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A logic for complex computing systems:
Properties preservation along integration and

abstraction

Marc Aiguier1, Bilal Kanso1

Abstract

In a previous paper [1], we defined both a unified formal framework
based on L.-S. Barbosa’s components for modeling complex software
systems, and a generic formalization of integration rules to combine
their behavior. In the present paper, we propose to continue this
work by proposing a variant of first-order fixed point modal logic to
express both components and systems requirements. We establish
the important property for this logic to be adequate with respect
to bisimulation. We then study the conditions to be imposed to
our logic (characterization of sub-families of formulæ) to preserve
properties along integration operators, and finally show correctness
by construction results. The complexity of computing systems results
in the definition of formal means to manage their size. To deal with
this issue, we propose an abstraction (resp. simulation) of components
by components. This enables us to build systems and check their
correctness in an incremental way.

Keywords: Component modeling, µ-calculus, coalgebra, correct by
construction, refinement/abstraction

1 Introduction

Systems Engineering (SE) is an interdisciplinary branch of engineering which
is focused on how large industrial systems (i.e. complex systems) should be

1Ecole Centrale de Paris
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designed, managed and maintained throughout their life cycle. Progressively
emerged since the 50’s, SE is characterized by a number of concepts, methods
and organizational/technical practices that the industry has developed to deal
with the complexity of systems design (see [4, 9, 31, 38, 44] for further details).
At the heart of SE is the notion of system which is generally described as a set
of interconnected components which, in turns, are themselves (recursively)
defined as systems, interacting one another to participate permanently to a
common goal. In mathematical terms, a system is commonly defined with
models coming from:

• control theory and physics, that deal with systems as partial functions
(dynamical systems may also be rewritten in this way), called transfer
functions, of the form:

∀t ∈ T, y(t) = F (x, q, t)

where x, q and y are inputs, states and outputs data-flows, and where
T stands for time (usually considered in these approaches as continuous
- see [4, 12, 43]).

• theoretical computer sciences and software engineering, with systems
that can be depicted by models equivalent to different types of state-
based machines, evolving on discrete times generally considered as a
universal predefined sequence of steps, and whose coalgebras provide a
general framework (see [23, 28, 37]).

The formal characterization of SE is a fundamental aspect which is
concerned with the formal method integration within the scope of SE, i.e.
within the design cycle of a complex system. The formalization of SE entails
two basic aspects: the development of modeling languages for rigorously
specify a systems design and the development of formal techniques for the
analysis of the modeled system.

In a preceding paper [1], we introduced a formal abstract framework
for modeling complex computing systems, which is based on Barbosa’s
coalgebraic definition of components [6, 7, 32]. In that respect ([1]) a
complex computing system consists of the interconnection of a number of
components, which are recursively combined by means of two basic operators:
the Cartesian product and the feedback operator (i.e. two standard operators
in the theory of dynamic and physical systems).

In [1], we restricted our formalisation to discrete (time) systems, i.e.
systems for which time is considered as an order-isomorphic copy of natural
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numbers. In [2] we extended such a discrete-time modelling approach,
by proposing a novel formalism (based on deterministic Mealy automata),
that, relying on results of non-standard analysis, allows one to consider
homogeneously heterogeneous time scales (i.e. both continuous and discrete
timing) for the modelled systems.
By extending Rutten’s works [16] to Barbosa’s components, in [1, 2] we then
showed how causal transfer functions can be associated to system semantics
allowing us to link with methods from control theory.

In this paper, we propose to further extend the formalization of SE for
(discrete-time) complex computing systems, by considering two additional,
fundamental aspects:

1. the possibility to express expected properties of a system, often called
system requirements, that allow for formally analyzing the modeled
system. This will be complementary to the approach followed in [1, 25]
where a conformance testing theory had been defined to validate a
system design.

2. the possibility to describe system behavior at different abstraction levels.
For that, we propose to give a formal meaning to a central concept
in SE, i.e. component abstraction. Such a concept can be seen as the
inverse of refinement commonly used in software modeling [13, 20].

To fulfill the first aspect (system’s properties verification), it is necessary
to consider a framework that on one hand allows us to formally express
meaningful requirements addressing a system’s correctness, and on the
other allows us to exhaustively check whether the considered system fulfills
them. Since our modeling formalism is essentially based on the extension of
Mealy automata with a monad T (i.e. thus allowing for capturing the most
relevant computation structures including determinism, non-determinism
and partiality [35]), it naturally follows that the language for stating system’s
requirements should allow one to express temporal properties of a system
with the ability to express constraints that relate the production of output
values from input ones.

Being mainly interested in this paper by theoretical results of behavior
and property preservation, we propose to extend a logic that subsumes most
of modal and temporal logics: the µ-calculus [5, 11, 27]. More precisely,
following our work in [3], we propose a variant of first-order fixed point
modal logic [26, 45]. This extension to the first-order will allow us to export
expected properties from components to systems, and thus allowing to study
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their preservation along integration operators.
The logic we introduce herein is then an adaptation to first-order of that
presented in [10] to our components. Of course, this logic will probably be
restricted to the propositional case when we are interested in future works
in its computational aspects such as system synthesis [10] or the definition
of model-checking algorithms. Here, being interested in showing how the
truth of formulæ is preserved both by bisimulation and along integration
and abstraction operators, the variant of first-order fixed point modal logic
we propose is quite adequate.

The interest for studying property preservation is twofold: with respect
to the integration operators, properties preservation allows for establishing
”correct-by-construction” proofs [19] (whatever is proved to hold at compo-
nents level is guaranteed to hold on the system resulting by composition
of components); with respect to the abstraction operator, the interest of
property preservation is one of complexity gain: the analysis of a system
behavior at a more abstract level of description (hence at a reduced model
size) obviously enjoys a reduced complexity.

Such preservation results, as we will show in the remainder, allow us to
obtain an incremental design method which can be applied to development
and validation of large and complex systems.

Moreover, they will be established both independently of the type of inte-
gration operator and for a large family of formulæ which anyway contains
all the interesting properties we can express on systems such as deadlock
freedom, reachability, existence of finite and infinite paths, etc.

The paper is structured as follows. Section 2 recalls the basic notions
of monads the paper heavily relies upon. Section 3 recalls the formalism
defined in [1], including the definition of Barbosa’s components and that of
integration operators (for components composition) while also introducing
the notion of bisimulation with respect to systems. Section 4 introduces the
logic we will consider to refer to (so-formalized) systems. i.e. an adaptation of
the µ-calculus to the extension of Mealy automata with monads. The results
at the core of the paper are illustrated in the last two sections. Section 5
outlines the properties preservation results with respect to the integration
operators (i.e. Cartesian product and feedback); Section 6 describes the
formalization of the abstraction operator and outlines the corresponding
results, i.e. showing that system correctness is preserved along this operator.
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2 Preliminaries

This paper relies on many terms and notations from the categorical theory
of monads. We briefly introduce them here, but interested readers may refer
to textbooks such as [8, 14] for further details.

Monads [30] are a powerful abstraction for adding structure to objects.
Given a category C, amonad consists of an endofunctor T : C→ C equipped
with two natural transformations η : idC ⇒ T and µ : T 2 ⇒ T which satisfy
the conditions µ ◦ Tη = µ ◦ ηT = idC and µ ◦ Tµ = µ ◦ µT :

T 2 T T 2

T

Tη ηT

idCµ µ

T 3 T 2

T 2 T

Tµ

µT

µ

µ

η is called the unit of the monad. Its components map objects in C to
their naturally structured counterpart. µ is the product of the monad. Its
components map objects with two levels of structure to objects with only
one level of structure. The first condition states that a doubly structured
object ηT (X)(t) built by η from a structured object t is flattened by µ to the
same structured object as a structured object T (ηX)(x) made of structured
objects built by η. The second condition states that flattening two levels
of structure can be made either by flattening the outer (with µT (X)) or the
inner (with T (µX)) structure first.

Let us consider a monad built on the powerset functor P : Set →
Set. We use it to model non-deterministic state machines by replacing the
target state of a transition by a set of possible states2. The component
ηS : S → P(S) of the unit of this monad has to build a set of states from a
state. We can choose ηS : s 7→ {s}. The component µS : P(P(S))→ P(S)
of the product of the monad has to flatten a set of sets of states into a
set of states. For a set of sets of states (Si), ∀i, Si ∈ P(S), we can choose
µS : {S1 . . . Si . . .} 7→ ∪Si.

In computing science, and in particular in the area of functional pro-
gramming, monads have been used to represent many computation situations
such as partiality, side-effects, exceptions, etc. [35]. More recently they have
also been employed in complex systems’ modeling where they have been
used to obtain a more generic representation of components obtained by
adding computation structures [6, 7, 32] to them.

2
Set is the category of sets.
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3 Components and systems

We recall the basic definitions on components and their composition [1], and
introduce both simulation and bisimulation notions.

3.1 Component

Definition 1 (Computation structure) A computation structure for
component is a monad T : Set→ Set together with two natural transfor-
mations η′ : T =⇒ P and η′−1 : P =⇒ T such that η′−1 ◦ η′ = idT .
A computation morphism σ between two computation structures
(T1, η

′
1, η

′−1
1 ) and (T2, η

′
2, η

′−1
2 ) is a natural transformation σ : T1 =⇒ T2

such that η′1 = η′2 ◦ σ and η′−1
2 = σ ◦ η′−1

1 .
Obviously, computation structures and computation morphisms form a cate-
gory.

In the following, we will denote any computation structure (T, η′, η′−1)
simply by T when this does not generate ambiguities.

Most monads used to represent computation situations satisfy the above
condition. For instance, for the monad T : S 7→ P(S), both η′S and η′−1

S are
the identity on sets. For the functor T : S 7→ S ∪ {⊥}, η′S associates the
singleton {s} to any s ∈ S and the empty set to ⊥, and η′−1 associates the
state s to the singleton {s} and ⊥ to every other subset of S which is not a
singleton.
It is important to note that less conventional monads such as the distribution

monad classically defined by T : S 7→ {µ : S → R≥0|
∑

s∈S

µ(s) = 1} are not

directly applicable here. Indeed, the natural transformation η′ cannot be
defined without losing the probability attached to states. To reacquire such
a monad in the framework developed here, the powerset monad P should be
applied to the set S × [0, 1].
Following the authors in [15], branching systems are often expressed as a
function of the form α : X → TFX where T : Set → Set is a monad (for
branching type) and F : Set→ Set is a functor (for transition type). There-
fore, whereas in [15], the authors encapsulate distributions in branching, we
would encapsulate distributions rather in transitions, i.e., F : S 7→ S × [0, 1],

and set T = P with conditions that for every s ∈ S,
∑

(s′,p)∈α(s)

p = 1 (what

is substantially similar to the notion of bag in [7] to introduce a (elemen-
tary) form of probabilistic non-determinism). Hence, the monad T being
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the powerset monad, both η′ and η′−1 remain the natural transformation
identity.

The interest of computation structures as defined in Definition 1 is they
will allow us to associate semantics (based on causal transfer functions) to
components (see Definition 4).

Definition 2 (Components) Let I and O be two sets denoting, respectively,
the input and output domains. Let T be a computation structure. A compo-

nent C is a coalgebra (S, α) for the signature H = T (O × )I : Set −→ Set
with a distinguished element init ∈ S denoting the initial state of the compo-
nent C.

By using the vocabulary of the theory of coalgebras [23, 37], a morphism
of components is then a morphism between coalgebras, i.e. f : (S, α) →
(S′, α′) is a morphism if f : S → S′ is a mapping preserving initial states
such that the following diagram commutes:

S S′

H(S) H(S′)

f

H(f)

α α′

Let us note Comp(H) the category of components.

Example 1 (Encoder/decoder) We illustrate the notions previously men-
tioned with an encoder/decoder system. Many other examples can be found
in [1, 24]. An encoder/decoder is usually used to guarantee certain char-
acteristics (e.g. error detection) when transmitting data across a link. A
simple example of such an encoder/decoder is represented in Figure 1. It
consists of two parts:

• An encoder that takes in an incoming bit sequence and produces an
encoded value which is then transmitted on the link. In our framework,
this encoder is considered as a component E = ({s0, s1}, s0, α1) where
the transition function α1 : {s0, s1} −→ ({0, 1} × {s0, s1})

{0,1} is
graphically shown in the left of Figure 1.

• A decoder that takes the values from the link and produces the original
value. In our framework, this decoder is considered as a component
D = ({q0, q1}, q0, α2) where the transition function α2 : {q0, q1} −→
({0, 1} × {q0, q1})

{0,1} is graphically shown in the right of Figure 1.
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As we can observe, both components are deterministic. Hence, they
are defined over the signature Id({0, 1} × ){0,1} where Id is the computation
structure defined by the identity functor Id as monad together with (η′, η′−1)
where for every set S, η′S : s 7→ {s} and η′−1

S is any mapping that associates
{s} to s, and every subset of S which is not a singleton to a 3 given s′ ∈ S.

s0 s10|0 0|1

1|1

1|0

{0, 1}ω

{0, 1}ω

q0 q10|0 1|0

1|1

0|1

{0, 1}ω

{0, 1}ω

Figure 1: Encoder (on the left) and Decoder (on the right)

Following Rutten’s works [16], component semantics can be defined by
causal transfer functions.

Definition 3 (Transfer function) Let I and O be two sets denoting the
input and output domains, respectively. Let us4 note Iω (resp. Oω) the set
of mappings from ω to I (resp. O). A transfer function F : Iω −→ Oω is
a function that is causal, i.e.:

∀n ∈ ω, ∀x, y ∈ Iω, (∀m, 0 ≤ m ≤ n, x(m) = y(m)) =⇒ F(x)(n) = F(y)(n)

In the following, to simplify the notations, we will prefer to note η′O×S(α(s)(i))|i
with i = 1, 2 rather than using the more standard notation P(πi)(η

′
O×S(α(s)(i)))

for the power set image of the projections.

Definition 4 (Component semantics) Let C = (S, init, α) be a component
over T (O × )I and s ∈ S. Let us note behC(s) the set of causal transfer
functions F : Iω −→ Oω that associate to every x ∈ Iω the stream y ∈ Oω

3As already explained in [1], in computation structure is never required that the couple
(η′, η′−1) is unique given a monad T . However, for most of monads, this will be the case.
When it is not, the choice of η′−1 is often irrelevant because all of them do it.

4We note ω the least infinite ordinal, identified with the corresponding hereditarily
transitive set.
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such that there exists an infinite sequence of couples (o1, s1), . . . , (ok, sk), . . . ∈
O × S satisfying:

∀j ≥ 1, (oj , sj) ∈ η
′
O×S(α(sj−1)(x(j − 1)))

with s0 = s, and for every k ∈ ω, y(k) = ok+1.

Hence, C’s semantics is the set behC(init).

The interest of both natural transformations η′ and η′−1 is they allow
us to “compute” for an input sequence (i0, . . . , in−1) all the outputs o after
going through any sequence of states (s0, . . . , sn) such that sj is obtained
from sj−1 by ij−1. Without them, we could not characterise sj with respect
to α(sj−1)(ij−1) because nothing ensures that elements in α(sj−1)(ij−1) are
(output, state) couples. Indeed, the monad T may yield a set with a structure
different from O×S. The mapping η′O×S maps back to this structure. η′−1

O×S
is useful for going back to T .

Example 2 The behaviour behE(s0) of the encoder component E presented
in Example 1 is defined by the unique function F : {0, 1}ω −→ {0, 1}ω defined
for every x ∈ {0, 1}ω by y ∈ {0, 1}ω such that:

• y(0) = x(0)

• ∀k, 0 < k < ω

y(k) =





0 if

{
(y(k − 1) = 0 and x(k) = 0) or
(x(k − 1) = 0, y(k − 1) = 1, and x(k) = 1)

1 if

{
(y(k − 1) = 1 and x(k) = 0) or
(x(k − 1) = y(k − 1) = 0 and x(k) = 1)

Under some standard conditions on the cardinality of behC(s) for every
state s, we showed in [1] the existence of a final component.

Next we define the standard notion of simulation and bisimulation [33,
34] which will play an important role to show the adequacy of the logic
(see Section 4). Moreover, abstraction of components will be based on an
extension of simulation in order to take into account components defined
over different signatures while simulation and bisimulation are defined for
components over a same signature.
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Definition 5 (Simulation and bisimulation) Let C1 = (S1, init1, α1) and
C2 = (S2, init2, α2) be two components over a signature H = T (O × )I . A
subset R ⊆ S1 × S2 is a simulation if, and only if for all (s1, s2) ∈ S1 × S2
and i ∈ I:

s1 R s2 =⇒ [∀(o, s′1) ∈ η
′
O×S1

(α1(s1)(i)), ∃(o, s
′
2) ∈ η

′
O×S2

(α2(s2)(i)), s
′
1 R s′2]

We call R a bisimulation if both R and its (relational) inverse R−1 are
simulations.

Finally, C1 is similar (resp. bisimilar) to C2 if there exists a simulation
(resp. a bisimulation) R such that init1 R init2.

As it is usual in the coalgebras theory, bisimulation can be expressed
more concisely by the fact that the projections from R to S1 and S2 are
morphisms, i.e. the following diagram commutes:

S1
π1←−−− R

π2−−−→ S2

α1

y
yαR

yα2

H(S1)
H(π1)
←−−− H(R)

H(π2)
−−−→ H(S2)

All the basic facts on bisimulations remain true in our framework.
Among others, the greatest bisimulation between C1 and C2, noted ∼C1,C2 or
simply ∼ when the context is clear, exists and is defined as the union of all
bisimulations between C1 and C2.

Theorem 1 Let C1 = (S1, init1, α1) and C2 = (S2, init2, α2) be two compo-
nents over a signature T (O × )I . We have:

∀s1 ∈ S1, ∀s2 ∈ S2, s1 ∼ s2 ⇐⇒ behC1(s1) = behC2(s2)

Proof.

(=⇒) Let i, j ∈ {1, 2} such that i 6= j. Let F ∈ behCi(si). Let x ∈ Iω.
By definition, there exists an infinite sequence of states si1, . . . , sik, . . . ∈
Si with si1 = si such that for every l ≥ 1, (F(x)(l + 1), si(l+1)) ∈
η′Oi×Si

(αi(sil)(x(l))). By the fact that s1 ∼ s2, there also exists an infi-
nite sequence sj1, . . . , sjk, . . . ∈ Sj with sj1 = sj such that for every l ≥ 1,
(F(x)(l + 1), sj(l+1)) ∈ η

′
Oj×Sj

(αj(sjl)(x(l))) and si(l+1) ∼ sj(l+1), and then

F ∈ behCj (sj).
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(⇐=) Let R ⊆ S1 × S2 be the binary relation defined by:

s1 R s2 ⇐⇒





∃F ∈ behC1(s1) ∩ behC2(s2), ∃x ∈ I
ω

∃s11, . . . , s1k, . . . ∈ S1, ∃s21, . . . , s2k, . . . ∈ S2,
s11 = s1 ∧ s21 = s2 ∧ (∀j ∈ {1, 2}, ∀l ≥ 1,
(F(x)(l + 1), sj(l+1)) ∈ η

′
Oj×Sj

(αj(sjl)(x(l)))

It is not difficult to show that R is a bisimulation.
✷

3.2 Systems

Larger components are built through the composition of two basic integration
operators: cartesian product and feedback.

Cartesian product. The cartesian product is a composition where both
components are executed simultaneously when triggered by a pair of input
values.

Definition 6 (Cartesian product)
Let C1 = (S1, init1, α1) and C2 = (S2, init2, α2) be two components over
H1 = T (O1 × )I1 and H2 = T (O2 × )I2, respectively. The cartesian
product ⊗(C1, C2) of C1 and C2, is the component (S, (init1, init2), α) over
H = T ((O1 ×O2)× )(I1×I2) where:

• S = S1 × S2 is the set of states,

• init = (init1, init2) is the initial state,

• α : S −→ T ((O1 ×O2)× S)
I1×I2 is the unique mapping such that the

following diagram commutes5.

S1
π1←−−− S1 × S2

π2−−−→ S2

α1

y
yα

yα2

H1(S1)
T (πo

1
,π1)

πi
1

←−−−−−−− H(S)
T (πo

2
,π2)

πi
2

−−−−−−−→ H2(S2)

where πoj : O1 × O2 → Oj and πij : I1 × I2 → Ij with j = 1, 2 are
projections.

5α exists and is unique due to the universal property of the product in the category
Set.
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Example 3 The Cartesian product ⊗(E ,D) of the encoder component E
and the decoder component D over the signature Σ⊗ = (I⊗, O⊗) with I⊗ =
O⊗ = {0, 1} × {0, 1} is illustrated in Figure 2.

s0, q0 s0, q1

s1, q0 s1, q1

(0,0)|(0,0) (0,1)|(0,0)

(0,0)|(1,0) (0,1)|(1,0)

(0,1)|(0,1)

(0,0)|(0,1)

(1,0)|(1,0)

(1,0)|(0,0)

(1,1)|(1,1)

(1,0)|(0,1) (1,1)|(1,0)
(1,1)|(0,0)

(0,1)|(1,1)

(0,0)|(1,1)

(1,1)|(0,1) (1,0)|(1,1)

Figure 2: The product ⊗(E ,D) of E and D

Feedback. A component with feedback has directed cycles, where an
output from a component is fed back to affect an input of the same com-
ponent [29] (see Figure 3). That means the output of a component in any
feedback composition depends on an input value that in turn depends on its
own output value.The feedback operator is then a composition where some
outputs of a component are linked to its inputs i.e. some outputs can be
fed back as inputs. In order to obtain a model which fits our component
definition, we need to take into account the computational effects of the
monad T . This monad impacts both the evolution of component states and
the observation of its outputs. Therefore, the feedback link between outputs
and inputs carries the parts of the structure imposed by T to the inputs.
First, we introduce feedback interfaces for defining correspondences between

state OI

Figure 3: Illustration of a system with feedback

outputs and inputs of components and only keeping both inputs and outputs
that are not involved in feedback.
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Definition 7 (Feedback interface) Let H = T (O × )I be a signature. A
feedback interface over H is a triple I = (f, πi, πo) where f : I ×O −→ I
is a mapping, and πi : I −→ I ′ and πo : O −→ O′ are surjective mappings
such that ∀(i, o) ∈ I ×O, f(f(i, o), o) = f(i, o) and πi(i) = πi(f(i, o)).

The mapping f specifies how components are linked and which parts of their
interfaces are involved in the composition process. Both mappings πi and
πo can be thought of as extensions of the hiding connective found in process
calculi [21].

As this is usual when dealing with feedback, the existence of an instan-
taneous fixpoint is required.

Definition 8 (Well-formed feedback composition) Let H = T (O × )I be a
signature. Let C be a component over H and I = (f, πi, πo) be a feedback
interface over H. We say that the feedback of C over I is well-formed

if, and only if for every (i, s) ∈ I × S:

1. Fixpoint property.
η′O×S(α(s)(i)) 6= ∅ =⇒ ∃(o, s

′) ∈ O × S, (o, s′) ∈ η′O×S(α(s)(f(i, o)))

2. Preservation property.
∀(o, s′) ∈ O×S, (o, s′) ∈ η′O×S(α(s)(f(i, o))) =⇒ (o, s′) ∈ η′O×S(α(s)(i))

By the fixpoint property of Definition 8, feedback will be allowed to
make a pruning of transitions. Then, the preservation property of Definition 8
which did not occur in [1] will then ensure that there is no transition has
been added through feedback. This last property will be useful to obtain
our preservation results of Section 5.

Definition 9 (Feedback) Let I = (f, πi, πo) be a feedback interface over
H = T (O × )I . Let C = (S, init, α) be a component over H whose the
feedback over I is well-formed. The feedback 	I(C) of C over I, is the
component C′ = (S, init, α′) over H ′ = T (O′ × )I

′
where α′ is the mapping

defined for every s ∈ S′ and every i′ ∈ I ′ by α′(s)(i′) = η′−1
O′×S′(Π) where Π

is the set:

{(o′, s′) | ∃(i, o) ∈ I ×O, (o, s′) ∈ η′O×S(α(s)(f(i, o))), πi(i) = i′, πo(o) = o′}

(when η′O×S(α(s)(i)) 6= ∅ then so is Π because the feedback of C is well-formed
over I)
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Here, feedback is defined in terms of its argument as concrete coalgebras.
A definition of feedback has been defined in [1] in terms of its behaviors, and
then built over the terminal model when it exists 6.

Complex operators and systems

Definition 10 (Complex operator) The set of complex operators is in-
ductively defined as follows:

• is a complex operator of arity 1;

• if op1 and op2 are complex operators of arity n1 and n2 respectively,
then op1 ⊗ op2 is a complex operator of arity n1 + n2;

• if op is complex operator of arity n and I is a feedback interface, then
	I(op) is a complex operator of arity n.

Complex operators will not be necessarily defined when they are applied
to a sequence of components. Indeed, for a complex operator of the form
	I(op), according to the component C resulting from the evaluation of op,
the interface I has to be defined over the signature of C and the feedback over
C has to be well-formed. Hence, a system will be the component resulting
from the evaluation of complex operators over a sequence of components,
when it is defined.

Definition 11 (Systems) The set of systems is inductively defined as
follows:

• for any component C over a signature H, (C) = C is a system over H
and is defined for C;

• if op1 ⊗ op2 is a complex operator of arity n = n1 + n2 then for
every sequence (C1, . . . , Cn1

, Cn1+1, . . . , Cn) of components with each Ci
over Hi = T (Oi × )Ii, if both op1 and op2 are defined for C1, . . . , Cn1

and Cn1+1, . . . , Cn respectively, then op1 ⊗ op2(C1, . . . , Cn) = S1 ⊗ S2
with S1 = op1(C1, . . . , Cn1

) and S2 = op2(Cn1+1, . . . , Cn) over H ′
1 =

T (O′
1× )I

′
1 and H ′

2 = T (O′
2× )I

′
2 , is a system over T ((O′

1×O
′
2)× )I

′
1
×I′

2

and op1⊗op2 is defined for (C1, . . . , Cn), else op1⊗op2 is undefined
for (C1, . . . , Cn);

6Indeed, as already explained, this terminal object does not always exit, and depends
on constraints on the cardinality of behC(s) for every state s.
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• if 	I (op) is a complex operator of arity n, then for every sequence
(C1, . . . , Cn) of components, if op is defined for (C1, . . . , Cn) with S =
op(C1, . . . , Cn) is over H, I is a feedback interface over H and the
feedback of S is well-formed, then 	I (op)(C1, . . . , Cn) =	I (S) is a
system over H ′ and7 	I(op) is defined for (C1, . . . , Cn), else 	I(op)
is undefined for (C1, . . . , Cn).

In [1], we showed that most of standard integration operators such as
sequential, concurrent compositions or synchronous product can be obtained
by composition of feedback and product. Moreover, both basic and complex
operators can be defined on transfer functions (see [1] for their complete
definitions). Hence, if for every complex operator op, we note op its equivalent
on transfer functions, we have the following compositionality result:

Theorem 2 (Compositionality) [1] Let op be a complex operator of arity n.
Let C1, . . . , Cn be components. If C = op(C1, . . . , Cn), then

behC(init) = op(behC1(init1), . . . , behCn(initn))

Similar compositionally results have been obtained in [17, 18] but in
a more categorical framework. Following notations in [17, 18], from set of
complex operators we can easily generate an algebraic signature that can
be seen as an FP -theory L over a basic set of sorts S ⊆ Set× Set where
for (In,Out) ∈ S, In and Out denote input and output sets, respectively, and
operations are complex operators (a monad T is supposed identical for every
couple (In,Out) in the FP -theory L). Outer models can then be defined
along the functor C : L −→ Cat that associates to any couple (In,Out) the
category Comp(H) with H = T (Out× )In and to any operator the partial
functor defined in Definition 10. Finally, inner models are defined by the
natural transformation X : 1 =⇒ C where 1 is the constant functor that
associates to any S ∈ L the trivial object category 1, which to any couple
(In,Out) associates the final object 8 in Comp(H) and to any complex
operator op, the mapping on behaviors noted [[op]] in [17, 18] that contains
op semantics on both components and transfer functions.

The difference between our works and those mentioned above is to have
defined integration operations by composition of two elementary operators,

7H ′ is the signature of the feedback.
8This then requires constraints on monads to ensure the existence of such a terminal

model in Comp(H).
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product and feedback and not as a term algebra. The interest was then to
demonstrate a set of general properties on these integration operators such as
the results of compositionality given in [1] or of correctness-by-construction
that will be given in Section 5, by showing that these properties are valid
for the product and feedback and are preserved by composition.

Hence, Theorem 2 is similar to Theorem 4.7 in [18] at least in these
goals to establish a generic result of compositionality independent of a given
integration operator.

Example 4 (Encoder/decoder) In this example, we show how the en-
coder/decoder system can be built from both encoder E and decoder D com-
ponents presented in Example 1. As Figure 4 illustrates, the encoder and
decoder components are interconnected side-by-side in which the output (i.e.
0 or 1) of the first is the input of the second. This kind of composition is
known as sequential (or cascade). The reaction of the resulting component
consists then of a reaction of both E and D, where E reacts first, produces its
outputs, and then D reacts. That is to say, when E is triggered by an input
i from the environment, E executes i and the produced output is fed to D.

E

D

{0, 1}

{0, 1}

Figure 4: Sequential composition

As already said above, the sequential composition, noted ✄, can be naturally
defined using both the feedback operator 	I and the cartesian product ⊗ by:

✄(E ,D) =	I(E ⊗ D) (1)

where I = (f, πi, πo) is the feedback interface defined for every (i, i′) ∈
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{0, 1} × {0, 1} and (o, o′) ∈ {0, 1} × {0, 1} as follows:

f((i, i′), (o, o′)) = (i, o), πi((i, i
′)) = i and πo((o, o

′)) = o′

Let us now construct the encoder/decoder as a composition of the encoder
and the decoder as illustrated in Equation 1. We first define the Cartesian
product ⊗(E ,D) of E and D as illustrated in Example 3 (see Figure 2). It is
easy to see that ⊗(E ,D) is a well-formed feedback composition over I. Let
us check this for (s0, q0):

• ((0, 0), (s0, q0)) ∈ η
′(α⊗((s0, q0))(f((0, 0), (0, 0))))|1

• ((1, 1), (s1, q1)) ∈ η
′(α⊗((s0, q0))(f((1, 1), (1, 1))))|1

• ((0, 0), (s0, q0)) ∈ η
′(α⊗((s0, q0))(f((0, 1), (0, 0))))|1

• ((1, 1), (s1, q1)) ∈ η
′(α⊗((s0, q0))(f((1, 0), (1, 1))))|1

and for (s1, q0):

• ((1, 1), (s1, q1)) ∈ η
′(α⊗((s1, q0))(f((0, 0), (1, 1))))|1

• ((0, 0), (s0, q0)) ∈ η
′(α⊗((s1, q0))(f((1, 1), (0, 0))))|1

• ((0, 0), (s0, q0)) ∈ η
′(α⊗((s1, q0))(f((1, 0), (0, 0))))|1

• ((1, 1), (s1, q1)) ∈ η
′(α⊗((s1, q0))(f((0, 1), (1, 1))))|1

Then, we can apply the feedback operator 	I on ⊗(E ,D). This leads to a
new component 	I(⊗(E ,D)) (see Figure 5) where all outputs of E (i.e 0 and
1) that are fed back to D are hidden (i.e. synchronized).

s0, q0 s0, q1

s1, q0 s1, q1

0|0

1|1

0|1

1|0

1|1

1 |1 1|0

0|1

Figure 5: The encoder/decoder system
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4 Component logic

We present a logic L for components and systems and define its semantics.
This logic is a slight extension of µ-calculus to input and output values
as done in [10], except that we will also quantify over input and output
variables. Quantifying over input and output variables will allow us to
manipulate formulæ independently from a given component or system (i.e.
independently from a given signature). In the next section, we will show
that properties involving quantification are the only properties which can be
exported from a component to the system to which it belongs, because they
are independent of signatures.

4.1 Syntax and satisfaction

In the next definition, we need a set of supplementary variables, called fixed
point variables, to express formulæ in µ-calculus that denote recursion on
states. To differentiate these variables from the input and output variables,
we will denote input and output variables by x, x′, x1, x2, . . ., y, y

′, y1, y2, . . .
and fixed point variables by x, x′, x1, x2, . . . , y, y′, y1, y2, . . .

9

Definition 12 (Component formulæ) Let H = T (O × )I be a signature.
Let X be a set of fixed point variables. Let V = Vi

∐
Vo be10 a set variables

such that variables in Vi (resp. Vo) are called input (resp. output) variables.
The set of formulæ L is given by the following grammar:

ϕ := true | x | xi ↓ yo | [xi]ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ∀x.ϕ | νx.ψ

where xi ∈ Vi ∪ I, yo ∈ Vo ∪ O, x ∈ V, x ∈ X and ψ is a formula in the
logic that may contain occurrences of the variable x provided that every
free occurrence of x in ψ occurs positively, i.e. within the scope of an even
number of negations.

A formula ϕ is closed when every fixed point variable x is within the scope
of an operator νx, and every input (resp. output) variable x (resp. y) is
within the scope of a quantifier ∀x (resp. ∀y).

9It is worth to note that x and x are independent variables. x is not obtained from x

by applying any mapping to input and output variables. The over line over letters is
just a notation to differentiate fixed point variables from input and output variables.

10
∐

is the disjoint union of sets.
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Intuitively, a formula of the form [xi]ϕ stands for a state formula, and states
that after performing the input xi, all immediately reachable states satisfy
ϕ. A formula of the form xi ↓ yo stands for an output formula, and states
that it is possible to produce the output yo after performing the input xi.
In practice, in such formulæ, xi and yo will be often elements of I and O
respectively, and not variables in Vi and Vo. Finally, a formula of the form
νx.ψ stands for a formula that expresses a recursion on states and is defined
semantically as a function with fixed points. Indeed, each formula ϕ, free
fixed point variables of which are among {x1, . . . , xn}, can be semantically
defined as a function fϕ : P(S)n → P(S) that given n subsets of states
in S yields the set of states that satisfy ϕ. Therefore, a formula ϕ of the
form νx.ψ that can be seen as a ”looping”, denotes the greatest fixed point
of the function fϕ : S′ 7→ fψ(. . . , S

′, . . .) where fψ : P(S)n → P(S) and
xi = x (i.e. we force the free variable xi to be interpreted by S′ in ψ). It
is well-known that such a fixed point exists when fϕ is monotonic on P(S).
The condition that every free occurrence of x in ψ occurs positively, ensures
monotonicity [11]. In this paper, we will not interpret each µ-formula ϕ as a
function fϕ but will prefer to follow a more classical definition of satisfaction,
i.e. defining a binary relation |= between components and µ-formulæ.

Example 5 We give here some formulæ that are about the encoder and
decoder components E and D presented in Example 1.

• A state having an outgoing transition labeled by 0|0 can be reached:

µx.∃x.〈x〉x ∨ 0 ↓ 0

• There exists an infinite path of E that passes infinitely often by states
having an outgoing transition labeled with 0|0:

νx.(µy.(0 ↓ 0 ∨ ∃x〈x〉y) ∧ ∃x.〈x〉x

In the following, we will be sometimes led up to use some derived
operators: 〈xi〉ϕ ⇐⇒ ¬[xi]¬ϕ, false ⇐⇒ ¬true, ∃x.ϕ ⇐⇒ ¬∀x.¬ϕ and
¬νx.ψ ⇐⇒ µx.¬ψ′ where ψ′ is the formula obtained from ψ by substituting
¬x for x in all free occurrences of x in ψ

Definition 13 (Satisfaction) Let C = (S, init, α) be a component over
T (O × )I . Let ϕ be a formula in L. For every fixed point variable in-
terpretation λ : X → P(S), every input and output variable interpretation
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ι : V → I ∪ O such that for every x ∈ Vi (resp. x ∈ Vo), ι(x) ∈ I (resp.
ι(x) ∈ O) and for every state s ∈ S, C satisfies ϕ for s, ι and λ, noted
C |=s,ι,λ ϕ, if, and only if:

• C |=s,ι,λ true

• C |=s,ι,λ x iff s ∈ λ(x)

• 11 C |=s,ι,λ xi ↓ yo iff ι(yo) ∈ η
′
O×S(α(s)(ι(xi)))|1

• C |=s,ι,λ [xi]ϕ
′ iff ∀s′ ∈ η′O×S(α(s)(ι(xi)))|2 , C |=s′,ι,λ ϕ

′

• C |=s,ι,λ νx.ψ iff ∃S′ ⊆ S such that s ∈ S′ and ∀s′ ∈ S′, C |=s′,ι,λ[S′/x] ψ
Here, λ[S′/x] is the interpretation such that, λ[S′/x](x) = S′ and
λ[S′/x](x′) = λ(x′) for every x′ 6= x.

• Propositional connectives and quantifier are handled as usual.

C satisfies a formula ϕ, noted C |= ϕ, if and only if for every valuation λ
and every valuation ι : V → I ∪O, C |=init,ι,λ ϕ.

From Definition 13, it is obvious to show that for every closed formula
ϕ and every state s ∈ S:

∀λ : X → P(S), ∀ι : V → I ∪O, C |=s,ι,λ ϕ⇔ C |=s,∅ ϕ

where ∅ : X → P(S) is the fixed point variable interpretation that associates
the emptyset ∅ to every x ∈ X, and C |=s,∅ ϕ means that for every input
and output variable interpretation ι, C |=s,ι,∅ ϕ. Hence, for closed formulæ,
both input and output variable interpretation and fixed point variable
interpretation are irrelevant, the latter being calculated for the satisfaction
of the closed formula.

The derived operators are then interpreted as follows:

• C |=s,ι,λ 〈xi〉ψ iff ∃s′ ∈ η′O×S(α(s)(ι(xi)))|2 , C |=s′,ι,λ ψ

• C |=s,ι,λ µx.ψ iff ∀S′ ⊆ S, ({s′ ∈ S | S |=s′,ι,λ[S′/x] ψ} ⊆ S
′ ⇒ s ∈ S′)

11By convention, ι(xi) = xi (resp. ι(yo) = yo) when xi ∈ I (resp. yo ∈ O).
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We would be able to resort explicitly to the µ extension of logics induced
by the functor H in the spirit of the standard coalgebraic logic such as defined
in [36]. Indeed, following [36], the modality [ ] can also be defined through
natural transformations µ(i) : H → P where i ∈ I such that for every set
S ∈ Set, µ(i)S : f 7→ η′O×S(f(i))|2 . The modality [xi] then becomes by
taking the notations in [36], the modality ✷µ(xi), and has as semantics:

C |=s,ι,λ ✷µ(xi)ψ ⇐⇒ ∀s
′ ∈ µ(ι(xi))S(α(s)), C |=s′,ι,λ ψ

In the same way, atoms of the form i ↓ o can be induced by natural
transformations î ↓ o : H → 2 where 2 = {true, false} defined by:

î ↓ oS : f 7→ ∃s′ ∈ S, (o, s′) ∈ η′O×S(f(i))

This leads to the following satisfaction definition:

C |=s,ι,λ xi ↓ yo ⇐⇒ ( ̂ι(xi) ↓ ι(yo))S ◦ α)(s) = true

This, it is on, will give a more categorical definition of the logic but
perhaps less practical in its use. Our goal here is to give a formal framework
for system engineering. That is why we prefer to follow the approach
developed in [10].

4.2 Adequacy and characterization

The following theorem shows that L is expressive enough to characterize
bisimilarity.

Theorem 3 (Adequacy) Let C1 = (S1, init1, α1) and C2 = (S2, init2, α2) be
two components over T (O × )I that are finite image i.e. ∀j = 1, 2, ∀(i, s) ∈
I × Sj , |η

′
O×Sj

(αj(s)(i))| <∞. Then, we have:

(∀ϕ, C1 |= ϕ⇔ C2 |= ϕ)⇐⇒ init1 ∼ init2

Proof. To prove the only if implication, let us suppose that init1 ∼ init2.
Let λ2 : X → P(S2). Let us define λ1 : X → P(S1) by:

λ1(x) = {s1 | ∃s2 ∈ λ2(x), s1 ∼ s2}
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It is quite obvious to show by structural induction on formulæ that for every
ϕ:

C1 |=init1,ι,λ1 ϕ⇐⇒ C2 |=init2,ι,λ2 ϕ

We can apply the same reasoning from any valuation λ1 : X → P(S1).

For the converse (the if part), let us define the relation ≡ ⊆ S1 × S2 as
follows: s ≡ s′ iff for every λ : X → P(S1), and every ι : V → I ∪O,

∀ϕ, C1 |=s,ι,λ ϕ⇔ C2 |=s′,ι,λ′ ϕ

where λ′ : X → P(S2) is the mapping that associates the set {s′|∃s ∈
λ(x), s ≡ s′} to each x ∈ X. Let us show that ≡⊆∼. Let us suppose that
s ≡ s′. By definition, this means for every λ : X → P(S1), every i ∈ I
and every o ∈ η′O×S1

(α1(s)(i))|1 that C1 |=s,λ i ↓ o, and then by hypothesis,
C2 |=s′,λ′ i ↓ o, i.e. o ∈ η

′
O×S2

(α2(s
′)(i))|1 . It remains to prove that for every

s ∈ η′O×S1
(α1(s)(i))|2 , there exists s′ ∈ η′O×S2

(α2(s
′)(i))|2 such that s ≡ s′.

For a given s ∈ η′O×S1
(α1(s)(i))|2 , let us suppose the opposite, i.e. there does

not exist such a s′. By hypothesis we have for every mapping λ that C1 |=s,λ

〈i〉 true and then C2 |=s′,λ′ 〈i〉 true. Hence, the set η′O×S2
(α2(s)(i))|2 is not

empty. Now, to have supposed the contrary, for every s′ ∈ η′O×S2
(α2(s)(i))|2 ,

there exists a formula ψs′ such that C1 |=s,ι,λ ψs′ and C2 6|=s′,ι,λ′ψs′ . By
hypothesis, the cardinality of η′O×S2

(α2(s)(i))|2 is finite. Therefore, we have
C1 |=s,ι,λ 〈i〉

∧
s′∈η′

O×S2
(α2(s)(i))|2

ψs′ and C2 6|=s′,ι,λ′〈i〉
∧

s′∈η′
O×S2

(α2(s)(i))|2

ψs′ ,

what is not possible as s ≡ s′. ✷

When bisimulations rest on the same component, we have further the
following result:

Theorem 4 (Characterization) Let C = (S, init, α) be a component with
finite image over a signature H = T (O × )I such that I is finite. Then
there exists for any s ∈ S, a closed formula ϕs such that:

∀s′ ∈ S, s ∼ s′ ⇔ C |=s′,∅ ϕs

Proof. Let us associate to any state s ∈ S, the variable xs ∈ X, and let us
define the formula ϕs = νxs.ψs where ψs =

∧
i∈I,(o,s′)∈η′

O×S
(α(s)(i))

〈i〉 xs′∧i ↓ o.

Then, let us define ϕs as the formula obtained from ϕs recursively as follows:

• Γ0 = {xs} and ϕ
0
s = ϕs;
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• ϕis is the formula obtained from ϕi−1
s by replacing every variable

xs′ 6∈ Γi−1 by ϕs′, and

Γi = Γi−1 ∪ {xs′ | xs′ has been replaced by ϕs′ in ϕ
i−1
s }

Then, let us set ϕs = ϕωs . S being finite, this process is terminating. Hence,
every fixed point variable in ϕs is within the scope of fixed point operator ν.

Let us suppose that s ∼ s′. Then, we can easily show by induction
on the number of nested occurrences of ν-formulæ in ϕs that C |=s,∅ ϕs.
Let us suppose that this number is one. This means that there exists i ∈ I
and o ∈ O such that (o, s) ∈ η′O×S(α(s)(i)) and then ϕs is of the form
νxs.〈i〉 xs ∧ i ↓ o. It is obvious that in this case C |=s,∅ ϕs. It is sufficient to
choose S′ = {s}. Let us suppose that the number of nested occurrences of
ν-formulæ in ϕs is greater that one. Then, this means that ϕs is of the form
νxs.

∧
i∈I,(o,s′)∈η′

O×S
(α(s)(i))

〈i〉 ϕs′ ∧ i ↓ o where ϕs′ is a closed formula except

maybe for the variable xs. By definition, we know that (o, s′) ∈ η′O×S(α(s)(i)).
By induction hypothesis, we have that C |=s′,∅ ϕs′ , and by hypothesis C |=s,∅

i ↓ o. ϕs′ is closed except for xs. Therefore C |=s,[xs/{s}] 〈i〉ϕs′. We can
then conclude that C |=s,∅ ϕs. By Theorem 3, since s ∼ s′, we also have
C |=s′,∅ ϕs.
Conversely, let us define the binary relation ≡ on S by:

s ≡ s′ ⇔ C |=s′,∅ ϕs

Let us show that ≡ is a bisimulation over S. Let i ∈ I and (o, s) ∈
η′O×S(α(s)(i)). By definition, C |=s′,∅ i ↓ o. It remains to prove there exists

s′ such that (o, s′) ∈ η′O×S(α(s
′)(i)) and s ≡ s′. Let us suppose the contrary,

i.e. C6|=s′,∅ϕs. We then have that C 6|=s′,∅ ϕs[xs/ϕs]. As ϕs is closed, we also
have that C 6|=s′,∅ ϕs which is impossible since s ≡ s′. The same reasoning
can be carried out for ≡−1. ✷

5 Correctness-by-construction

Here, we are interested in building correct systems from correct compo-
nents, i.e. we are going to give correctness-by-construction results. These
correctness-by-construction results rest on component properties that can
be exported to systems. These exported properties have then to be able to
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be expressed independently from any component and system. Indeed, the
correctness-by-construction results can only concern formulæ that do not
contain concrete inputs and outputs (i.e. some i ∈ I and o ∈ O) so that
they can be interpreted by both the component and the system where it is
plugged on. Therefore, they relate all the formulæ in L containing no input
and output values, i.e. all the formulæ defined by the following grammar:

ϕ := true | x | [x]ϕ | ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | νx.ϕ (2)

where x ∈ X and x ∈ Vi (the set of input variables). Note that whatever
the signature H considered, the set of formulæ defined by Grammar (2) is
always the same. This will be also the case for other logics defined in this
section.

This grammar is sufficient to express most of interesting general properties
on both systems and components such as the fact they are deadlock freedom:

νx.(∃x.〈x〉true ∧ ∀y.[y]x)

or the fact any path is finite:

µx.∀x.[x]x

or conversely, there exists an infinite path:

νx.∃x.〈x〉x

It would be easy to put a set of propositional variables P in signatures,
and then to add a mapping δ : S → 2P to components. In this case, we
would be able to express supplementary properties such as it is possible to
reach a state satisfying a propositional variable p:

µx.p ∨ ∃x.〈x〉x

Such formulæ are completely preserved along Cartesian product, that
is to say any system of the form ⊗(C1, C2) satisfies all the properties of its
components Ci (for i = 1, 2) and nothing more.

Proposition 1 (Preservation by product) Let C1 = (S1, init1, α1) and C2 =
(S2, init2, α2) be two components over H1 and H2, respectively. Then, for
every formula ϕ defined by Grammar (2), we have:

(∀i = 1, 2, Ci |= ϕ)⇐⇒ C |= ϕ
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where C = (S, init, α) is the Cartesian product C = ⊗(C1, C2) of C1 and C2.

Proof. By structural induction over ϕ, we first prove the following property:
∀(s1, s2) ∈ S, ∀λ : X → P(S), ∀ι : V → I ∪O,

Ci |=si,ι|i ,λ|i
ϕ, i = 1, 2⇐⇒ C |=(s1,s2),ι,λ ϕ

where λ|i : X → P(Si) is defined by:

x 7→ {s′i | ∃s
′
j ∈ Sj , j 6= i, (s′1, s

′
2) ∈ λ(x)}

ι|i : V → Ii ∪Oi is defined by: x 7→ ι(x)|i .

Therefore, let (s1, s2) ∈ S. Let λ : X → P(S) be a valuation. Let
ι : V → I ∪ O be a variable interpretation (recall that I = I1 × I2 and
O = O1 ×O2).

Basic case: this is obvious for true. For ϕ = x, the equivalence rests on
the following equivalence, that is true by definition of λ|i for every i = 1, 2:

(s1, s2) ∈ λ(x)⇐⇒ si ∈ λ|i(x), i = 1, 2

General case: many cases have to be considered:

• ϕ = [x]ψ. Let (s′1, s
′
2) ∈ η′O×S(α((s1, s2))(ι(x)))|2 . By induction

hypothesis, we have:

Ci |=s′i,ι|i ,λ|i
ψ, i = 1, 2⇐⇒ C |=(s′

1
,s′

2
),ι,λ ψ

By definition, if (s′1, s
′
2) ∈ η

′
O×S(α((s1, s2))(ι(x))|2 , then for every i =

1, 2, s′i ∈ η
′
Oi×Si

(αi(si)(ι|i(x)))|2 . If we suppose that Ci |=si,ι|i ,λ|i
[x]ψ

for every i = 1, 2, then Ci |=s′i,ι|i ,λ|i
ψ, whence we can conclude that

C |=(s1,s2),ι,λ [x]ψ.

Let us suppose that C |=(s1,s2),ι,λ [x]ψ, and let s′i ∈ η
′
Oi×Si

(αi(si)(ι|i(x))|2
for each i = 1, 2. Therefore, we have that C |=(s′

1
,s′

2
),ι,λ ψ, whence for

every i = 1, 2, we can conclude that Ci |=si,ι|i ,λ|i
[x]ψ.

• ϕ = νx.ψ. Let us prove the only if part. Let us suppose S′ ⊆ S such
that (s1, s2) ∈ S

′ and for every (s′1, s
′
2) ∈ S

′, C |=(s′
1
,s′

2
),ι,λ[S′/x] ψ. By

induction hypothesis, we have that Ci |=s′i,ι|i ,λ[S
′/x]|i

ψ that is equivalent
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to Ci |=s′i,ι|i ,λ|i [S
′
|i
/x] ψ where S′

|i
= {s′i | ∃s

′
j ∈ Sj , j 6= i, (s′1, s

′
2) ∈ S

′},

whence we can conclude that Ci |=si,ι|i ,λ|i
νx.ψ.

Conversely, let us suppose for every i = 1, 2 there exists S′
i ⊆ Si such

that si ∈ S′
i and for every s′i ∈ S′

i, Ci |=s′i,ι|i ,λ|i [S
′
i/x]

ψ. Let us set

S′ = S′
1 × S

′
2. Obviously, we have (s1, s2) ∈ S′. By the induction

hypothesis, we can write C |=(s′
1
,s′

2
),ι,λ[S′/x] ψ for every (s′1, s

′
2) ∈ S

′

whence we can conclude that C |=(s1,s2),ι,λ νx.ψ.

• The cases for the propositional connectives ∧,¬ and the quantifier ∀
are obvious.

Therefore, let us suppose that for every formula ϕ and every i = 1, 2, Ci |= ϕ.
Let λ : X → P(S) and ι : V → I ∪O. By hypothesis, we have that for every
i = 1, 2 that Ci |=initi,ι|i ,λ|i

ϕ and then C |=init,ι,λ ϕ.

Inversely, let us suppose that for every formula C |= ϕ. Let i ∈ {1, 2},
λi : X → P(Si) and ιi : Vi → Ii∪Oi. By definition, there exists λ : X → P(S)
and ι : V → I ∪O such that λ|i = λi and ι|i = ιi. By hypothesis, we have
that C |=init,ι,λ ϕ, and then Ci |=initi,ιi,λi ϕ. ✷

On the contrary, with feedback, as we can see in Example 4, when
applying the feedback to the Cartesian product of encoder E and decoder C,
we prune transitions. Hence, we cannot ensure property preservation from
	I(C) to its component C. Actually, the problem comes from formulæ of the
form [x]ψ which are here of the type of emergent properties for composability,
that is, properties that call into question components behaviour (here C’s
behaviours) when components are integrated into systems (here through
feedback). Indeed, emergence being the result of transition pruning, it may
be that in 	I(C) all the transitions that invalidate ϕ have been removed
from C.
Dually, formulæ of the form 〈x〉ψ cannot be preserved anymore from C to
	I (C). As we are interested by a correctness-by-construction result, to
preserve properties along feedback, we need to restrict the expressive power
of the logic and then preventing formulæ of the form 〈x〉ψ. Hence, we
obtain a first correctness-by-construction result for feedback by restricting
formulæ defined by Grammar (2) to the following grammar:

ϕ := true | false | x | [x]ϕ | ϕ C ϕ | Qx.ϕ | @x.ϕ′ (3)
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where C ∈ {∧,∨,⇒}, Q ∈ {∀, ∃}, @ ∈ {µ, ν}, and ϕ′ is a formula built ac-
cording to the rules of Grammar (3) in which x occurs positively. Positiveness
of x in a formula ϕ where x is free, is defined as follows:

• if ϕ = true or ϕ = false, then x is positive in ϕ;

• if ϕ = y, then x is positive in ϕ iff y = x;

• if ϕ = [x]ϕ′, then x is positive in ϕ iff x is positive in ϕ′;

• if ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2, then x is positive in ϕ iff x is positive
in ϕ1 and ϕ2;

• if ϕ = ϕ1 ⇒ ϕ2, then x is positive in ϕ iff x is not positive in ϕ1 or x
is positive in ϕ2;

• if ϕ = @y.ϕ′ with @ ∈ {µ, ν} (necessarily, we have y 6= x), then x is
positive in ϕ iff x is positive in ϕ′.

The fact that x occurs positively in ϕ′, also ensures that fϕ′ is monotone.

Proposition 2 (Preservation for feedback 1) Let C = (S, α, init) be a com-
ponent over H, and let I = (f, πi, πo) be a feedback interface such that
	I(C) = (S, α′, init′) is defined. For every ϕ defined by Grammar (3), we
have:

C |= ϕ =⇒	I(C) |= ϕ

Proof. By structural induction over ϕ, we first prove the following property:
∀s ∈ S, ∀λ : X → P(S), ∀ι : V → I ∪O

C |=s,λ,ι ϕ =⇒	I(C) |=s,λ,ι′ ϕ

where ι′ : V → πi(I) ∪ πo(O) is defined by:

ι′(x) =

{
πi(ι(x)) if x ∈ Vi

πo(ι(x)) otherwise (i.e. x ∈ Vo)

The basic cases defined by the formulæ true, false and x are obvious.
For such formulæ ϕ, we can even prove for every s ∈ S, every λ : X → P(S)
and every ι : V → I ∪O that

C |=s,λ,ι ϕ⇐⇒	I(C) |=s,λ,ι′ ϕ

For the general case, many cases have to be considered:
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• ϕ = [x]ψ. Let s′ ∈ η′O′×S(α
′(s)(ι′(x)))|2 . By definition, this means

there are i ∈ I and o ∈ O such that (s′, o) ∈ η′O×S(α(s)(f(i, o)))
and ι′(x) = πi(i) = πi(f(i, o)). Hence, by the second property of
Definition 8, (s′, o) ∈ η′O×S(α(s)(i)). Therefore, by hypothesis, we
have that C |=s′,λ,ι ψ. Hence, by the induction hypothesis, we have
	I(C) |=s′,λ,ι′ ψ, whence we can conclude that 	I(C) |=s,λ,ι′ ϕ.

• ϕ = νx.ψ. By hypothesis, we know there exists S′ ⊆ S such that s ∈ S′

and for every s′ ∈ S′, C |=s′,λ[S′/x],ι ψ. By the induction hypothesis,
we then have for every s′ ∈ S′ that 	I (C) |=s′,λ[S′/x],ι′ ψ. Therefore,
we can conclude that 	I(C) |=s,λ,ι′ ϕ.

• ϕ = µx.ψ. Let S′ ⊆ S such that {s′ |	I(C) |=s′,λ[S′/x],ι′ ψ} ⊆ S′. By
the induction hypothesis, we have {s′ | C |=s′,λ[S′/x],ι ψ} ⊆ {s

′ |	I

(C) |=s′,λ[S′/x],ι′ ψ}, and then s ∈ S′. Therefore, we can conclude that
	I(C) |=s,λ,ι′ ϕ.

• The cases for the propositional connectives ∧,∨,⇒ and the quantifiers
∃, ∀ are not difficult to treat.

Hence, let λ : X → P(S) be a valuation and let ι′ : V → I ′∪O′ be a variable
interpretation. By definition, there exists ι : V → I ∪O such that for every

x ∈ V , ι′(x) =

{
πi(ι(x)) if x ∈ Vi
πo(ι(x)) otherwise (i.e. x ∈ Vo)

By hypothesis, we have C |=init,λ,ι ϕ, and then by the property above, we
also have 	I(C) |=init,λ,ι′ ϕ, whence we can conclude 	I(C) |= ϕ. ✷

The problem is that Grammar (3) is too restrictive and many examples
of formulæ given previously are not taken into account by such a grammar.
When we look more closely at this kind of formulæ, they are closed and their
semantics is expressed by the membership of an outgoing state of a transition
labeled by x or y to a set of states. Such formulæ being closed, their semantics
then consists in checking that the state as argument of validation belongs
to the smallest or the greatest fixpoint according to the way fixed point
variables are quantified 12. Thus, the formulæ that we will take into account
are all the formulæ defined with the following supplementary restrictions:

12Here, we are only interested by the membership of states into a set of states and not
non-membership, because all fixed point variables are in the scope of an even number of
negations. So at the end, if one pushes the negation to be adjacent to atoms, negations
cancel.
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• Negation is removed, and

• For every sub-formula of the form 〈x〉ψ and [x]ψ, the variable x
is in the direct scope of a quantifier ∀ or ∃, respectively, and ψ is
a positive propositional formula, i.e. a formula defined by the
following grammar:

ψ := true | x | ψ ∧ ψ | ψ ∨ ψ | ψ ⇒ ψ

Therefore, the formulæ which will be considered here are generated by the
following grammar:

ϕ := θ | @x.ϕ′ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ (4)

where @ ∈ {µ, ν}, ϕ′ is a formula built according to the rules of Grammar (4)
in which x occurs positively, and θ is a state formula defined as follows:

θ := ψ | ∀x.[x]ψ | ∃x.〈x〉ψ | θ ∧ θ | θ ∨ θ | θ ⇒ θ

where ψ is a positive propositional formula.

The expressive power of such formulæ is now sufficient to describe all
the examples of general properties given at the beginning of this section.

Here, when formulæ are closed, the obtained preservation result is both
sufficient and necessary.

Proposition 3 (Preservation for feedback 2) Let C = (S, α, init) be a com-
ponent over H, and let I = (f, πi, πo) be a feedback interface such that
	I (C) = (S, α′, init) is defined. For every closed formula ϕ defined by
Grammar (4), we have:

C |= ϕ⇐⇒	I(C) |= ϕ

Proof. Let ϕ be a closed formula. Let x1, . . . , xn be its fixed point variables
such that:

1. for every i, 1 ≤ i ≤ n, there exists a unique sub-formula of the form
@ixi.ϕi in ϕ with @i ∈ {µ, ν},
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2. and for every i, j, 1 ≤ i, j ≤ n, if posϕ(@ixi.ϕi) ≺ posϕ(@jxj .ϕj) then
i < j. 13

By the structure of ϕ, for every i, 1 ≤ i ≤ n, if we note Si the least (resp.
the greatest) fixpoint (in that @i is µ or ν) for the mapping f : S′ 7→ {s′ ∈

S | C |=s′,λ[S′/xi] @ixi.ϕi} where S′ ⊆ S and λ : xj 7→

{
Sj if j < i
∅ otherwise

,

and S′
i is the least (resp. the greatest) fixpoint (in that @i is µ or ν) for

the mapping f ′ : S′ 7→ {s′ ∈ S |	I(C) |=s′,λ′[S′/xi] @ixi.ϕi} where S
′ ⊆ S

and λ′ : xj 7→

{
S′
j if j < i

∅ otherwise
, then the proof of Proposition 3 amounts

to show the following equivalence: ∀i, 0 ≤ i ≤ n, ∀s ∈ S,

C |=s,∅[S1/x1,...,Sn/xn] ϕ
′
i ⇐⇒ 	I(C) |=s,∅[S′

1
/x1,...,S′

n/xn]
ϕ′
i (5)

where ϕ′
0 is obtained from ϕ by replacing recursively every sub-formula

@ixi.ϕi by ϕ
′
i (i.e. all fixpoint operators have been removed).

The proof of (5) is done by structural induction over ϕ′
i. Among the

basic cases, the only two cases a little complicated are ∀x.[x]ψ and ∃x.〈x〉ψ.

• ϕ′
i = ∀x.[x]ψ:

(⇒) Let ι′ : V → I ′ ∪ O′ and let s′ ∈ η′O′×S(α
′(s)(ι′(x)))|2 . By

definition, this means there exists (i, o) ∈ I × O such that (o, s′) ∈
η′O×S(α(s)(f(i, o))) and πi(i) = ι′(x). By the preservation property
of Definition 8, we have that (o, s′) ∈ η′O×S(α(s)(i)). Therefore, by
hypothesis, we have C |=s′,∅[S1/x1,...,Sn/xn] ψ. It is not difficult to show
by structural induction on ψ and by the fact that for every i, 1 ≤ i ≤ n,
S′
i ⊆ Si (a simple consequence of the way the least and the greatest

fixpoints are calculated), that in this case 	I(C) |=s′,∅[S′
1
/x1,...,S′

n/xn]
ψ.

We then conclude that 	I(C) |=s,∅[S′
1
/x1,...,S′

n/xn]
ϕ′
i.

(⇐) Let ι : V → I ∪ O and let s′ ∈ η′S×O(α(s)(ι(x)))|2 . By the fixed-
point property, this means there exists (o, s′′) ∈ η′O×S(α(s)(f(ι(x), o))).

13Formulæ can be standardly represented by trees. Using a standard numbering of tree
nodes by natural number strings, we can refer to positions in a formula tree. Thus, given
a formula tree ϕ, a position of ϕ is a string ω ∈ N

∗ which represents the path from the
root of ϕ to the sub-formula ϕ′ whose the root occurs at that position. We note posϕ(ϕ

′)
this position, and ≺ is the lexicographic order over positions.
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Moreover, we have 	I (C) |=s′′,∅[S′
1
/x1,...,S′

n/xn]
ψ. By definition, ψ

is either logically equivalent to true or expresses some membership
properties on xj . Hence, for each of these xj , S

′
j 6= ∅, and then by the

way the least and the greatest fixpoints are calculated, s′ ∈ Sj , whence
we can conclude C |=s,∅[S1/x1,...,Sn/xn] ϕ

′
i.

• ϕ′
i = ∃x.〈x〉ψ:

(⇒) Let ι : V → I∪O such that there exists s′ ∈ η′O×S(α(s)(ι(x)))|2 sat-
isfying C |=s′,∅[S1/x1,...,Sn/xn] ψ. By the fixpoint property of Definition 8,
this means there exists o ∈ O such that η′O×S(α(s)(f(ι(x), o))) 6= ∅,
and then η′O′×S(α

′(s)(πi(ι(x)))) 6= ∅. ψ defining membership prop-
erties on some xj , for such xj , by the way both least and greatest
fixpoints are calculated, we have that S′

j ∩η
′
O′×S(α

′(s)(πi(ι(x))))|2 6= ∅,
whence we can conclude 	I(C) |=s,∅[S′

1
/x1,...,S′

n/xn]
ϕ′
i.

(⇐) Let ι′ : V → I ′∪O′ such that there exists s′ ∈ η′O′×S(α
′(s)(ι′(x)))|2

satisfying 	I(C) |=s′,∅[S′
1
/x1,...,S′

n/xn]
ψ. By definition, ∃(i, o) ∈ I × O

such that (o, s′) ∈ η′O×S(α(s)(f(i, o))) and πi(i) = ι′(x). By the preser-
vation property of Definition 8, we have that (o, s′) ∈ η′O×S(α(s)(i)).
It is not difficult to show by structural induction on ψ and by the fact
that for every i, 1 ≤ i ≤ n, S′

i ⊆ Si (a simple consequence of the way
the least and the greatest fixpoints are calculated), that in this case
C |=s′,∅[S1/x1,...,Sn/xn] ψ. We can conclude C |=s,∅[S1/x1,...,Sn/xn] ϕ

′
i.

✷

Theorem 5 (Correct-by-construction) Let op(C1, . . . , Cn) be a system over
a signature H = T (O × )I where each Ci is over Hi = T (Oi × )Ii for
every i, 1 ≤ i ≤ n. Let ϕ be a formula satisfying the same conditions as in
Proposition 2 (resp. in Proposition 3).Then:

∀i, 1 ≤ i ≤ n, Ci |= ϕ =⇒ (resp. ⇐⇒) op(C1, . . . , Cn) |= ϕ

Proof. By induction on the structure of the complex operator op by applying
Propositions 1 and 2 (resp. 3) . ✷

Hence, the result we have established here is a result of correctness-
by-construction by composability ([41]). This result is sufficiently general
to be applied to both most of integration operators and a large family of
formulæ (at least, most of formulæ expected on system behaviors).

31



6 Abstraction/Refinement

6.1 Definition

Abstraction allows us to consider the right systemic level for describing
systems, according to modeling needs. It is thus a fundamental tool to deal
with the growing complexity of systems by hiding unnecessary low-level
details related to system behavior. It helps people to better understand a
system and makes easier the formal analysis by working on abstraction of
systems.

By Definition 11, systems being defined finally as components, abstrac-
tion of systems will be based on the abstraction of components.

Abstraction can be seen as the inverse of refinement. Then, as this
is usual when dealing with the formalization of systems by state-based
machines, component abstraction will be naturally defined from the concept
of simulation to consider that transitions of the abstract component are
preserved in the concrete one [32]. However, the concept of simulation as
defined in Definition 5 needs to be revisited in order to take into account
the fact that the two systems in play in the abstraction can be defined
over different signatures. The main idea is abstraction/simulation can
be understood as a zoom from the point of view of overall behavior, i.e.
a transition in the abstract system can be ”zoomed” into a succession
of transitions in the concrete system in such a way all the intermediate
observations are only inputs and outputs that are not contained in the
abstract signature.

Definition 14 (Simulation revisited) Let H = T (O × )I and H ′ = T (O′ ×
)I

′
be two signatures such that I ′ ⊆ I and O′ ⊆ O. Let C = (S, init, α)

and C′ = (S′, init′, α′) be two components over H and H ′, respectively. A
binary relation R ⊆ S′×S is a simulation if, and only if s′ R s implies for
every i′ ∈ I ′, and every (o′, s′) ∈ η′O′×S′(α′(s′)(i′)), there exists i1, . . . , in ∈ I,
s0 ∈ S and (o1, s1), . . . , (on, sn) ∈ O × S such that:

• s = s0;

• i1 = i′ and on = o′;

• ∀j, 1 ≤ j ≤ n, (oj , sj) ∈ η
′
O×S(α(sj−1)(ij));

• ∀j, 1 < j ≤ n, ij ∈ I \ I
′;
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• ∀j, 1 ≤ j < n, oj ∈ O \O
′;

• s′ R sn.

R is a bisimulation if, and only if R is a simulation and s′ R s further
implies for every i1, . . . , in ∈ I and every (o1, s1), . . . , (on, sn) ∈ O × S such
that:

• ∀j, 1 ≤ j ≤ n, (oj , sj) ∈ η
′
O×S(α(sj−1)(ij)) with s0 = s;

• i1 ∈ I
′ and on ∈ O

′;

• ∀j, 1 < j ≤ n, ij ∈ I \ I
′;

• ∀j, 1 ≤ j < n, oj ∈ O \O
′

there exists i′ ∈ I ′, s′ ∈ S′ such that (o, s′) ∈ η′O′×S′(α′(s′)(i1)) and s
′ R sn.

If R is a simulation (resp. a bisimulation) and s′ R s, then s′ is said similar
(resp. bisimilar) to s.

C′ is similar (resp. bisimilar) to C if there exists a simulation (resp.
bisimulation) R such that init′ R init.

It is straightforward to see from definitions that when C and C′ are
over the same signature H, simulation (resp. bisimulation) in Definition 14
is equivalent to the notion of simulation (resp. bisimulation) given in
Definition 5.

Definition 15 (Component abstraction) Let H = T (O × )I and H ′ =
T (O′× )I

′
be two signatures such that I ′ ⊆ I and O′ ⊆ O. Let C = (S, init, α)

and C′ = (S′, init′, α′) be two components over H and H ′, respectively.
Then, C′ is an abstraction of C, noted C ❀ C′ if, and only if C′ is similar
(according to Definition 14) to C.
Abstraction is further complete, noted C ✶ C′, when C′ and C are bisimilar
(according to Definition 14).

The concepts introduced in Definition 15 are similar to the notions of
interface refinement (but restricted to inclusions), replaceability and behavior
refinement in [32]. Indeed, abstraction reflects that the behavior observed
from C′ are structural restriction of C with respect to the behavioral model
captured by T . More precisely, following the works of Hughes and Jacobs
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in [22], Meng and Barbosa in [32] abstractly define behavior refinement
through the notion of simulation based on a refinement preorder. Here this
refinement preorder ⊑ is the binary relation over T (O × S)I defined by:

f ⊑ g ⇐⇒ (∀i ∈ I, η′O×S(f(i)) ⊆ η
′
O×S(g(i)))

In [32], simulations are restricted to morphisms, called forward mor-
phisms, and then are defined for components over a same signature H . Hence,
following the notations given just above, C ❀ C′ if, and only if there exists a
morphism h : S′ → S such that for every s′ ∈ S′, Th(α′(s′)) ⊑ α(h(s′)).

Example 6 (Coffee machine) Figure 6 shows a simple example of
a coffee machine Sr over the signature Pfin(O × )I where I =
{coin, coffee, enough, not enough} and O = {refund, abs, served, verify}.
Figure 7 shows an abstraction of Sr defined by the component Sa over the sig-
nature Pfin(O

′× )I
′
where I ′ = {coin, coffee} and O′ = {refund, abs, served}.

Sr works similarly to Sa except Sr behavior is refined by adding a verification
step. Indeed, when the user asks for a coffee, the coffee machine interface
does a verification step which consists in checking whether the introduced
coin is enough or not for buying a coffee.

s1 s2 s3
coin|abs coffee|verify

not-enough| refund

enough|served

Figure 6: Concrete coffee machine

It is easy to see that Sa is an abstraction of Sr which is further complete.
Indeed, it is sufficient to consider the binary relation R = {(s′1, s1), (s

′
2, s2)}.

An important question we must address concerns consistency of our
definition of system abstraction: is the behavior of the abstraction of a
system the abstraction of the behavior of this system? To answer this
question, we have first to define what is the abstraction of system behaviors.
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s′
1

s′
2

coin|abs

coffee|served

coffee|refund

Figure 7: Abstract coffee machine

Definition 16 (Transfer function abstraction) Let I, I ′, O and O′ be sets
of input and output values, respectively, such that I ′ ⊆ I and O′ ⊆ O. Let
F : Iω → Oω and F ′ : I ′ω → O′ω be two transfer functions. F ′ is an
abstraction of F if, and only if for every x′ ∈ I ′ω, there exists x ∈ Iω such
that:

• for j = 0, there exists k0 ∈ N such that:

– x′(0) = x(0) and F(x)(k0) = F
′(x′)(0);

– ∀l, 1 ≤ l ≤ k0, x(l) ∈ I \ I
′;

– ∀l, 0 ≤ l < k0,F(x)(l) ∈ O \O
′

• for j = n, there exists k ∈ N such that:

– kn = kn−1 + k;

– x′(n) = x(kn−1 + 1) and F(x)(kn) = F
′(x′)(n);

– ∀l, 2 ≤ l ≤ k, x(kn−1 + l) ∈ I \ I ′;

– ∀l, 1 ≤ l < k,F(x)(kn−1 + l) ∈ O \O′

Theorem 6 (Consistency of abstraction) The behaviour of the abstraction
of a system is the abstraction of the behaviour of this system, i.e. when
C ❀ C′, then for every F ′ ∈ behC′(init′) there exists F ∈ behC(init) such that
F ′ is an abstraction of F . If C ✶ C′, then we have the reverse correspondence.

Proof. The proof of this Theorem is straightforward regarding the definition
of the system abstraction, which is defined as abstracting the behaviour of
the initial system. ✷

Now, the question is: what are properties preserved along abstraction
operator? Formally, if C ❀ C′, then for every formula ϕ over H ′ such that
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C′ |= ϕ, is C |= ϕ? The problem is ϕ has to be transformed to take into
account the fact that transitions in C′ may have been expanded into paths
in C. This then leads to the following result:

Theorem 7 Let C and C′ be two components over H and H ′, respectively,
such that C ❀ C′. Then, for every closed formula ϕ over H ′ (i.e. ϕ is a
closed formula defined according to the grammar given in Definition 12),
and for every s ∈ S and s′ ∈ S′ such that s′ is similar to s, we have:

C′ |=s′,∅ ϕ =⇒ (∀ϕ′ ∈ ϕs, C |=s,∅ ϕ
′)

where ϕs is the set of formulæ over H defined by structural induction over
ϕ as follows:

• if ϕ is true or x, then ϕs = {ϕ};

• if ϕ = i′ ↓ o′, then by hypothesis there exists in C a finite path,

s
i′↓o1
−→ s′1

i2↓o2
−→ . . .

in↓o′
−→ sn such that:

– ∀j, 1 < j ≤ n, ij ∈ I \ I
′;

– ∀j, 1 ≤ j < n, oj ∈ O \O
′.

We then set

ϕs = {i
′ ↓ o1∧ <i

′> i2 ↓ o2 ∧ . . .∧ <i
′><i2> . . . <in−1> in ↓ on}

• if ϕ is [i]ψ, then ϕs = {[i]ψ
′|ψ′ ∈

⋃

s∈η′
O×S

(α(s)(i))|2

ψs}.

• if ϕ is ∀x.ψ[x] with x ∈ Vi (resp. x ∈ Vo), then ϕs =
⋃

i′∈I′

ψ[x/i′]s

(resp. ϕs =
⋃

o′∈O′

ψ[x/o′]s).

• if ϕ is ¬ψ, ϕ1 ∧ ϕ2, νx.ψ, then ϕs is

– {¬ψ′|ψ′ ∈ ψs}

– {ϕ′
1 ∧ ϕ

′
2|ϕ

′
j ∈ ϕjs, j = 1, 2}
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– {νx.ψ′|ψ′ ∈ ψs}

(Let us remark when components are image finite and both I ′ and O′ are
finite sets, ϕs can be generated effectively.)

Proof. The proof is quite simple and is done by structural induction over
ϕ. ✷

The equivalence holds when dealing with complete abstraction.

This result reflects the fact that all the properties studied at the abstract
level are preserved at the more concrete one modulo the fact that input
and output variables have been replaced by values in I ′ and O′, respectively.
Thus, at the more concrete level we can only focus on the properties which
were not included in the abstract behaviour. For instance, a property of
the form ∀x.[x]ϕ which has been checked to be valid at the abstract level,
should be checked at the more concrete level only with values in I \ I ′.

6.2 Abstraction along integration

Large systems usually may require many abstraction steps. This leads to the
notion of sequential composition of abstraction steps. Usually, composition
of abstraction is mainly divided into two concepts:

1. horizontal composition that deals with abstraction of subparts of
complex systems when they are structured into ”blocks”. In our
framework, blocks are components as defined in Definition 2;

2. vertical composition that deals with many abstraction steps.

Horizontal composition. An important result in the systemic approach
is to preserve abstraction through integration. Hence, given a complex
operator op with arity n, a sequence of components (C1, . . . , Cn) and an ab-
straction Ci ❀ C

′
i, does op(C1, . . . , Ci, . . . , Cn) ❀ op(C1, . . . , C

′
i, . . . , Cn) hold?

This of course has also to be proven for complete abstraction. First, the
inclusion conditions on input and output sets should be satisfied, i.e. if
op(C1, . . . , Ci, . . . , Cn) is over H = T (O× )I and op(C1, . . . , C

′
i, . . . , Cn) is over

H ′ = T (O′ × )I
′
, then the inclusions between input and output values have

to be preserved, i.e. I ′ ⊆ I and O′ ⊆ O. Obviously, this will depend on the
structure of the complex operator op. Actually, because of feedback, op will
be also prone to be modified into a complex operator op. Indeed, the reason
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is because of feedback interface I. Let H = T (O× )I and H ′ = T ′(O′× )I
′

be two signatures such that I ′ ⊆ I and O′ ⊆ O. Let I = (f, πi, πo) with
πi : I → I and πo : O → O, be a feedback interface over H . I has to be able
to be extended into a feedback interface I ′ = (f ′, π′i, π

′
o) over T

′(O′ × )I
′
,

to deal with inputs and outputs in I ′ and O′, respectively. The question is
how to extend I into I ′?
We could set: f ′ = f|I′×O′ . The problem is, given (i′, o′) ∈ I ′ × O′, f(i′, o′)

does not necessarily belong to I ′. When this holds, it is easy to define I
′

and O
′
, and then π′i and π

′
o:

• I
′
= πi(I

′) and O
′
= πi(O

′);

• π′i = πi|I′ and π
′
o = πo|O′ .

We will then say that a feedback interface I = (f, πi, πo) over H is com-
patible with a signature H ′ = T (O′ × )I

′
such that I ′ ⊆ I and O′ ⊆ O if:

∀(i′, o′) ∈ I ′ ×O′, f(i′, o′) ∈ I ′. In the following, we will always suppose this
property.

To preserve abstraction along integration, we need to impose a condition
on some transitions. Again, this is due to the feedback operator. Indeed,
let us suppose C ❀ C′ where C = (S, init, α) and C′ = (S′, init′, α′). Let us
suppose 	I(C) = (S, init, α) and 	I′(C′) = (S′, init′, α′) where I ′ has been
defined as previously. As C ❀ C′, there exists a simulation R ⊆ S′ × S. Is
this simulation preserved after feedback? Actually, without a supplementary
condition on transitions, the answer is not. Indeed, let s′ R s, and let
i′ ∈ I

′
and (o′, s′) ∈ η′

O
′
,S′

(α′(s′)(i′)). By definition of feedback, there exists

i ∈ I ′ and o ∈ O′ such that (o, s′) ∈ η′O′×S′(α′(s′)(f ′(i, o))). By definition of
simulation, there exists a path in C

s
f ′(i,o)|o1
−→ s1

i2|o2
−→ . . .

in|o
−→ s

such that s′ R s. By definition of feedback, the transition s
i′|π′

o(o1)−→ s1 occurs
in 	I(C). On the contrary, there is no guarantee that the other transitions
are preserved in 	I(C) except if the following condition holds:

∀j, 2 ≤ j ≤ n, ∃i ∈ I, f(i, oj) = ij

In this case, we ensure that the transition sj−1
π(ij)|πo(oj)
−→ sj exists in

	I(C).
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We will then say that I preserves the simulation R if for every s′ R s and

every transition s′
i′|o′
−→ s′ in C′ such that i′ = π′i(f

′(i, o)) and o′ = π′o(o), there

exists a path s
f ′(i,o)|o1
−→ s1

i2|o2
−→ . . .

in|o
−→ s in C satisfying all the conditions of

Definition 14 and the supplementary condition:

∀j, 2 ≤ j ≤ n, ∃i ∈ I, f(i, oj) = ij

In the following, we will assume that, given C ❀ C′ and a feedback
interface I such that 	I (C) is defined, there always exists a simulation R
preserved by I.

Theorem 8 (Horizontal composition) Let op(C1, . . . , Ci, . . . , Cn) be a system.
Let Ci ❀ C

′
i (resp. Ci ✶ C

′
i). Then,

op(C1, . . . , Ci, . . . , Cn) ❀ op(C1, . . . , C
′
i, . . . , Cn)

(resp. op(C1, . . . , Ci, . . . , Cn) ✶ op(C1, . . . , C
′
i, . . . , Cn)) where op is defined by

structural induction on the complex operator op as follows:

• if op = , then op = ;

• if op = op1 ⊗ op2, then by definition op1 and op2 are respectively of
arity n1 < n and n2 < n. Let us suppose that i ≤ n1 (the case where
n1 ≤ i ≤ n is handled similarly). Then, op = op1 ⊗ op2;

• if op =	I (op
′), then op =	I′ (op′) where I ′ = (f ′, π′i : I

′ → I
′
, πo :

O′ → O
′
) is defined by:

– f ′ = f|I′×O′ ;

– I
′
= πi(I

′) and O
′
= πi(O

′);

– π′i = πi|I′ and π′o = πo|O′ .

Proof. This is proven by structural induction on the complex operator op.
The basic case is obvious. The induction step is composed of two cases:

1. op is of the form op1⊗op2. By definition, op1 and op2 are respectively of
arity n1 < n and n2 < n. Let us suppose that i ≤ n1. By induction hy-
pothesis we have op1(C1, . . . , Ci, . . . , Cn1

) ❀ op1(C1, . . . , C
′
i, . . . , Cn1

)
(resp. op1(C1, . . . , Ci, . . . , Cn1

) ✶ op1(C1, . . . , C
′
i, . . . , Cn1

)). This means
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by definition there exists a simulation (resp. a bisimulation) R1 be-
tween op1(C1, . . . , C

′
i, . . . , Cn1

) and op1(C1, . . . , Ci, . . . , Cn1
). Let us

set R = R× IdS2
where S2 is the set of states of op2(Cn1+1, . . . , Cn).

It is obvious to show that Cartesian product is stable for simulation
and bisimulation (according to Definition 14).

2. op is of the form 	I(op
′). By induction hypothesis, we have

op′(C1, . . . , Ci, . . . , Cn) ❀ op′(C1, . . . , C
′
i, . . . , Cn)

(resp. op(C1, . . . , Ci, . . . , Cn) ✶ op′(C1, . . . , C
′
i, . . . , Cn1

)). This
means by definition there exists a simulation (resp. a bisim-
ulation) R preserved by I between op′(C1, . . . , C

′
i, . . . , Cn1

) and
op′(C1, . . . , Ci, . . . , Cn1

). Then let us show that R remains a simulation
(resp. a bisimulation) between 	I′ (op′)(C1, . . . , C

′
i, . . . , Cn) and 	I

(op′)(C1, . . . , Ci, . . . , Cn). Let us assume that op′(C1, . . . , Ci, . . . , Cn1
)

and op′(C1, . . . , C
′
i, . . . , Cn1

) are over H = T (O × )I and H ′ =
T (O′ × )I

′
, I = (f : I × O → I, πi : I → I, πo : O →

O), and then I ′ = (f ′ : I ′ × O′ → I ′, π′i : I ′ → I
′
, π′o :

O′ → O
′
). Moreover, let us assume that op′(C1, . . . , Ci, . . . , Cn1

) =
(S, init, α) and op′(C1, . . . , C

′
i, . . . , Cn1

) = (S′, init′, α′). By def-
inition, 	I′ (op′)(C1, . . . , C

′
i, . . . , Cn) = (S′, init′, α′) and 	I

(op′)(C1, . . . , Ci, . . . , Cn) = (S, init, α) where α′ and α are defined fol-
lowing Definition 9. Let us suppose s′ ∈ S′ and s ∈ S such that s′ R s.
Let i′ ∈ I

′
and let (o′, s′) ∈ η′

O
′
×S′

(α′(s′)(i′)). By definition of feedback,

there exists i ∈ I ′ and o ∈ O′ such that (o, s′) ∈ η′O′×S′(α′(s′)(f ′(i, o)))
,π′i(i) = i′ and π′o(o) = o′. By definition of simulation, there exists an
execution in op′(C1, . . . , C

′
i, . . . , Cn) of the form:

s
f ′(i,o)|o1
−→ s1

i2|o2
−→ . . .

in|o
−→ s

with s′ R s. By the condition that R is preserved by I, we have in
	I(op

′)(C1, . . . , Ci, . . . , Cn) the execution:

s
i′|πo(o1)
−→ s1

πi(i2)|πo(o2)
−→ . . .

πi(in)|πo(o)
−→ s

✷
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Vertical composition. Vertical composition is just a consequence of the
following simple result.

Theorem 9 Both ❀ and ✶ are transitive, i.e. ❀ ·❀⊆❀ and ✶ · ✶⊆✶.

Proof. Both ❀ and ✶ are defined w.r.t. revisited similarity and bisimilarity
which it is not difficult to show they are transitive relations. ✷

Horizontal and vertical composition can be easily composed to obtain a
bidimensional compositionality.

7 Conclusion

This paper introduced a logic defined as a variant of first-order fixed-point
modal logic to express component and system requirements and an abstrac-
tion operator to build systems and check their correctness incrementally.
For this logic, we proposed conditions to preserve properties expressed in
this logic along integration and abstraction, and then showed a means to
establish correct-by-construction proofs. The interest of our results is they
are completely independent of integration operators. Furthermore, they
have been shown to a large family of properties containing at least all the
common properties that can be expressed on state-based components such
as deadlock free, reachability, etc.

7.1 Perspectives

Both logic and associated results that have been presented here are devoted
to discrete/computing complex systems. We are currently working to extend
this work to heterogeneous complex systems (i.e. where components can be
defined over discrete or continuous time scales). To do so, first we propose
to introduce the notion of monad to components in [2] to take into account
different computation situations, and then to study the results of properties
preservation for the logic defined in [3]. Thus, the defined formalism would be
allowed to be used as a formal semantics for the system modelling language
SysML.
Moreover, the logic presented in the paper can be related to the language for
the power set functor based on regular expressions defined in [42], though
the approach followed in [42] differs from ours at least in the following two
points:
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1. Authors in [42] are interested in defining a ”process algebra” like
language instead of a modal logic to specify system behaviors;

2. They are also interested in giving a sound and complete axiomatization
thereof whereas here, we are mainly interested in giving results of prop-
erties preservation along both integration and abstraction operators to
get correctness-by-construction results.

However, in future work, when we will look at the definition of an
inference system for our logic to conduct correctness proofs and check their
feasibility, some connections will be to make with the work set out in [42].
Finally, following the works in [10], we also propose to study computational
aspects of our formalism such as synthesis of components to transform
requirements into components that satisfy them and the definition of model-
checking algorithms. Of course, as already said in the introduction, the
logic will be allowed to be restricted to the propositional case. Within the
formalism in [2, 3], particular attention should be given to time scale mainly
when dealing with continuous times. Indeed, although continuous time scales
in [2, 3] are discretely defined and then (non-standard) induction works,
their cardinality is not denumerable which is not to allow their computability.
In a series of papers, Y. Sergueyev has recently defined a positional numeral
system that may allow us to carry out effective computation with infinitesimal
and infinitely large numbers [39, 40]. We then propose to study how to
introduce the ideas developed in [39, 40] within the formalism developed
in [2, 3], with defining algorithms issues in mind both for the synthesis and
properties satisfaction in the presence of complex heterogeneous (discrete
and continuous) systems.
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