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A Class of Focusing Waves with Controllable
Spatial Extension and Directivity

Philippe Meton and Andrea Cozza,Senior Member, IEEEand Florian Monsef,Member, IEEE

Abstract—Slepian’s concentration operator is applied in order
to define a set of focusing waves with finite angular spread and
the highest spatial focusing possible. These waves can be used
as building blocks for the definition of any wave that requires
to ensure both angular and spatial resolution, as an optimal
trade-off within the bounds imposed by the uncertainty principle.
Applications of these results can be expected in the form of
focusing waves yielding higher energy efficiency for antenna char-
acterization, EMC radiative-immunity tests, electronic warfare,
as well as spatially-resolved beamforming.

Index Terms—Focusing waves, plane-wave spectrum, Slepian
functions

I. I NTRODUCTION

Plane waves, or more precisely locally-plane waves, are
an essential concept in most test facilities based on the
generation of waves impinging on a device under test, as
well as in wireless communications. While their appeal is
partly motivated by their mathematical and intuitive simplicity,
they are not necessarily the best choice. Two drawbacks can
be identified; the first one is their lack of spatial resolution,
due to their (ideally) infinitely large wavefronts. The second
drawback requires recalling that as soon as one realizes that
a locally-plane wave is in fact diverging from its source, its
intensity decreases while getting away it. In this respect,it
cannot be regarded as an energy-efficient choice.

A lack of spatial resolution is also an issue in wireless
communications, where radiation over a large region of space
can represent a waste of energy, an issue of concern for green
communications [1], as well as in electronic warfare, where
the need to generate high-intensity fields requires focusing
capabilities [2].

The solution to these two drawbacks is the use of focusing
waves, which can be designed in such a way as to interfere
constructively over a focal plane, where the field intensitywill
build up to its maximum value, while reducing its transversal
extension, thus gaining spatial resolution. The price to pay for
focusing waves is a loss of resolution in the direction of arrival.
This outcome is inevitable, since angular and spatial behavior
are related through a Fourier-transform pair, thus subjectto
the uncertainty principle [3].
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The question of how to find the optimal trade-off between
angular and spatial resolutions is the subject of this paper.
A numerical procedure is introduced for the computation of
waves featuring optimal angular and spatial resolution. Exam-
ples of typical results are presented. For ease of presentation of
the concepts involved, our analysis will be restrained to a 2D
propagation scenario. Extension to a 3D case is straightforward
and does not entail any further complexity.

II. PWS REPRESENTATION OF A WAVE

Submitting a device to an impinging wave typically requires
ensuring a dominant direction of incidence; this directionis set
equal toŷ in the rest of this paper, with no loss of generality.
Any time-harmonic electromagnetic wave can be represented
as a continuous superposition of plane waves [4], each one
characterized by a propagation vectork = ηx̂ + ξŷ, with
‖k‖ = ko, the medium wavenumber; bold symbols stand for
vector quantities, hatted ones for unit vectors. The electric field
E(r) of a wave can thus be expressed as

E(r) =

∫

dη Ẽ(η)e−jηxe−jy
√

k2
o
−η2

. (1)

The function Ẽ(η), also known as plane-wave spectrum
(PWS), is a dual representation of the wave, and corresponds
to the complex amplitude of each plane wave contributing to
the overall waveE(r). The PWS can be related to the electric
field over the focal planey = 0 as

Ẽ(η) = F {E(x, 0)} , (2)

with F{·} Fourier’s transform. The definition (2) of the PWS
is fundamental to our analysis, since it allows passing from
the spatial distribution of the electric field over the focalplane,
to the angular distribution of impinging plane waves, since
η = ko sin θ, with θ defined w.r.t. they axis. Hereafter, all
spatial variables will be regarded as normalized to the working
wavelength, so thatko = 2π.

III. T HE CONCENTRATION OPERATOR

With the spatial and angular distributions forming a 1D
Fourier-transform pair in (2), a solution to the problem of
optimal concentration can be found in Slepian and coworkers’
work [5], [6]. The problem they faced in the 60’s was very
similar, as they looked for band-limited signals optimally
resolved in time domain. The analogy with the problem of
focusing waves implies enforcing band-limitedness in the an-
gular domain, while requiring the highest spatial concentration
of energy over the focal plane. A closely related problem
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has been studied more recently in geophysics, especially by
Simons [7], in order to generate sets of band-limited spatial
distributions confined to arbitrary regions of space.

Slepian’s approach to the problem is based on the intro-
duction of the concentration operatorC, which applies to a
function g(x) as

Cg(x) =
∫ W

−W

dx′ D(x, x′)g(x′), (3)

with [−W,W ] the portion of the focusing plane over which
the wave needs to be concentrated. The kernel

D(x, x′) =

∫ K

−K

dη e−jη(x−x′) (4)

acts as a sharp band-limiting filter operating over the spectral
variableη. The intuitive idea behind this formal definition is
to have this operator letting only spectral components|η| ≤ K
to survive, after having truncated the spatial distribution g(x)
over the interval[−W,W ]. The spectral boundK translates
into an angular one asK = 2π sinΘ, with Θ the maximum
angle of incidence allowed. Hence, the reasoning goes, any
function sn(x) which is mapped by the operator into itself

Csn(x) = λnsn(x), (5)

i.e., eigensolutions of (3), must satisfy the two spatial and
spectral conditions. Slepian showed [5] that the associated
eigenvaluesλn correspond to the fraction of energy ofsn(x)
living over [−W,W ], i.e., how concentrated the solution is,
with respect to the required truncation interval[−W,W ]. Ideal
solutions are therefore those withλn ≃ 1. Here the term
energy should be interpreted in the sense of anL2 norm
applied over a region of space.

The total numberNs of perfectly concentrated eigensolu-
tions can be estimated as the sum of all the eigenvalues, hence
for our case, according to [7]

Ns ≃
∞
∑

n=1

λn =
c

π
= 2W sin(Θ), (6)

with
c = KW = 2πW sin(Θ) (7)

for Θ ≤ π/2. For n > Ns, λn drops very quickly to small
values, implying waves that do not focus over the interval
x ∈ [−W,W ], but rather outside it.

In order to directly apply these ideas to our problem, we
need to look for scalar solutions. One way of doing so is
to consider TM impinging waves and look for electric field
distributionsEn(x, 0) = En(x, 0)ẑ such thatCEn(x, 0) =
λnEn(x, 0). The TE case can be solved in a similar way, by
looking for a scalar solution for the magnetic field, which
would then take the shapeHn(x, 0) = Hn(x, 0)ẑ; the PWS
allows to pass from electric to magnetic field by simply recall-
ing thatH̃(η) = ζ−1k̂ × Ẽ(η), with ζ the wave impedance of
the propagation medium. In the following, Slepian solutions
will be referred to assn(x).

While spatial and angular bounds can be set independently,
the existence of solutions to (3) entirely depends on the value

c. Indeed, it was proven in [5] that it also controls the degree
of concentration

λn(c) =
2c

π

[

R
(1)
0n (c, 1)

]2

, (8)

whereR(i)
mn(c, t) are radial prolate spheroidal wave functions

(PSF), as defined according to Flammer’s notations [8]. To a
required minimumλm, corresponds a valuecpm, obtained by
inverting (8) for a given orderp, such that for anyc ≥ cpm
Slepian solutions will haveλn ≥ λm, ∀ n ≤ p. Eq. (7) can
then be applied in order to know how spatial and angular
resolutions should relate in order to ensure thatc ≥ cm; it
also shows that increasing the maximum angular spread does
not always lead to a stronger focusing, because of the non-
linear behavior of the sine function.

Unfortunately, the PSFs in (8) cannot be evaluated easily.
Their numerical computation are still a matter of ongoing
research, as discussed in [9], [10]. In practice, evaluation of (8)
are based on tables published in Slepian’s work and cannot be
simply approximated. The same problem exists when looking
for eigensolutions of (3), since they are again given by PSFs.

In this respect, we prefer adopting a simpler and more
pragmatic approach, approximating (3) by a matrix operator; in
a similar way Simons also looked for truncated modal expan-
sions of the concentration operator [7]. We apply Galerkin’s
method [11] in order to solve the integral equation (3), i.e.,
by expressing unknown solutions into a linear combination of
orthogonal basis functions. A suitable choice is to use plane
waves as basis functions, which allow enforcing straightfor-
wardly that solutions be band-limited by selecting only those
propagating along directions|θ| ≤ Θ.

Since it is often preferable to generate waves that are even-
symmetric with respect to the main direction of arrival, it
is necessary to enforce the same amplitude for all pairs of
plane waves propagating along specular directions. As a result,
generic solutionssn(x) will be sought with the following
expansion

sn(x) =

Nb
∑

p=0

s̃n(ηp) cos(ηpx)∆η, (9)

whereNb is the number of pairs of plane waves by which the
solutions are approximated. In (9), the spectral variableη is
discretized into2Nb + 1 samples{ηp}, uniformly distributed
over the interval[−K,K].

Even-symmetric pairs of plane waves are also used as test
functions in Galerkin’s method, corresponding to a collocation
scheme in the spectral domain. With this choice in mind, the
approximate discrete version of (5) is

Nb
∑

p=0

βpq s̃n(ηp) = λn

Nb
∑

q=0

αpq s̃n(ηq) (10)

with

βpq = 2W {sinc[W (ηp − ηq)] + sinc[W (ηp + ηq)]} (11)

the discretized version of the concentration operator and

αpq = π/∆η

{

δpq p+ q > 0
2 p = q = 0

(12)
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Fig. 1: PWS of the first 5 eigensolutions of (5), for the case
W = 5, Θ = 20 degrees.

−20 −15 −10 −5 0 5 10 15 20

1

2

3

4

5

λ1 = 1.00

λ2 = 1.00

λ3 = 0.99

λ4 = 0.70

λ5 = 0.06

x

s n
(x
)

Fig. 2: Spatial distributions associated to the spectra shown
in Fig. 1. The spatial energy concentrations, corresponding to
the eigenvalues of (5) are shown for each solution. The shaded
region stands for the interval over which the solutions should
be bound.

the matrix of mutual energies of the cosine basis functions,
obtained by projecting thepth function over theqth. Assem-
bling the Nb equations in (10) into a matrix form yields a
generalized eigenproblem

βs̃n = λnαs̃n, (13)

whose eigenvectors are a set of discrete PWSs̃n(ηp) of
focusing waves.

IV. N UMERICAL RESULTS

In order to illustrate the ideas so far discussed, we consider
the case of a focal region bound byW = 5 and Θ = 20
degrees. Since the solutions obtained from (13) are based on
discrete PWSs, the spatial distribution will be characterized by
a periodP = 2π/∆η. Therefore, the number of basis functions
in (9) can be chosen by enforcingP ≫ W , henceNb ≫
2W sinΘ. This constraint actually coincides with the need
for a number of basis functions much larger than the number
of most concentrated solutions expected for (13).

The results in Fig. 1 are the PWS of the first 5 eigensolutions
of (5), plot from the most concentrated (no. 1) to the least one
(no. 5). The associated energy concentrations were found to
be 1.00, 1.00, 0.99, 0.70 and 0.06. The expected number of
solutions with optimal concentration was estimated to be 3,
as given by (6), which appears to be quite accurate. Identical
results would be obtained for any combination ofW andΘ s.t.
(7) is unmodified. As expected, the concentration of higher-
order solutions falls quickly to very weak values; the existence
of a finite number of confined solutions shows the impor-
tance of Slepian’s approach: by computing the very limited
set of possible solutions, it is possible to know beforehand
what configuration will make it possible to satisfy stringent
requirements on directivity and spatial focusing.

These PWSs produce spatial distributions over the focal
plane that are shown in Fig. 2, while their field distributions
over the rest of the space can be computed by means of (1) and
are shown in Fig. 3. These results highlight that solutions to the
concentration operator (3) are not required to fill in the allowed
region [−W,W ], but are merely required not to trespass it.
Functions of increasing order cover an incrementally larger
portion of [−W,W ].

These waves, which could be referred to as Slepian waves,
constitute building blocks that can be used for defining any
focusing wavefront with angular and spatial resolution. In
case one were interested in producing, e.g., a flat focal-
plane distribution limited to the region[−W,W ], its PWS
could not possibly be angularly-limited, and would further
require reactive components to produce the sharp transitions
at x = ±W . Slepian solutions can be used in order to enforce
the double constraint of spatial and angular resolution, e.g.,
for a TM wave, approximating the desired flat focal-region
profile Et(x, 0) by

E(x, 0) =

N
∑

n=1

dnEn(x, 0), (14)

where only the firstN ≤ Ns solutions estimated from (6) are
considered, among the most concentrated ones.

The coefficientsdn can be computed by projectingEt(x, 0)
over this set of Slepian solutions, as they form an orthogonal
set. Some of the resulting waves are shown in Fig. 4. The
number of Slepian waves from the previous example was
limited to the first three, characterized byλi ≃ 1; first four
weightsdn = {2.29, 1.55, 1.25, 0.71}. As expected, smooth
transitions to zero appear instead of the sharp transitionsof the
target distributionEt(x, 0). Moreover, Paley-Wiener theorem
requires that, in order to have a compact spatial distribution,
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Fig. 3: The first four waves obtained with the proposed procedure, for the case ofW = 5, for Θ = 20 degrees. The two
vertical dashed lines mark the bounds imposed at the focal plane. Distances are expressed in wavelengths, amplitudes are peak
normalized.
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Fig. 4: Results obtained by approximating a flat-amplitude
focal region, with the first two (left) and three (right) Slepian
waves shown in Fig. 3. The color scales are identical.

its Fourier transform must decay exponentially. Fig. 5 allows
appreciating this property: as the number of Slepian waves
involved increases, the resulting angular distributions decay
ever less smoothly; forN = 3, the PWS starts being truncated.
Smoother PWSs inevitably differ from the target PWS, by a
degree that depends on the final concentration required.

V. CONCLUSIONS

Slepian’s work provides a simple and elegant solution to
the problem of defining focusing waves with both angular
and spatial resolution. A method-of-moment approximation,
based on a Fourier series representation of the focal-planefield
distribution was applied to find approximate solutions to the
concentration operator. The set of solutions thus defined can be
used as building blocks in the definition of waves of potential
interest in applications such as EMC testing and electronic
warfare.
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