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Introduction and motivations
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Kohonen Self Organizing maps

Given a sample ¢ ~ Z, a distance function dz :

Position

Neighborhood

Matching

The SOM algorithm :
» is synchronized to the input distribution

> relies on a global supervisor for the competition

» computes a neighborhood unaware winner
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Dynamic neural fields

The dynamic neural field equation introduced by Amari (1977) is :
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Typical behaviors

Depending on the parameters, dynamic neural fields can have different

behaviors, e.g. :

Competition

(local excitation),

global inhibition for competing

Working memory

local excitation for holding
local inhibition for bounding
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The Amari equation is not sufficient for SOMs

Given a sample { ~ Z, and a collection of prototypes w;, the matching
g(dz(e,w;)) ! has different shapes as the map learns :
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1. with g a gaussian, dz the distance in the input space
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The Amari equation is not sufficient for SOMs

Experimentally, the Amari equation is not an adequate competition
mechanism in the context of self-organizing maps; the field is whether
not responsive enough or blind to input changes.

Random Input /(x, t) Decision f(v(x,t))

x

x

t

Structured Input /(x, t) Decision f(v(x, t))

In the Iitteraturé, it has been suggested to :

> learn the lat. weights with norm. Hebb rule LISSOM [Miikkulainen(1994)]

» learn the lat. weights with homeostatic plasticity rules
s [Moldakarimov(2006)]



A new equation

We introduce an intermediate layer between the input /(x,t) and the
decision layer V(x,t) :

local input input below the decision
R0 = w0+ 5 senit - [ Ao )
R0 = 0 [ Wl ) + )
with :

> g a gaussian, w a mexican hat,
> 7 parameters (T, 3,04, A1, 01, A_,0_)
> evaluation in O(N log(NN)), with the FFT

The lateral connections are not plastic — we keep the same plasticity all
the time
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Qualitative behavior of the new equation

Local raise of activity in regions where the input is locally higher
compared to the input supporting the current decision.

Input /(x, t)

Intermediate f(u(x, t))

Decision f(v(x,t))
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Experiments
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Discrete self-organizing dynamic neural field

Given a sample €(t), initial prototypes p(.,0), activities u(.,0), v(.,0) :

Auxt) = 2 8+ 3 o) 00) = 32 F - )10 )
Avixt) = 2 vl )+ D w8+ (e 6)

e — exp(_\p(x ) : e(t)|)

Bplx.t) = SEA(vx O)(elt) ~ plx. 1)

Parameters :

N | At | 7 | op T B | og | Ay | o4 | A-
50 | 0.01 | 10 | 0.2 | 0.05 | 2.6 | 47 | 1.2 | 46 | 1.08
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Ring experiment - 1D Neural Field

2D Distribution Simulation

Samples are drawn in a ring
Domain D C [-1,1]?
Prototypes : random in [—1, 1]?

y position

1(x), f(V(x))

0 10 20 30 40 50
Field position
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Rotating bar experiment - 1D Neural Field

100 x 100D Distribution

A bar is rotating at w = 10 deg.s~! Simulation
Prototypes : mean of 50 stimuli +
noise

——————————————————————

--------

100 p

--------
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Without topology : dynamical online K-means

T%(X,t) = —u(x,t)+(y,t) ;f
Mty = vl t)+wef(v(x,t))fw,-ygxf(v(y,t))w(u(x, )
106) = e~ 2T 4 b
B P0xt) = Ay O)(e(t) - plx, 1)
Ro2(et) = b - FW(x)
D = A + vl )

We remove all the dependencies on distance in the field;
We add an adaptive baseline to avoid dead units, b* = 1/N
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Without topology : dynamical online K-means

Simulation

2D Distribution

Samples are drawn in a ring or a
square.

Domain D C [-1, 1]?
Prototypes : outside from D
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Summary and perspectives
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Summary

In the context of self-organizing maps :
» a static Amari equation is not sufficient

> an intermediate layer can be added to destabilize the output decision

Experiments conducted :
» with 1D populations, ring topology, with 2D or 1002 prototypes
» without topology

Introducing an adaptive baseline avoids dead units.
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Perspectives

Improving the performances of the self-organizing neural field :
» when the prototypes are too far from the samples

» without cyclic boundary conditions, the units on the border have less
chance to win

Making use of dynamical systems for self-organizing maps may open the
road toward :

> an easier analytic treatment of self-organizing maps, the WTM is a
result of the interactions of the units,

> the study of exotic self-organizing structures with multiple winning
locations by bounding the extent of lateral inhibition,

» suitable for recurrent self-organizing maps, where multiple
interconnected maps require a relaxation
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