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Abstract—Dictionary based sparse estimators are based on the
matching of continuous parameters of interest to a discretized
sampling grid. Generally, the parameters of interest do not lie on
this grid and there exists an estimator bias even at high Signal to
Noise Ratio (SNR). This is the off-grid problem. In this work, we
propose and study analytical expressions of the Bayesian Mean
Square Error (BMSE) of dictionary based biased estimators at
high SNR. We also show that this class of estimators is efficient
and thus reaches the Bayesian Cramér-Rao Bound (BCRB) at
high SNR. The proposed results are illustrated in the context of
line spectra analysis and several popular sparse estimators are
compared to our closed-form expressions of the BMSE.

I. INTRODUCTION

Sparse and redundant signal representations have recently drawn
much interest in many different applications! as for instance source
localization, line spectra analysis, range/doppler estimation in radar
signal processing etc. The main assumption is that signals of interest
can be sparse or compressible in an overcomplete dictionary [1].
An important problem related to this subject is the off-grid problem
[2], [3]. Indeed, the parameters of interest are continuous and the
dictionary is based on a regularly spaced grid partitioning the
parameter set. Thus, there exists an estimation bias (or quantization
error) even at high Signal to Noise ratio (SNR) resulting from the
fact that the parameters of interest generally do not lie on the grid.
As a consequence, the dictionary based estimator is biased even at
high SNR.

To decrease the estimation bias, a natural solution is to sam-
ple the parameter space more finely at the cost of an increasing
computational complexity and a highly coherent dictionary. Several
algorithms have been proposed to resolve this problem [3], [4] but to
the best of our knowledge, no study gives an analytical expression
of the Bayesian Mean Square Error (BMSE) of dictionary based
biased estimator at high SNR. Thus, in this work we derive analytical
expressions of the BMSE for a regularly spaced dictionary at high
SNR for random parameters of interest. We also propose closed
form expressions of the Bayesian Cramér-Rao Bound (BCRB) [5]
for the considered biased estimator. Finally, we apply our results in
the context of the line spectra analysis and compare our bounds with
the BMSE of several popular estimators.

II. PROBLEM FORMULATION
A. Sparse representation

Consider a known model order M, we are interested in the
problem of estimating an unknown vector of M parameters w =
[w1,wa, -+ ,wam]T given a set of noisy measurements {y:}i_;.
In the dictionary based model estimation approach, the parameter
space noted  is discretized into N parameter samples: @ =
[&)1, o, W N]T. The measurement signal can be represented as a
linear decomposition in a dictionary [6]:
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where e is a white Gaussian noise vector of length 7. a(wn)
is a vector representing the parametric function evaluated at T’
measurement locations [7]. The collection of a(w,) composes the
columns of the overcomplete dictionary A which is a 7' x N matrix,
with N >> T'. We consider a regularly sampled dictionary and note
Vn,r = Wn+1 — Wy the grid spacing, the size of the dictionary N is
directly related to r by
WN — W1

r=N_1 - 2)

If all the actual parameters w,, € @, then «,, are zeros for all
index n except for the index n,, corresponding to @Wn,, = Wm.
The estimation problem is then to find the coefficients of the
decomposition of the measurements in the known dictionary A. The
aim is to estimate the index of the non-zero coefficients, which will
correspond to Wy, .

We divide the parameter set (2 in decision intervals centered
at the elements of the dictionary & = [@1,- - ,G)N]T. We note
Q= QU QU Qy with Q) = [@,01+ %], Qn =
[(:)n — %,a)n + 5] and QN = [(I}N — %,@N]-

T

B. Dictionary based biased estimator in the high SNR regime

In this work, we assume that the RIP (Resctricted Isometry
Property) for sparse estimation is guaranteed [8], this means that
the recovery process is stable in the presence of additive noise. We
further consider the high SNR regime, in which a relevant assumption
to our problem is the following:

Y, I, Ywm € Qn,y Om(y) = @n,, 3)
i.e. in high SNR regime, the noise level is low enough so that the
estimation is given by the closest value in the dictionary.

Note that in the high SNR regime, &, (y) is no longer a random
variable since the dependance on the observation y vanishes and
the choice of &y, (y) is completely driven by the knowledge of the
decision interval Q.. Let b (w) = [b(wy),--- ,b(war)]” be the
bias vector in which b(wm) = E (0m(y)) — Wm = @n,, — Wm 18
the estimation error at high SNR.

C. Bayesian assumptions on the parameters of interest

1) Modelization on the dictionary: In the Bayesian framework,
the vector parameter w is a vector of random variables equipped
with two a priori informations: w i) follows a known prior pdf p(w)
and ii) belongs to the parameter product set 9™ = Q x ... x Q. The
conditional pdf p(w|w € QM) can be rewritten as a truncated joint
pdf according to

p(w)lom (w) (4)

My _
plwlw € Q7) = Pr(w € QM)



Fig. 1. Truncated pdfs and dictionary based biased estiamator

where 1qar (w) is the set indicator function and Pr(w € QM) =
Jom plw)dw.

As the parameters w are assumed to be independent random
variables, we have Pr(w € QM) = [[¥_, PY™ where P("
fQ P(Wim; m)dwp, With p(wm,; m) the prior pdf of w,, whose param-
eters can depend on m (see the black dot line on Fig. 1). Using the
above expression and the fact that the indicator set function is the
product of the indicator functions 1 (wm ), we have

M

p(wlw € QM) = H p(wm|wm € Q) )
m=1

where the distribution of each parameter, knowing the parameter

space is the truncated version over the parameter space of p(wm):

P(wWim; m)1la(wm)
Py

where lo(wm) = 1 if wm € Q and 0 otherwise. This pdf and its
associated normalization factor Psgm) have been drawn on Fig. 1 with
a blue dot line and a blue hatched area, respectively.

2) Modelization on each decision interval: Using the law of total
probabilities, the pdf of the parameters of interest can be decomposed
according to

P(Wm|wm € Q) = (6)

N

>

N =1

P (Wm|wm € Q) = P(m) p(wm|wm € Qn,,) @)

where P(m) fn p(Wm|wm € Qn,,)dwm is the probability
to be in the decision” interval Q,,,,. This pdf and its associated
normalization factor P(m) have been drawn on Fig. 1 with a red
line and a red hatched area respectively.

III. ANALYSIS OF THE BMSE AND THE BCRB
A. Definition of the BMSE
Conditional to the knowledge of the joint pdf p(w) and the

parameter set {2, the BMSE is defined by:

BMSEq = /M Ey (|lo(y)

R

—w|’) plwlw € QM)dw  (8)

where RY =R x ... x R and p(w|w € QM) is given in (4).
B. Analytic expressions of the BMSE at high SNR
Result 1. Assume high SNR and independent parameters of interest
with known pdf p(wn,), the BUSE conditionally to the set Q) is given
by

M N

BMSEQwhigh = Z Z Pf(ZT:T)n E“Jm,‘wm,eQnm, (b(w”n)Z) (9)

m=1ny,=1

Proof: Including expression (5) in definition (8) and the law of
total probabilities given in (7), we can conclude:

BusEL = >0 30 P

m=1nm,=1

/R By (Gm(y) — wm)?) plom|wm € L, Ydim

M N

high SNR .
R R

m=1ny=1

/b(wm)Qp(wm|wm € Q. )dwm, .
R

2
Boomlwm €2n,y, (2(@m)?)

In the last expression, we use two properties: i) Ps(z ™) s not a
function of the parameter w,, and can be taken out the mtegral form
and ii) the dictionary estimator at high SNR which is given in (3).
This property allows us to absorb into the law of total probabilities
the error estimation &, — wy, becoming Wy, —wm on each interval
Q,,. and to remove the mathematical expectation on the noise since
@Wn,, 18 a deterministic parameter. |

An equivalent expression of the BMSEq nign is given in the
following result.

Result 2. Assume high SNR and independent parameters of interest
with known pdf p(wy,), the BMSE conditionally to the set Q) is given
by

M

1
BMSEq nign = » Bom E Eu,, (b(wm)’1a,,, (Wm)). (10)
m=1"Q nm=1

Proof: Using the definition of the BMSE, expression (6) and

the fact that Pg(zm is not a function of the integration parameter wy,,
the BMSEq is given by

BMSEq = Z (m) /

M
P(m) Z/ b(wm p(wm; m)dwm, .

Ny =1

(Wm(y )2)p(wm;m)dwm

high SNR
—

Eo,, (b(wm)Qlﬂnm (Wm))

In the last expression, we decompose the integral form defined
on the set ) into the sum of integrals on the decision intervals
Qs Mm = 1,..., N where the dictionary estimator at high SNR
is defined according to expression (3). |

The BMSE increases proportionally with the number of parameters
to estimate, since each one contributes to the error. The parameter r
determines the size of {2,,, over which the integration is done. When
r gets smaller, the BMSE decreases. The influence of r is directly
visible when we derive the BMSE for a specific distribution, as for
example the uniform distribution.

C. BMSE for typical priors
1) Case of the uniform prior: A natural distribution for w,, is

the uniform distribution. We consider that each parameter follows a
uniform distribution truncated at 2 = [w1, On].

Result 3. The BMSEq nigh for an uniform prior is equal to M’

Proof: For 2 < n,, <N — 1 we have

7,3

B ()0 ) = [ W) = 5.
Qp

The border intervals ©; and Qx5 have a length of r/2 therefore
wm (b(wm) lgl(wm)) E‘Wm (b( ) 1(2N(wm)) = 24 Introduc-
ing those results in the BMSE formula and secondly introducing (2)
gives : 5 )
N -1 r Mr
BMSEgq high = —————~ + — =
ehieh T oy —@r) 12 12

an



|
The dictionary based estimator at high SNR has a similar result
as quantization, since it takes the closest value in a discrete regular
dictionary of a given continuous parameter.
2) Case of Gaussian prior: A Gaussian pdf can modelize some
a priori knowledge on w,. In this scenario, we have the following
result.

Result 4. The BMSEq vnigh for a prior wm ~ N (@m, 02,) is given

by:
M 1 N
BMSEgQ nigh = Z E— o1 Z Anm
m=1 erf( %o":n) - erf( \l/iantn) nm=1

where erf(.) is the error function and

~ — + 2 (‘:)m - (Dn )
= () (o (1420 52
o = (@ = )" +om) {er 27201,

)

a+2(Bm —npm ) ) 2
Om B B ,%("'22”7m>
+ — | (2(0m —Wn,,) —a)e m
= (( ( )-a)

b) e

[N

— (2 (@m —@n,,) =

( b42(Dr— @y ) ) 2)
20m

where we have a =r,b=—r for2<n, < N—1,a=0,b=—r
for nyy, =1 and a =r,b =0 for n,, = N.

Proof: ~ We use the ~change in the  variable
b(wm) = @n, — wm and the formula [z°¢(a +bz)dr =
b=? [(a® + 1) ®(a+ bz) + (a — bx) ¢p(a + bx)] + C to derive the
mean of the mean square error over each interval for the gaussian
distribution. ¢(x) denotes the standard normal distribution and
®(z) its repartition function. The denominator in (4) comes from
ngm) which is the integration of the gaussian distribution over the
parameter space €. ]

D. Derivation of the Bayesian Cramér-Rao Bound for biased esti-
mators

Result 5. The dictionary based biased estimator is statistically
efficient in the high SNR regime.

Proof: The Bayesian Cramér Rao Bound (BCRB) for a biased
estimator is the mean of the biased version of the biased deterministic
CRB as given by [5]

BCRB(b(w)) = /]R CRB(w, b(w))p(w|w € Q™) dw

where

CRB(w,b(w)) £ Tr [(I +D(w)) J(w) T+ D(o.:))T]-i-||b(c«,v)H2

with D(w) = ag&::) is the bias gradient matrix and J(w) is the

Fisher information matrix which is defined, given the measurements
9 lo, w) 9 lo, w
y by [J(w)], ; = Ey g@z;(:r\ ) gaz’(yl ))

conditional pdf of the measurement vector.
The BCRB characterizes the smallest achievable variance of any
estimator of bias b(w). For the problem of dictionary based estima-

tion, we have D(w) = —I. Therefore (I + M) =0 and

ow

where p(y|w) is the

BCRB — / 1b(w)|I? p(w|(w € O™ )dw = BMSEqnign
RM

o
®
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Fig. 2. An example of result of the spgll algorithm: the estimated order is
13 here, for amplitude 1, SNR=50dB

IV. APPLICATION TO LINE SPECTRA ANALYSIS
A. Model for dictionary based line spectra analysis

The parameter to estimate in spectra analysis is the angular
frequency w € 2. Take T time samples, the model of line spectra
analysis is [7]:

M
twm (t—1
p=3 ament D ye,
m=1

where ¢ is the time sample, y; is the measured signal, a,, and wn,
are the amplitude and the angular frequency of the m-th spectral line
respectively and e; is the additive noise which is assumed to be white
noise.

This model can also be expressed using the sparse representation
(1) with a parameter dictionary & = [@1,--- ,on]" and a (@,) =
[1, . ,eiw"t, . 7e’i@n(T*1)}T.

B. Simulations

We now validate the theoretical BMSE for practical estimators for
both gaussian and uniform distributions. The reconstruction algorithm
used are Orthogonal Matching Pursuit (OMP) [9], Compressive
Sensing Approximate Message Passing (CoSaMP) [10] and basis
pursuit [6] using the SPGI1 implementation [11]. OMP and CoSaMP
are estimators that need the knowledge of the model order, whereas
Basis Pursuit estimate the number of signals. As we know the model
order, we consider the M highest peaks of the estimated sparse vector
given by the SPGL1 algorithm as the estimated angular frequencies
for this algorithm.

Even if we do not consider the model order estimation, it is
interesting to note that the SPGI1 algorithm over-estimates the model
order: there are several small components that are non-zeros in
addition to the actual frequency as shown Fig.2. This results in an
under-estimation of the amplitude of the real component. Even at
high SNR, the model order is wrongly estimated: Fig.3 plots the
average model order over all the iterations as a function of the signal
to noise ratio in the case of on and off grid frequencies. The mean
order decreases as the SNR increases but reaches a minimum even for
the on-grid case: the spg finds the good frequency, and some others
with low amplitude. The average order estimate decreases, however
we have observed important variations in the model order estimation
at a given SNR. Those errors are due to the coherent dictionary which
breaks the hypothesis behind BP reconstruction and in the off-grid
case, additional error is due to the basis mismatch.

Fig.4 plots the BMSE of the different estimators for 7" = 20
time samples, a dictionary going from 0 to 7 of size N = 60 and
an uniform distribution. The error decreases as the noise decreases,
to finally reach the theoretical BMSE given in (11). The high SNR
region is reached for SNR above 30dB. The theoretical BMSE is
also validated for a gaussian distribution (see Fig.5) with the same
parameter and a normal distribution p(wm) ~ N(7/3,r?). If a
coarser dictionary is used, the BMSE will be higher since r is larger.

The RIP conditions are difficult to prove for an arbitrary matrice,
therefore a common measure used to asses the validity of the
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Fig. 3. Mean model order estimate of the BP algorithm as a function of the
SNRindB, M =1

analytical BMSE
—+— OMP

—&— COSAMP
—=— spgBP H

BMSE

-30 -20 -10 0 10 20 30 40 50
SNRin dB

Fig. 4. BMSE in dB for the uniform distribution depending on the SNR in
dB, M =1, T =20 and N = 60
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Fig. 5. BMSE for the gaussian distribution depending on the SNR, M =1,
T =20and N =60

compressed sensing estimation is the mutual coherence which is
defined as the maximum absolute value of the cross-correlations
between the vectors a(w,). The number of spectral lines that can
be recovered depends on the coherence p [12], it is bounded by

M < % 1+ i . Applying this formula to the above parameters,

we get that the maximum number of spectral lines is Mmax = 1.

Therefore, we use a larger dictionary running from —7 to 7 and
parameters 7" = 90 and N = 100 to measure the BMSE with two
spectral lines which allows Mpy.x = 5. Fig.6 shows the result in
the case of two active frequencies, as M increases the BMSE also
increases. When the number of sources increases the BMSE and the
SNR needed to reach the high SNR region increases. The number
of samples 7" plays also an important role not only on the mutual
coherence, but also on the level of noise required to detect a given
number of spectral lines.

analytical BMSE 7
—+— OMP 1
—&— COSAMP
— & spgBP Ei

-t

10

i i
-30 -20 -10 o 10 20 30 40 50

Fig. 6. BMSE for the uniform distribution depending on the SNR, M = 2,
T =90and N =100, w € [—m, 7]

V. CONCLUSION

In this work, we derived and studied the BMSE conditionally to the
parameter set for dictionary based biased estimator at high SNR. Two
alternative analytical expressions are proposed which we hope will
give more perspective on the off-grid problem. As, the parameters of
interest are assumed to be random, closed-form expressions of the
BMSE are provided for independent uniform and Gaussian pdf. We
also show that the dictionary based biased estimator is statistically
efficient in the sense that the BMSE reaches the corresponding
BCRB. Finally, by means of numerical simulations, we show that
our analytical expressions of the BMSE well explain the behavior of
several popular sparse estimators. In future work, we will consider
the case of non regular and adaptive dictionaries.

REFERENCES

[1]1 R. Baraniuk, “Compressive sensing [lecture notes],” Signal Processing
Magazine, IEEE, vol. 24, no. 4, pp. 118-121, 2007.

[2] Y. Chi, L. Scharf, A. Pezeshki, and A. Calderbank, “Sensitivity to basis
mismatch in compressed sensing,” Signal Processing, IEEE Transactions
on, vol. 59, no. 5, pp. 2182-2195, 2011.

[3] H. Zhu, G. Leus, and G. Giannakis, “Sparsity-cognizant total least-
squares for perturbed compressive sampling,” Signal Processing, IEEE
Transactions on, vol. 59, no. 5, pp. 2002-2016, 2011.

[4] A. Panahi and M. Viberg, “A robust 11 penalized doa estimator,” in
Signals, Systems and Computers (ASILOMAR), 2012 Conference Record
of the Forty Sixth Asilomar Conference on, 2012, pp. 2013-2017.

[5S] Z. Ben-Haim and Y. Eldar, “A lower bound on the bayesian mse based
on the optimal bias function,” Information Theory, IEEE Transactions
on, vol. 55, no. 11, pp. 5179-5196, 2009.

[6] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition
by basis pursuit,” SIAM  Journal on Scientific Computing,
vol. 20, no. 1, . 33-61, 1998. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/S1064827596304010

[7] C. Austin, J. Ash, and R. Moses, “Dynamic dictionary algorithms
for model order and parameter estimation,” Signal Processing, IEEE
Transactions on, vol. 61, no. 20, pp. 5117-5130, 2013.

[8] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489-509,
2006.

[9] Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krishnaprasad,

“Orthogonal matching pursuit: Recursive function approximation with

applications to wavelet decomposition,” in Proceedings of the 27 th

Annual Asilomar Conference on Signals, Systems, and Computers, 1993,

pp. 40-44.

D. Needell and R. Vershynin, “Signal recovery from incomplete and

inaccurate measurements via regularized orthogonal matching pursuit,”

Selected Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pp.

310-316, 2010.

E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale

sparse reconstruction,” June 2007, http://www.cs.ubc.ca/labs/scl/spgll.

M. Duarte and Y. Eldar, “Structured compressed sensing: From theory to

applications,” Signal Processing, IEEE Transactions on, vol. 59, no. 9,

pp. 40534085, 2011.

[10]

[11]
[12]



