Dynamic formation of self-organizing maps

Jérémy Fix Jeremy.Fix@supelec.fr IMS - MaLIS group

July 2nd 2014

Introduction and motivations

Kohonen Self Organizing maps

Given a sample $\zeta \sim \mathcal{I}$, a distance function $d_{\mathcal{I}}$:

The SOM algorithm :

- is synchronized to the input distribution
- relies on a global supervisor for the competition
- computes a neighborhood unaware winner

Dynamic neural fields

The dynamic neural field equation introduced by Amari (1977) is :

$$\tau \frac{\partial v}{\partial t}(x,t) = -v(x,t) + \int_{y} w(x,y) f(v(y,t)) + I(x,t)$$

Transfer function f(x)

Weights w(x, y)

Typical behaviors

Depending on the parameters, dynamic neural fields can have different behaviors, e.g. :

Competition

(local excitation), global inhibition for competing

Working memory

<u>local excitation</u> for holding <u>local inhibition</u> for bounding

The Amari equation is not sufficient for SOMs

Given a sample $\zeta \sim \mathcal{I}$, and a collection of prototypes w_i , the matching $g(d_{\mathcal{I}}(\epsilon, w_i))^1$ has different shapes as the map learns :

1. with g a gaussian, $d_{\mathcal{I}}$ the distance in the input space

The Amari equation is not sufficient for SOMs

Experimentally, the Amari equation is **not an adequate competition mechanism** in the context of self-organizing maps; the field is whether **not responsive enough** or **blind to input changes**.

 learn the lat. weights with homeostatic plasticity rules [Moldakarimov(2006)]

A new equation

We introduce an intermediate layer between the input I(x, t) and the decision layer V(x, t):

$$\tau \frac{\partial u}{\partial t}(x,t) = -u(x,t) + \beta(\overbrace{\int_{y} g(x,y)I(y,t)}^{\text{local input}} - \overbrace{\int_{y} f(v(y,t))I(y,t)}^{\text{input below the decision}})$$

$$\tau \frac{\partial v}{\partial t}(x,t) = -v(x,t) + \int_{y} w(x,y)f(v(y,t)) + f(u(x,t))$$

with :

- ▶ g a gaussian, w a mexican hat,
- ▶ 7 parameters $(\tau, \beta, \sigma_g, A_+, \sigma_+, A_-, \sigma_-)$
- evaluation in O(N log(N)), with the FFT

The lateral connections are not plastic \rightarrow we keep the same plasticity all the time

Qualitative behavior of the new equation

Local raise of activity in regions where the input is locally higher compared to the input supporting the current decision.

Experiments

Discrete self-organizing dynamic neural field

Given a sample $\epsilon(t)$, initial prototypes p(.,0), activities u(.,0), v(.,0):

$$\Delta u(x,t) = \frac{\Delta t}{\tau} (-u(x,t) + \beta (\sum_{y} g(x,y)I(y,t) - \sum_{y} f(v(y,t))I(y,t)))$$

$$\Delta v(x,t) = \frac{\Delta t}{\tau} (-v(x,t) + \sum_{y} w(x,y)f(v(y,t)) + f(u(x,t)))$$

$$I(x,t) = \exp(-\frac{|p(x,t) - \epsilon(t)|}{2\sigma_{\rho}^{2}})$$

$$\Delta p(x,t) = \frac{\Delta t}{\tau_{\rho}} f(v(x,t))(\epsilon(t) - p(x,t))$$

Parameters :

Ν	Δt	τ_p	σ_p	au	β	σ_{g}	A_+	σ_+	A_
50	0.01	10	0.2	0.05	2.6	4.7	1.2	4.6	1.08

Ring experiment - 1D Neural Field

2D Distribution

 $\begin{array}{l} \mbox{Samples are drawn in a ring} \\ \mbox{Domain } \mathcal{D} \subset [-1,1]^2 \\ \mbox{Prototypes : random in } [-1,1]^2 \end{array}$

Simulation

Rotating bar experiment - 1D Neural Field

$100\times100D$ Distribution

A bar is rotating at $\omega = 10 \text{ deg.} s^{-1}$ Prototypes : mean of 50 stimuli + noise

Simulation

Without topology : dynamical online K-means

$$\tau \frac{\partial u}{\partial t}(x,t) = -u(x,t) + I(y,t) - \sum_{y} f(v(y,t))I(y,t)$$

$$\tau \frac{\partial v}{\partial t}(x,t) = -v(x,t) + w_{e}f(v(x,t)) - w_{i}\sum_{y \neq x} f(v(y,t)) + f(u(x,t)))$$

$$I(x,t) = \exp(-\frac{|p(x,t) - \epsilon(t)|}{2\sigma_{p}^{2}}) + b(x,t)$$

$$\tau_{p}\frac{\partial p}{\partial t}(x,t) = f(v(x,t))(\epsilon(t) - p(x,t))$$

$$\tau_{b}\frac{\partial b}{\partial t}(x,t) = b^{*} - \overline{f(v)}(x,t)$$

$$\frac{\partial \overline{f(v)}}{\partial t}(x,t) = -\overline{f(v)}(x,t) + f(v(x,t))$$

We remove all the dependencies on distance in the field; We add an adaptive baseline to avoid *dead units*, $b^* = 1/N$

 τ_b

Without topology : dynamical online K-means

2D Distribution

Samples are drawn in a ring or a square. Domain $\mathcal{D} \subset [-1,1]^2$ Prototypes : **outside** from \mathcal{D}

Simulation

Summary and perspectives

Summary

In the context of self-organizing maps :

- a static Amari equation is not sufficient
- ▶ an intermediate layer can be added to destabilize the output decision

Experiments conducted :

- \blacktriangleright with 1D populations, ring topology, with 2D or 100² prototypes
- without topology

Introducing an adaptive baseline avoids dead units.

Perspectives

Improving the performances of the self-organizing neural field :

- when the prototypes are too far from the samples
- without cyclic boundary conditions, the units on the border have less chance to win

Making use of dynamical systems for self-organizing maps may open the road toward :

- an easier analytic treatment of self-organizing maps, the WTM is a result of the interactions of the units,
- the study of exotic self-organizing structures with multiple winning locations by bounding the extent of lateral inhibition,
- suitable for recurrent self-organizing maps, where multiple interconnected maps require a relaxation