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Introduction and motivations
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Kohonen Self Organizing maps

Given a sample ζ ∼ I, a distance function dI :

The SOM algorithm :

I is synchronized to the input distribution

I relies on a global supervisor for the competition

I computes a neighborhood unaware winner

3/18



Dynamic neural fields

The dynamic neural field equation introduced by Amari (1977) is :

τ
∂v

dt
(x , t) = −v(x , t) +

∫
y

w(x , y)f (v(y , t)) + I (x , t)

Transfer function f (x) Weights w(x , y)

4/18



Typical behaviors

Depending on the parameters, dynamic neural fields can have different
behaviors, e.g. :

Competition

(local excitation),
global inhibition for competing

Working memory

local excitation for holding
local inhibition for bounding
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The Amari equation is not sufficient for SOMs

Given a sample ζ ∼ I, and a collection of prototypes wi , the matching
g(dI(ε,wi )) 1 has different shapes as the map learns :

1. with g a gaussian, dI the distance in the input space
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The Amari equation is not sufficient for SOMs
Experimentally, the Amari equation is not an adequate competition
mechanism in the context of self-organizing maps ; the field is whether
not responsive enough or blind to input changes.

Random Input I (x , t) Decision f (v(x , t))

Structured Input I (x , t) Decision f (v(x , t))

In the litterature, it has been suggested to :

I learn the lat. weights with norm. Hebb rule LISSOM [Miikkulainen(1994)]

I learn the lat. weights with homeostatic plasticity rules
[Moldakarimov(2006)]7/18



A new equation

We introduce an intermediate layer between the input I (x , t) and the
decision layer V (x , t) :

τ
∂u

dt
(x , t) = −u(x , t) + β(

local input︷ ︸︸ ︷∫
y

g(x , y)I (y , t)−

input below the decision︷ ︸︸ ︷∫
y

f (v(y , t))I (y , t) )

τ
∂v

dt
(x , t) = −v(x , t) +

∫
y

w(x , y)f (v(y , t)) + f (u(x , t))

with :

I g a gaussian, w a mexican hat,

I 7 parameters (τ, β, σg ,A+, σ+,A−, σ−)

I evaluation in O(N log(N)), with the FFT

The lateral connections are not plastic → we keep the same plasticity all
the time

8/18



Qualitative behavior of the new equation
Local raise of activity in regions where the input is locally higher
compared to the input supporting the current decision.

Input I (x , t) Intermediate f (u(x , t)) Decision f (v(x , t))

Input I (x , t) Intermediate f (u(x , t)) Decision f (v(x , t))
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Experiments
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Discrete self-organizing dynamic neural field

Given a sample ε(t), initial prototypes p(., 0), activities u(., 0), v(., 0) :

∆u(x , t) =
∆t

τ
(−u(x , t) + β(

∑
y

g(x , y)I (y , t)−
∑
y

f (v(y , t))I (y , t)))

∆v(x , t) =
∆t

τ
(−v(x , t) +

∑
y

w(x , y)f (v(y , t)) + f (u(x , t)))

I (x , t) = exp(−|p(x , t)− ε(t)|
2σ2

p

)

∆p(x , t) =
∆t

τp
f (v(x , t))(ε(t)− p(x , t))

Parameters :

N ∆t τp σp τ β σg A+ σ+ A−
50 0.01 10 0.2 0.05 2.6 4.7 1.2 4.6 1.08
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Ring experiment - 1D Neural Field

2D Distribution

Samples are drawn in a ring
Domain D ⊂ [−1, 1]2

Prototypes : random in [−1, 1]2

Simulation
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Rotating bar experiment - 1D Neural Field

100× 100D Distribution

A bar is rotating at ω = 10 deg.s−1

Prototypes : mean of 50 stimuli +
noise

Simulation
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Without topology : dynamical online K-means

τ
∂u

dt
(x , t) = −u(x , t) + I (y , t)−

∑
y

f (v(y , t))I (y , t)

τ
∂v

dt
(x , t) = −v(x , t) + we f (v(x , t))− wi

∑
y 6=x

f (v(y , t)) + f (u(x , t)))

I (x , t) = exp(−|p(x , t)− ε(t)|
2σ2

p

) + b(x , t)

τp
∂p

dt
(x , t) = f (v(x , t))(ε(t)− p(x , t))

τb
∂b

dt
(x , t) = b? − f (v)(x , t)

τb
∂f (v)

dt
(x , t) = −f (v)(x , t) + f (v(x , t))

We remove all the dependencies on distance in the field ;
We add an adaptive baseline to avoid dead units, b? = 1/N
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Without topology : dynamical online K-means

2D Distribution

Samples are drawn in a ring or a
square.
Domain D ⊂ [−1, 1]2

Prototypes : outside from D

Simulation
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Summary and perspectives
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Summary

In the context of self-organizing maps :

I a static Amari equation is not sufficient

I an intermediate layer can be added to destabilize the output decision

Experiments conducted :

I with 1D populations, ring topology, with 2D or 1002 prototypes

I without topology

Introducing an adaptive baseline avoids dead units.
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Perspectives

Improving the performances of the self-organizing neural field :

I when the prototypes are too far from the samples

I without cyclic boundary conditions, the units on the border have less
chance to win

Making use of dynamical systems for self-organizing maps may open the
road toward :

I an easier analytic treatment of self-organizing maps, the WTM is a
result of the interactions of the units,

I the study of exotic self-organizing structures with multiple winning
locations by bounding the extent of lateral inhibition,

I suitable for recurrent self-organizing maps, where multiple
interconnected maps require a relaxation
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