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A Class of Focusing Waves with Controllable
Spatial Extension and Directivity

Philippe Meton and Andrea Cozz8&enior Member, IEEERNd Florian MonsefMember, IEEE

Abstract—Slepian’s concentration operator is applied in order The question of how to find the optimal trade-off between
to define a set of focusing waves with finite angular spread and angular and spatial resolutions is the subject of this paper
the highest spatial focusing possible. These waves can beeds A ymerical procedure is introduced for the computation of

as building blocks for the definition of any wave that requires featuri timal | d tial lutiorarEx
to ensure both angular and spatial resolution, as an optimal waves featuring optimal angular and spatial resofutiora

trade-off within the bounds imposed by the uncertainty principle. ~ Ples of typical results are presented. For ease of presamtzt
Applications of these results can be expected in the form of the concepts involved, our analysis will be restrained tda 2

focusing waves yielding higher energy efficiency for anterchar-  propagation scenario. Extension to a 3D case is straigiiar
acterization, EMC radiative-immunity tests, electronic warfare, and does not entail any further complexity.
as well as spatially-resolved beamforming.

Index Terms—Focusing waves, plane-wave spectrum, Slepian Il. PWS REPRESENTATION OF A WAVE
functions '
Submitting a device to an impinging wave typically requires
ensuring a dominant direction of incidence; this directoset
I. INTRODUCTION equal toy in the rest of this paper, with no loss of generality.
ADY time-harmonic electromagnetic wave can be represented

Plane waves, or more precisely locally-plane waves, . .
A3 a continuous superposition of plane waves [4], each one

an essential concept in most test facilities based on t terized b i or— i o with
generation of waves impinging on a device under test, aracterized by a propagation vector= 1z + {y, Wi

well as in wireless communications. While their appeal i Ht: ko, trﬁ. meﬁllirdwavengmbe_rt; bOItd Syr_T_EOIS.t;ti?éj for
partly motivated by their mathematical and intuitive siroiby, vector guantiies, hatted ones for unit vectors. The a

they are not necessarily the best choice. Two drawbacks cgﬁr) of a wave can thus be expressed as

be identified; the first one is their lack of spatial resolatio - = —in o~y R
due to their (ideally) infinitely large wavefronts. The sedo E(r)= /dn E(n)e"e '
drawback requires recalling that as soon as one realizés UI]F’_;'\ tunction B
a locally-plane wave is in fact diverging from its sources, it € function

1)

(n), also known as plane-wave spectrum
intensity decreases while getting away it. In this respgct, EPﬁS), IS aldual repi_rt ezenta;tlon ﬁf tlhe wave, and ct:qér(etsportlds
cannot be regarded as an energy-efficient choice. 0 he complex amplitude of éach plane wave contributing to
. o . L the overall waveF (). The PWS can be related to the electric
A lack of spatial resolution is also an issue in W|relesfs
L . . ield over the focal plang = 0 as
communications, where radiation over a large region of spac
can represent a waste of energy, an issue of concern for green E(ﬁ) = F{E(z,0)}, )

communications [1], as well as in electronic warfare, where, . o
the need to generate high-intensity fields requires fogjsiW'th F{-} Fourier’s transform. The definition (2) of the PWS

capabilities [2]. is fundza_mental_to our analysis, si_nc_e it allows passing from
The solution to these two drawbacks is the use of focusiﬁ@e spatial distribution of the electric field over the fopkne,

waves, which can be designed in such a way as to interfé?ethe a.ngular_distribut?on of impinging plane waves, since

constructively over a focal plane, where the field intensity "/ = %o sin?, with ¢ defined w.rt. they axis. Hereafter, all

build up to its maximum value, while reducing its transversgPatial variables will be regarded as normalized to the mgrk

extension, thus gaining spatial resolution. The price tpfpa Wavelength, so that, = 2.

focusing waves is a loss of resolution in the direction oifvair

This outcome is inevitable, since angular and spatial hiehav IIl. THE CONCENTRATION OPERATOR
are related through a Fourier-transform pair, thus sulfiect With the spatial and angular distributions forming a 1D
the uncertainty principle [3]. Fourier-transform pair in (2), a solution to the problem of

optimal concentration can be found in Slepian and coworkers
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Paris-Sud - CNRS, 3 rue Joliot-Curie, 91192 Gif-sur-Yvefgance. Contact resolved in time domain. The analogy with the problem of

e-mail: andr ea. cozza@upel ec. fr focusing waves implies enforcing band-limitedness in the a
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Agency through the grant ANR-12-ASTR-0005-01, MIMOCHICoject, 9ular domain, while requiring the highest spatial concatidn
within the framework of the 2012 ASTRID program. of energy over the focal plane. A closely related problem



has been studied more recently in geophysics, especially dyndeed, it was proven in [5] that it also controls the degree
Simons [7], in order to generate sets of band-limited spatiaf concentration
distributions confined to arbitrary regions of space. 2 [ (1) 2

Slepian’s approach to the problem is based on the intro- An(€) = T [ROn (e, 1)} ) (8)
duction of the concentration operat6r which applies to a

function ¢(x) as WhereRﬁ,i)n(c, t) are radial prolate spheroidal wave functions

” (PSF), as defined according to Flammer’s notations [8]. To a
, , , required minimum\,,,, corresponds a valu&,, obtained by
/_de D(z,2")g(2"), () inverting (8) for a given ordep, such that for any: > P
] ) ) . Slepian solutions will have\,,, > \,,,V n < p. Eq. (7) can
with [-W, W] the portion of the focusing plane over whichyen he applied in order to know how spatial and angular
the wave needs to be concentrated. The kernel resolutions should relate in order to ensure that c,,; it
, K in(a—a') also shows that increasing the maximum angular spread does
D(z,2") = /Kd77 ¢ (4)  not always lead to a stronger focusing, because of the non-
S ) linear behavior of the sine function.
acts as a sharp band-limiting filter operating over the spkct Unfortunately, the PSFs in (8) cannot be evaluated easily.
variablen..The intuitive i.dea behind this formal definition iSTheir numerical computation are still a matter of ongoing
to have this operator letting only spectral componenits: K research, as discussed in [9], [10]. In practice, evaloaif(8)
to survive, after having truncated the spatial distributi¢z)  are pased on tables published in Slepian’s work and cannot be
over the interval—W, W]. The spectral bounds" translates gjmply approximated. The same problem exists when looking
into an angular one a&" = 2msin ©, with © the maximum ¢4, eigensolutions of (3), since they are again given by PSFs
angle_ of incidenc_e a_llowed. Hence, the reasoni_ng goes, anyy this respect, we prefer adopting a simpler and more
function s, (x) which is mapped by the operator into itself pragmatic approach, approximating (3) by a matrix operaior
Con (@) = Ansn(@), (5) a similar way Simons also looked for truncated modal expan-
sions of the concentration operator [7]. We apply Galegkin’
i.e., eigensolutions of (3), must satisfy the two spatiall armethod [11] in order to solve the integral equation (3),,i.e.
spectral conditions. Slepian showed [5] that the assatiatey expressing unknown solutions into a linear combinatibn o
eigenvalues\,, correspond to the fraction of energy @f(z) orthogonal basis functions. A suitable choice is to useglan
living over [-W, W], i.e., how concentrated the solution iswaves as basis functions, which allow enforcing straightfo
with respect to the required truncation interjalV, W]. Ideal wardly that solutions be band-limited by selecting onlysio
solutions are therefore those with, ~ 1. Here the term propagating along directiorg| < ©.
energy should be interpreted in the sense of Iannorm Since it is often preferable to generate waves that are even-
applied over a region of space. symmetric with respect to the main direction of arrival, it
The total numberV, of perfectly concentrated eigensoluis necessary to enforce the same amplitude for all pairs of
tions can be estimated as the sum of all the eigenvaluesehepl@ne waves propagating along specular directions. Asudtyes

Cyg(x) =

for our case, according to [7] generic solutionss,, (z) will be sought with the following
- expansion
C
N ~ Z An = — = 2Wsin(0), (6) Ni
n=1 i sn(x) = Z $n (11p) cos(npa) An, 9)
with p=0
c= KW = 27Wsin(©) (7) whereN, is the number of pairs of plane waves by which the

solutions are approximated. In (9), the spectral variapls
for © < m/2. Forn > Ny, A, drops very quickly to small giscretized intc2 N, + 1 samples{r,}, uniformly distributed
values, implying waves that do not focus over the intervaler the interval— K, K.

z € [-W, W], but rather outside fit. Even-symmetric pairs of plane waves are also used as test
In order to directly apply these ideas to our problem, Wenctions in Galerkin's method, corresponding to a coltmra
need to look for scalar solutions. One way of doing so ischeme in the spectral domain. With this choice in mind, the

to consider TM impinging waves and look for electric fieldapproximate discrete version of (5) is

distributions E,,(x,0) = E,(x,0)%z such thatCE, (z,0) = N N

A En(2,0). The TE case can be solved in a similar way, by Zbﬁ () = A Za 5(n0) (10)
looking for a scalar solution for the magnetic field, which paSnlllp) = An pasnilla

would then take the shapH,(z,0) = H,(z,0)%; the PWS P =0

allows to pass from electric to magnetic field by simply recalWith

ing thatH (n) = ¢~k x E(n), with  the wave impedance of 3 — oy {sinc[W (1, — n,)] + sinc[W(n, +n,)]}  (11)
the propagation medium. In the following, Slepian solusion

will be referred to as, (z). the discretized version of the concentration operator and

While spatial and angular bounds can be set independently, 6pg P+q>0
apg = m/An {

the existence of solutions to (3) entirely depends on theeval 2 p=qg=0 (12)



IV. NUMERICAL RESULTS

In order to illustrate the ideas so far discussed, we conside
the case of a focal region bound By = 5 and ©® = 20
degrees. Since the solutions obtained from (13) are based on
discrete PWSs, the spatial distribution will be charaztstiby
a periodP = 2x/An. Therefore, the number of basis functions
in (9) can be chosen by enforcing > W, henceN, >
2W'sin©. This constraint actually coincides with the need
for a number of basis functions much larger than the number
of most concentrated solutions expected for (13).

The results in Fig. 1 are the PWS of the first 5 eigensolutions
of (5), plot from the most concentrated (no. 1) to the leagt on
(no. 5). The associated energy concentrations were found to
be 1.00,1.00,0.99,0.70 and 0.06. The expected number of
solutions with optimal concentration was estimated to be 3,

. . s . . . as given by (6), which appears to be quite accurate. Iddntica
%0 0 0, [dezl.ees] 10 20 %0 results would be obtained for any combinatior/éfand® s.t.

(7) is unmodified. As expected, the concentration of higher-

Fig. 1: PWS of the first 5 eigensolutions of (5), for the casyder solutions falls quickly to very weak values; the existe
W =5, © = 20 degrees. of a finite number of confined solutions shows the impor-
tance of Slepian’s approach: by computing the very limited
set of possible solutions, it is possible to know beforehand
what configuration will make it possible to satisfy stringen
requirements on directivity and spatial focusing.

These PWSs produce spatial distributions over the focal
plane that are shown in Fig. 2, while their field distribugon
over the rest of the space can be computed by means of (1) and
are shown in Fig. 3. These results highlight that solutiortbé
concentration operator (3) are not required to fill in thew#d

A5 = 0.06

- Xg = 0.99 /\/\/\ region [—-W, W], but are merely required not to trespass it.
i “\/\/ Functions of increasing order cover an incrementally large
portion of [-TV, W1.
Az =1.00 These waves, which could be referred to as Slepian waves,
2 ol W il constitute building blocks that can be used for defining any
focusing wavefront with angular and spatial resolution. In
A1 = 1.00 /\ case one were interested in producing, e.g., a flat focal-
1 Gosos! plane distribution limited to the regiof-W, W], its PWS
o . could not possibly be angularly-limited, and would further
20 -15 -10 -5 0 5 10 15 20 require reactive components to produce the sharp transitio

atz = +W. Slepian solutions can be used in order to enforce

. . o ) the double constraint of spatial and angular resolutiog,, e.
Fig. 2: Spatial distributions associated to the spectra/vrsnhofor a TM wave, approximating the desired flat focal-region
in Fig. 1. The spatial energy concentrations, correspanttin é)rofile Ey(z,0) by

e b)

the eigenvalues of (5) are shown for each solution. The gha

region stands for the interval over which the solutions $thou N
be bound. E(Ia O) = Z dnEn, (.CC, O)a (14)
n=1

where only the firstV < N, solutions estimated from (6) are

the matrix of mutual energies of the cosine basis functiorffonsidered, among the most concentrated ones.
obtained by projecting theth function over thejth. Assem- 1 he coefficientsi,, can be computed by projectirig (, 0)

bling the N, equations in (10) into a matrix form yields a®V€r this set of Slepian solutions, as they form an orthogona
generalized eigenproblem set. Some of the resulting waves are shown in Fig. 4. The

number of Slepian waves from the previous example was
~ ~ limited to the first three, characterized By ~ 1; first four
Bén = Anatdn, (13) weightsd,, = {2.29,1.55,1.25,0.71}. As expected, smooth
transitions to zero appear instead of the sharp transitbtise
whose eigenvectors are a set of discrete P®,$n,) of target distribution®,(z,0). Moreover, Paley-Wiener theorem
focusing waves. requires that, in order to have a compact spatial distdiouti
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Fig. 3: The first four waves obtained with the proposed pracedfor the case of¥/ = 5, for © = 20 degrees. The two
vertical dashed lines mark the bounds imposed at the foaakplDistances are expressed in wavelengths, amplituegmeak
normalized.
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Fig. 4. Results obtained by approximating a flat-amplitu t focal distribution with sharp transitions.

focal region, with the first two (left) and three (right) Siep
waves shown in Fig. 3. The color scales are identical.
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