ Rn :
x = p + Hz, z ∈ Bm}, where p ∈ Rn is the center of the



zonotope, H ∈ Rn×m is the shape matrix and Bm is a box
(interval vector) composed by m unitary intervals. This is the
Minkovsky sum of the m segments defined as m columns
of matrix H in Rn.

The P-radius of an m-zonotope Z is a distance d(x) =
max
x∈Z
‖x− p‖2P , with P = P> � 0.

Given an m-zonotope Z and a vector c ∈ Rn, the zonotope
support strip is defined by FS = {x ∈ Rn : ql ≤ c>x ≤ qu},
where the upper bound qu and the lower bound ql satisfy:{

qu = max
x∈Z

c>x

ql = min
x∈Z

c>x
(1)

and can be calculated as follows:

qu = c>p+ ‖H>c‖1 (2)

ql = c>p− ‖H>c‖1 (3)

where ‖.‖1 is the 1-norm of a vector.
Property 1 [16]: The intersection between the zonotope

Z = p⊕HBm and the strip S(y, c, σ) is empty if and only
if:

qu < y − σ or ql > y + σ. (4)

Property 2 [17]: The Minkovsky sum of two zonotopes
Z1 = p1 ⊕H1Bm1 ⊆ Rn and Z2 = p2 ⊕H2Bm2 ⊆ Rn is
also a zonotope, defined by Z = Z1 ⊕ Z2 = (p1 + p2) ⊕[
H1 H2

]
Bm1+m2 .

Property 3 [17]: Given a zonotope Z = p ⊕HBm and a
matrix A ∈ Rn×n, then the linear transformation of Z by
the matrix A is AZ = (Ap)⊕ (AH)Bm.

Property 4 [18]: Consider a zonotope Z = p ⊕ HBm,
a strip S(y, c, σ) = {x ∈ Rn : |c>x − y| ≤ σ} and the
vector λ ∈ Rn. Then, a family of zonotopes which is an
outer approximation of the intersection between a zonotope
Z and a strip S is obtained by Z ∩ S ⊆ Ẑ(λ) = p̂(λ) ⊕
Ĥ(λ)Bm+1 such that p̂(λ) = p + λ(y − c>p) and Ĥ(λ) =[
(I − λc>)H σλ

]
.

III. PROBLEM STATEMENT

This section focuses on the problem formulation in the
case of faulty systems with bounded perturbations and
noises.

Consider the following Linear Time Invariant (LTI)
discrete-time system with the state and measurement equa-
tions: {

xk+1 = Axk + Fωk
yk = c>xk + σvk + fyk

(5)

where xk ∈ Rn is the state vector, yk ∈ R is the
measurement, ωk ∈ Rn is the state perturbation vector and
vk ∈ R represents the measurement noise. A, c, F and σ
have the appropriate dimensions, with the assumption that
the pair (c>, A) is detectable. It is assumed that the initial
state x0 belongs to the m-zonotope Z = p0 ⊕ H0Bm and
the perturbations and measurement noise are bounded by
compact sets: ωk ∈ Bn and vk ∈ B. The scalar fyk is the
sensor fault signal added to the measurement output which

is equal to zero in the fault-free case and takes a non-zero
value in the presence of faults.

Using the zonotopic set-membership state estimation
method presented in [15], the objective is to obtain a state
estimation in the presence of abrupt sensors faults.

In this paper, two cases will be considered: fault-free
systems and faulty systems.

IV. ZONOTOPIC SET-MEMBERSHIP STATE ESTIMATION
IN THE FAULT-FREE CASE

This section briefly describes the zonotopic guaranteed
state estimation approach [15] for the system (5) in the fault-
free case. This estimation method based on the non-increase
of the P -radius of a zonotope at each iteration allows to
manage the trade-off between low computational complexity
and accuracy of the estimation. This estimation approach
is suitable for the fault-free case. In this approach, it is
assumed that xk−1 ∈ Ẑk−1 = p̂k−1⊕ Ĥk−1Br, where Ẑk−1
is the zonotopic estimation at time k−1. The objective is to
compute the zonotope Ẑk that contains xk at time k. To do
this, two steps are considered:

1) Prediction step: Using Properties 2 and 3 for system
(5), the predicted zonotope Z̄k is determined as:

Z̄k = Ap̂k−1 ⊕
[
AĤk−1 F

]
Br+n. (6)

2) Correction step: Using Property 4, the guaranteed
state estimation at time k is the outer approximation of
the intersection between the predicted state set Z̄k and
the measurement strip S, i.e. Z̄k ∩ S(yk, c, σ). The strip
S(yk, c, σ) is obtained using the output measurement at time
k according to the following equation:

S(yk, c, σ) = {x ∈ Rn : |c>x− yk| ≤ σ}. (7)

This outer approximation is parametrized by the vector λ ∈
Rn, leading to the following family of zonotopes [15]:

Ẑk(λ) = p̂k(λ)⊕ Ĥk(λ)Br+n+1 (8)

with{
p̂k(λ) = Ap̂k−1 + λ

(
yk − c>Ap̂k−1

)
Ĥk(λ) =

[(
I − λc>

)
AĤk−1

(
I − λc>

)
F σλ

]
(9)

Using the zonotope reduction property [17], it is possible
to set the zonotope complexity of Ẑk(λ) by imposing the
number of its segments.

The vector λ is then determined in order to minimize
the P-radius of the zonotope Ẑk at each sample time. The
solution (see [15] for more details) is found by minimizing
the scalar β ∈ (0, 1) using the bisection algorithm and off-
line solving the following Linear Matrix Inequality (LMI)
optimization problem:

max
τ,P,β,Y

τ



subject to

0 ≤ β < 1
(1−β)P
σ2+const � τI
βP 0 0 A>P −AcY >
∗ F>F 0 F>P − F>cY >
∗ ∗ σ2 Y >σ
∗ ∗ ∗ P

 � 0

(10)

with const = max
ω∈Bn

‖Fω‖22 and Y = Pλ.
This method offers good accuracy of the estimation

bounds with small computation time. It allows to estimate the
state of the system (5) in the fault-free case. The objective is
to use a similar estimation method to detect the fault when
it has occurred and try to obtain a good estimation despite
the presence of sensor faults.

V. FAULT DETECTION BASED ON ZONOTOPIC
SET-MEMBERSHIP STATE ESTIMATION

Model-based fault detection of dynamic processes is based
on the use of the model (state equation) to check the con-
sistency of the observed behaviour (measurement equation).
In the case of the model (5), the idea is to check the
consistency between the prediction zonotope (Z̄k) and the
set of measurements S(yk, c, σ). Using the definition of the
zonotope support strip and Property 1, a fault has occurred
if the set Z̄k ∩ S(yk, c, σ) is empty. In other words, a fault
has occurred if the equation (4) holds. In the fault-free case,
the zonotopic estimation method [15] is used.

Algorithm 1 provides a general conceptual form of the
fault detection strategy based on checking consistency be-
tween the model and the measurement. The idea of this
algorithm is the following. At each time instant k the predic-
tion zonotope Z̄k is built according to (6). Using the output
measurement obtained from the sensor, the strip S(yk, c, σ)
is also built according to (7). Then, the consistency between
the predicted zonotopic state estimation and the measurement
strip is checked. If the consistency is proved, the P-radius
minimization method is used to compute the intersection
between the predicted zonotopic state estimation and the
measurement strip according to (8), (9) and (10). Otherwise,
if the intersection between the predicted zonotopic state
estimation Z̄k and the measurement strip is empty according
to (4), a fault is considered to be present.

Algorithm 1. FD using consistency test

1. k ← 0
2. Z0 ← p0 ⊕H0Bm
3. for k = 1 : N
4. Compute the predicted zonotope Z̄k according to

the equation (6). Use the output measurement yk,
i.e. the strip S(yk, c, σ) according to (7).

5. if Z̄k ∩ S(yk, c, σ) = ∅
6. Indicate fault.
7. else
8. Compute the zonotope Ẑk that fulfills

Z̄k ∩ S(yk, c, σ) according to equations

(8), (9) and (10)
9. end if
10. k ← k + 1
11. end for.

Here N is the length of the simulation time, p0 and H0

denote the initial state zonotope (which is sufficiently large).
The objective is now to find a solution to estimate the state

of the system when the fault has occurred in the step 6 of
Algorithm 1. Two solutions will be further discussed.

A. Fault Detection using only the prediction step

The goal is to obtain a guaranteed estimation in the
presence of a fault. The idea is to improve Algorithm 1
when a fault has occurred. It consists in using just the
prediction zonotope if an inconsistency is detected. In the
faulty situation, the measurement strip is not considered and
the estimation zonotope will not be changed at the correction
step. After the sensor recovery, both the prediction and
correction steps are used in order to estimate the state, using
equations (8), (9) and (10). Algorithm 2 presents this idea.

Algorithm 2. FD using only the prediction step

1. k ← 0
2. Z0 ← p0 ⊕H0Bm
3. for k = 1 : N
4. Compute the zonotope Z̄k according to the equation

(6). Use the output measurement yk, i.e.
the strip S(yk, c, σ) according to the equation (7)

5. if Z̄k ∩ S(yk, c, σ) = ∅
6. Indicate fault
7. Ẑk = Z̄k
8. else
9. Compute the zonotope Ẑk that fulfills

Z̄k ∩ S(yk, c, σ) according to equations
(8), (9) and (10)

10. end if
11. k ← k + 1
12. end for

This gives a guaranteed state estimation but the estimation
accuracy could deteriorate.

In order to increase accuracy, a calibration of the measure-
ment is proposed in the next subsection.

B. Calibration of the measurement strip

The goal is to get a good estimation which is closer to the
real state when a fault is detected. It consists in shifting the
measurement strip S(yk, c, σ) (e.g. the blue strip in Fig. 1)
to the center of the predicted zonotope Z̄k (e.g. the red strip
in Fig. 1). Assume that qu < yk − σ (see the blue strip in
Fig. 1) according to the condition of inconsistency (4). The
idea is to calibrate the output measurement yk as follows:

yk ← yk − d1 −
d2
2
− σ =

qu + ql
2

(11)



where d1 = yk − qu − σ and d2 = qu − ql. If the condition
of inconsistency ql > yk + σ (see the green strip in Fig. 1)
holds in (4), the output measurement is calibrated as follows:

yk ← yk + d3 +
d2
2

+ σ =
qu + ql

2
(12)

where d3 = ql − yk − σ.
The new obtained strip is the dotted red strip (see Fig.

1). After this calibration, the zonotopic state estimation is
computed using the P-radius minimization approach pre-
sented in Section IV. When there is no fault, the method of
state estimation based on the P-radius minimization method
presented in Section IV is applied. In a faulty situation,
Algorithm 3 provides a solution.

Algorithm 3. FD with measurement calibration

1. k ← 0
2. Z0 ← p0 ⊕H0Bm
3. for k = 1 : N
4. Compute the zonotope Z̄k according to the equation

(6). Use the output measurement yk, i.e.
the strip S(yk, c, σ) according to the equation (7)

5. if Z̄k ∩ S(yk, c, σ) = ∅
6. Indicate fault
7. if (qu < yk − σ) or (ql > yk + σ)

8. yk ←
qu + ql

2
9. end if
10. end if
11. Compute the zonotope Ẑk that fulfills

Z̄k ∩ S(yk, c, σ) according to (8), (9) and (10)
12. k ← k + 1
13. end for

Fig. 1. Measurement calibration

Consider that the real state estimation xk belongs to the
prediction zonotope Z̄k but it is outside the measurement
strip (i.e. the dotted red strip in Fig. 1). In this case,
Algorithm 3 does not guarantee the state estimation, but it
still offers an estimation closer to the real state than the one
obtained using Algorithm 2. This can be suitable for control
perspectives.

C. Fault sensitivity of the proposed algorithms
Sensitivity toward faults is an important charateristic of

fault detection algorithms. The minimum abrupt fault that
will be detected by the proposed algorithms for the output
sensor fault fyk has to be determined.
The two cases of inconsistency (see equation (4)) are con-
sidered. The first case is when the following equation holds:

qu < yk − σ. (13)

Substituting qu from (2) and yk from (5), the following
equation is obtained:

c>p̂k + ‖Ĥ>k c‖1 ≤ c>xk + σvk + fyk − σ. (14)

Assuming the worst-case with positive transition in fyk of
xk ∈ Ẑk(λ) and vk ∈ B by minimizing c>xk, i.e. using
(3), and minimizing σvk, i.e. vk = −1, the condition of the
magnitude of fyk is obtained as:

c>p̂k + ‖Ĥ>k c‖1 ≤ c>p̂k − ‖Ĥ>k c‖1 − σ + fyk − σ, (15)

which is equivalent to:

fyk ≥ 2σ + 2‖Ĥ>k c‖1. (16)

The condition (16) means that the sensor fault is detected
when its positive transition is greater than 2σ + 2‖H>c‖1.
The second case of inconsistency occurs when the following
equation holds:

ql > yk + σ. (17)

Substituting qu from (3) and yk from (5), the following
equation is obtained:

c>p̂k − ‖Ĥ>k c‖1 ≥ c>xk + σvk + fyk + σ. (18)

Assuming the worst-case with negative transition in fyk of
xk ∈ Ẑk(λ) and vk ∈ B by maximizing c>xk, i.e. using
(2), and maximizing σvk, i.e. vk = 1, the condition of the
magnitude of fyk is obtained as:

c>p̂k − ‖Ĥ>k c‖1 ≥ c>p̂k + ‖Ĥ>k c‖1 + σ + fyk + σ, (19)

which is equivalent to:

fyk ≤ −2σ − 2‖Ĥ>k c‖1. (20)

The condition (20) means that the sensor fault is detected
when its negative transition is smaller than 2σ + 2‖H>c‖1.

Summarizing, the abrupt sensor fault is detected when:

|fyk | ≥ 2σ + 2‖Ĥ>k c‖1. (21)

An example where the abrupt fault is taken equal to 2σ is
considered in Fig. 2. Here the fault is not detected, i.e. the
intersection between the predicted black 20-zonotope and
the measurement strip (in blue) is not empty in spite of
the fact that the real state is outside the measurement strip.
This figure illustrates that the red zonotope computed using
the P-radius-based estimation method can contain the real
state and in the worst-case it will be closer to the real state.
Improving the sensitivity of the fault detection algorithm will
be addressed in future work.

In the next section, an illustrative example showing the
performance of Algorithms 2 and 3 is presented.



Fig. 2. Fault detection sensitivity

VI. ILLUSTRATIVE EXAMPLE

Consider the following LTI discrete-time system:
xk+1 =

[
0.8 0.2
−0.5 0.8

]
xk +

[
−0.12
0.02

]
ωk

yk =
[
−2 1

]
xk + 0.2vk + fyk

(22)

with ‖vk‖∞ ≤ 1, ‖ωk‖∞ ≤ 1. The initial state belongs to the
box 3B2. The order of the m-zonotope is limited to m ≤ 20
(number of its segments) in order to have a fast simulation.
The sensor fault fyk is introduced between sample times
k = 30 and k = 40. In this example, the results obtained
by the P-radius minimization method without fault detection
(detailed in Section IV), and with fault detection (Algorithm
2 and Algorithm 3) are analyzed.

Figures 3 and 4 show the bounds of x1 and x2 obtained
by the P-radius minimization method (blue lines). The red
stars represent the real state of the system. These points are
not between the upper bound and the lower bound of the
state estimation when the sensor fault fyk is present.

Fig. 3. Bounds on x1 using the P-radius minimization method

Figure 5 shows the detection of the fault during the
estimation via Algorithm 2. The fault occurred when the
signal is equal to 1 and equal to 0 otherwise. Figures 6 and 7
show the bounds of xk obtained by Algorithm 2 (blue lines).
The red stars represent the real state of the system. These
points are between the upper and lower bounds of xk. The
reader can observe that when the fault is present (k = 30 to
k = 40), the estimated bounds are increased. This is due to

Fig. 4. Bounds on x2 using the P-radius minimization method

the omission of the correction step in the estimation method
(i.e. only the prediction step is used in Algorithm 2).

Fig. 5. Fault detection signal using Algorithm 2 (step 6)

The result of fault detection via Algorithm 3 is the same
as the result obtained by Algorithm 2 as shown in Fig. 5.

Figures 8 and 9 show the bounds of xk obtained via
Algorithm 3 (blue lines). The red stars represent the real state
of the system. The distance between the upper and lower
bounds obtained by Algorithm 3 (Figures 8, 9) is less than
the distance between the upper and lower bounds obtained
by Algorithm 2 (Figures 6, 7). Even if Algorithm 3 does not
guarantee the state estimation bounds in presence of faults,
the results can be less conservative compared to Algorithm 2.
This could make Algorithm 3 more suitable for Fault Tolerant
Control perspectives than Algorithm 2.

VII. CONCLUSION

In this paper, two fault detection algorithms based on
consistency test have been proposed. These algorithms are
based on the P-radius minimization method of the zono-
topic estimation. The first approach (Algorithm 2) gives
a guaranteed but conservative estimation in the presence
of sensor faults. The second approach (Algorithm 3) gives
an estimation method with reduced conservativeness when
faults occur. This algorithm is better than Algorithm 2 to
control perspectives. An example illustrates the performance
of the two algorithms.



Fig. 6. Bounds on x1 using Algorithm 2

Fig. 7. Bounds on x2 using Algorithm 2

Future work will focus on extending this Fault Detection
method to the case of multivariable systems with interval
uncertainties and to apply these algorithms to Fault Tolerant
Control purposes. Considering incipient faults will be also
investigated in future developments.
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